Contrastive Pretraining for Visual Concept Explanations of Socioeconomic Outcomes - CIRAD - Centre de coopération internationale en recherche agronomique pour le développement
Communication Dans Un Congrès Année : 2024

Contrastive Pretraining for Visual Concept Explanations of Socioeconomic Outcomes

Résumé

Predicting socioeconomic indicators from satellite imagery with deep learning has become an increasingly popular research direction. Post-hoc concept-based explanations can be an important step towards broader adoption of these models in policy-making as they enable the interpretation of socioeconomic outcomes based on visual concepts that are intuitive to humans. In this paper, we study the interplay between representation learning using an additional task-specific contrastive loss and post-hoc concept explainability for socioeconomic studies. Our results on two different geographical locations and tasks indicate that the task specific pretraining imposes a continuous ordering of the latent space embeddings according to the socioeconomic out-comes. This improves the model’s interpretability as it enables the latent space of the model to associate urban concepts with continuous intervals of socioeconomic outcomes. Further, we illustrate how analyzing the model’s conceptual sensitivity for the intervals of socioeconomic outcomes can shed light on new insights for urban studies.
Fichier principal
Vignette du fichier
Obadic_Contrastive_Pretraining_for_Visual_Concept_Explanations_of_Socioeconomic_Outcomes_CVPRW_2024_paper.pdf (3.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04661858 , version 1 (25-07-2024)

Identifiants

Citer

Ivica Obadic, Alex Levering, Lars Pennig, Dario Oliveira, Diego Marcos, et al.. Contrastive Pretraining for Visual Concept Explanations of Socioeconomic Outcomes. EarthVision 2024 workshop (in conjuction with CVPR 2024), 2024, Seatle, United States. ⟨hal-04661858⟩
82 Consultations
20 Téléchargements

Altmetric

Partager

More