Haute excitation de molécules dans les régions irradiées de formation stellaire et planétaire observées par le James Webb Space Telescope - Institut d'astrophysique spatiale
Thèse Année : 2024

High excitation of molecules in irradiated star- and planet-formation regions observed with the James Webb Space Telescope

Haute excitation de molécules dans les régions irradiées de formation stellaire et planétaire observées par le James Webb Space Telescope

Marion Zannese
  • Fonction : Auteur
  • PersonId : 1434476
  • IdRef : 281137390

Résumé

Radiative feedback from massive stars, which heats and disperses the gas in the surrounding cloud, is a dominant mechanism limiting stellar and planetary formation. Indeed, observations show that only 1-5% of the mass of molecular clouds is converted into stars. In this thesis, I focused on the neutral, warm and irradiated regions between ionized and cold molecular media. In particular, I investigated how the excitation at the formation of certain molecules (OH, CH+ and CH3+) enabled simple and robust diagnostics to constrain the physical and chemical parameters of these regions. To do this, I coupled detailed gas modeling, using quantum dynamics data, with analysis of observations from the James Webb Space Telescope. The spectral coverage, high sensitivity and angular resolution of the JWST give unprecedented access to the chemistry and microphysics of the small-scale substructures of photodissociation regions (PDR) and the warm regions of protoplanetary disks (inner region or photoevaporated wind). My thesis is part of the analysis of data from the PDRs4All program observing the Orion Bar and protoplanetary disks in the line of sight (in particular d203-506).In preparation for the observations, I first concentrated on predicting what the JWST might detect. I studied the prompt emission of rotationally excited OH produced by the photodissociation of water. To this end, I used the Meudon PDR code, which self-consistently calculates the radiative transfer, the chemistry and the heat balance in PDRs. By implementing prompt emission in this code, we then show that only sufficiently dense and warm environments allow OH excitation at formation. The second part of my thesis presents the analysis of spectra obtained with the JWST. The signatures of highly excited molecules at formation observed in these data and analyzed with single-zone excitation models, based on quantum dynamics data, have revealed a particularly active chemistry in warm, irradiated regions. In the Orion Bar and d203-506, we reveal the detection of OH, CH+ and CH3+ as well as their excitation at formation, allowing us to constrain the chemistry in action. Indeed, OH rotational emission, previously modeled and detected in the mid-infrared, reveals the photodissociation of water. The near-infrared emission of OH and CH+ traces the formation and excitation of these species by chemical pumping via reactions with H2: X + H2 → XH* + H. These emission lines reveal a very active water formation and destruction cycle in d203-506 (O <=> OH <=> H2O), as well as the beginning of the carbon chemistry chain (C+ → CH+ → CH2+ → CH3+) in the PDR and disk. Excitation models have enabled us to identify the observed excitation processes and translate the measured line intensities into formation and destruction rates of these species. They also enable us to constrain the physical conditions of the medium, and can be used to determine locally, from the intensity of the observed lines, the intensity of the UV field (for the photodissociation of water) or the density of the gas (for prompt emission), which are essential ingredients determining the initial conditions of stellar and planetary formation. These new diagnostics will be key to the analysis of many JWST observations, since these processes are expected to be detected in a multitude of astrophysical objects with warm, irradiated regions (protostars, outflow, planetary nebulae, etc.).
La rétroaction radiative par les étoiles massives, qui chauffe et agite le gaz du nuage environnant, est un mécanisme dominant limitant la formation stellaire et planétaire. En effet, les observations montrent que seule 1-5 % de la masse des nuages moléculaires est convertie en étoiles. Au cours de cette thèse, je me suis intéressée aux régions neutres, chaudes et irradiées entre les milieux ionisés et moléculaires froids. Plus particulièrement, j'ai étudié comment l'excitation à la formation de certaines molécules (OH, CH+ et CH3+) permettaient d'établir des diagnostics simples et robustes pour contraindre les paramètres physiques et chimiques de ces régions. Pour ce faire, j'ai couplé un travail de modélisation détaillée du gaz, en utilisant des données de dynamique quantique, avec l'analyse des observations du James Webb Space Telescope. La couverture spectrale, la grande sensibilité et la résolution angulaire du JWST lui donne un accès inédit à la chimie et la microphysique des sous-structures à petites échelles des régions de photodissociation (PDR) et des régions chaudes des disques protoplanétaires (région interne ou vent photoévaporé). Ma thèse s'inscrit alors dans l'analyse des données du programme PDRs4All observant la Barre d'Orion et des disques protoplanétaires se trouvant dans la ligne de visée (en particulier d203-506).En préparation des observations, je me suis d'abord concentrée sur les prédictions de ce que pourrait détecter le JWST. J'ai alors étudié l'émission prompte de OH produit rotationnellement excité par la photodissociation de l'eau. Pour cela, j'ai utilisé le code PDR de Meudon, qui calcule de façon auto-cohérente le transfert de rayonnement, la chimie et le bilan thermique dans les PDRs. En implémentant l'émission prompte dans ce code, nous montrons alors que seuls les milieux suffisamment denses et chauds permettent d'exciter OH à la formation. La seconde partie de ma thèse présente l'analyse des spectres obtenus avec le JWST. Les signatures des molécules très excitées à la formation présentes dans ces données et analysées avec des modèles d'excitation à zone unique, basés sur des données de dynamique quantique, ont permis de révéler une chimie particulièrement active dans les régions chaudes et irradiées. Dans la Barre d'Orion et d203-506, nous révélons la détection de OH, CH+ et CH3+ ainsi que leur excitation à la formation, nous permettant de contraindre la chimie en action. En effet, l'émission rotationnelle de OH, modélisée auparavant et détectée dans l'infrarouge moyen, permet de révéler la photodissociation de l'eau. L'émission de OH et CH+, dans l'infrarouge proche trace la formation et l'excitation de ces espèces par pompage chimique via des réactions avec H2 : X + H2 → XH* + H. Ces raies d'émission nous permettent donc de révéler un cycle de formation et de destruction de l'eau très actif dans d203-506 (O <=> OH <=> H2O) ainsi que le début de la chaîne de la chimie du carbone (C+ → CH+ → CH2+ → CH3+) dans la PDR et le disque. Les modèles d'excitation nous ont permis d'identifier les processus d'excitation observés et de traduire l'intensité des raies mesurée en taux de formation et de destruction de ces espèces. Ils permettent également de contraindre les conditions physiques du milieu et peuvent être utilisées pour déterminer localement, à partir de l'intensité des raies observées, l'intensité du champ UV (pour la photodissociation de l'eau) ou la densité du gaz (pour l'émission prompte), ingrédients essentiels déterminant les conditions initiales de la formation stellaire et planétaire. Ces nouveaux diagnostics sont alors des clés d'analyse pour de nombreuses observations du JWST puisqu'il est attendu que ces processus soient détectés dans une multitude d'objets astrophysiques qui présentent des régions chaudes et irradiées (protoétoile, outflow, nébuleuse planétaire...).
Fichier principal
Vignette du fichier
134706_ZANNESE_2024_archivage.pdf (127.92 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04760150 , version 1 (30-10-2024)

Identifiants

  • HAL Id : tel-04760150 , version 1

Citer

Marion Zannese. Haute excitation de molécules dans les régions irradiées de formation stellaire et planétaire observées par le James Webb Space Telescope. Astrophysique galactique [astro-ph.GA]. Université Paris-Saclay, 2024. Français. ⟨NNT : 2024UPASP082⟩. ⟨tel-04760150⟩
0 Consultations
0 Téléchargements

Partager

More