Communication Dans Un Congrès Année : 2023

Physics-aware modelling of an accelerated particle cloud

Résumé

Particle accelerator simulators, pivotal for acceleration optimization, are computationally heavy; surrogate, machine learning-based models are thus trained to facilitate the accelerator fine-tuning. While these current models are efficient, they do not allow for simulating the beam at the individual particle-level. This paper adapts point cloud deep learning methods, developed for computer vision, to model particle beams.
Fichier principal
Vignette du fichier
ML4PS.pdf (729.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence
Domaine public

Dates et versions

hal-04396175 , version 1 (16-01-2024)

Licence

Domaine public

Identifiants

  • HAL Id : hal-04396175 , version 1

Citer

Emmanuel Goutierre, Christelle Bruni, Johanne Cohen, Hayg Guler, Michèle Sebag. Physics-aware modelling of an accelerated particle cloud. MLPS 2023 - Machine Learning and the Physical Sciences Workshop 23023 - At the 37th conference on Neural Information Processing Systems (NeurIPS), Dec 2023, New Orleans, United States. ⟨hal-04396175⟩
469 Consultations
122 Téléchargements

Partager

More