Article Dans Une Revue arXiv Année : 2024

Stability of backward inverse problems for degenerate mean-field game systems

Résumé

We investigate inverse backward-in-time problems for a class of second-order degenerate Mean-Field Game (MFG) systems. More precisely, given the final datum $(u(\cdot, T),m(\cdot, T))$ of a solution to the one-dimensional mean-field game system with a degenerate diffusion coefficient, we aim to determine the intermediate states $(u(\cdot,t_{0}),m(\cdot,t_{0}))$ for any $t_{0} \in [0, T)$, i.e., the value function and the mean distribution at intermediate times, respectively. We prove conditional stability estimates under suitable assumptions on the diffusion coefficient and the initial state $(u(\cdot,0),m(\cdot,0))$. The proofs are based on Carleman's estimates with a simple weight function. We first prove a Carleman estimate for the Hamilton-Jacobi-Bellman (HJB) equation. A second Carleman estimate will be derived for the Fokker-Planck (FP) equation. Then, by combining the two estimates, we obtain a Carleman estimate for the mean-field game system, leading to the stability of the backward problems.
Fichier principal
Vignette du fichier
2410.21541v1.pdf (246.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04892449 , version 1 (16-01-2025)

Licence

Identifiants

Citer

S. Chorfi, A. Habbal, M. Jahid, L. Maniar, A. Ratnani. Stability of backward inverse problems for degenerate mean-field game systems. arXiv , 2024, ⟨10.48550/arXiv.2410.21541⟩. ⟨hal-04892449⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More