Article Dans Une Revue Science Translational Medicine Année : 2023

Thyroid-stimulating hormone receptor signaling restores skeletal muscle stem cell regeneration in rats with muscular dystrophy

Cyrielle Hou
Matthieu Robert
Peggy Lafuste

Résumé

Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor ( Tshr ) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.
Fichier principal
Vignette du fichier
scitranslmed.add5275_final accepted compresser.pdf (1.1 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04150315 , version 1 (04-07-2023)

Identifiants

Citer

Valentina Taglietti, Kaouthar Kefi, Lea Rivera, Oriane Bergiers, Nastasia Cardone, et al.. Thyroid-stimulating hormone receptor signaling restores skeletal muscle stem cell regeneration in rats with muscular dystrophy. Science Translational Medicine, 2023, 15 (685), ⟨10.1126/scitranslmed.add5275⟩. ⟨hal-04150315⟩
311 Consultations
223 Téléchargements

Altmetric

Partager

More