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a b s t r a c t

Facioscapulohumeral muscular dystrophy (FSHD), the most frequent muscular dystrophy, is an
autosomal dominant disease. In most individuals with FSHD, symptoms are restricted to muscles of
the face, arms, legs, and trunk. FSHD is genetically linked to contractions of the D4Z4 repeat array
causing activation of several genes. One of these maps in the repeat itself and expresses the DUX4 (the
double homeobox 4) transcription factor causing a gene deregulation cascade. In addition, analyses of
the RNA or protein expression profiles in muscle have indicated deregulations in the oxidative stress
response. Since oxidative stress affects peripheral muscle function, we investigated mitochondrial
function and oxidative stress in skeletal muscle biopsies and blood samples from patients with FSHD
and age-matched healthy controls, and evaluated their association with physical performances. We
show that specifically, oxidative stress (lipid peroxidation and protein carbonylation), oxidative
damage (lipofuscin accumulation), and antioxidant enzymes (catalase, copper–zinc-dependent super-
oxide dismutase, and glutathione reductase) were higher in FSHD than in control muscles. FSHD
muscles also presented abnormal mitochondrial function (decreased cytochrome c oxidase activity and
reduced ATP synthesis). In addition, the ratio between reduced (GSH) and oxidized glutathione (GSSG)
was strongly decreased in all FSHD blood samples as a consequence of GSSG accumulation. Patients
with FSHD also had reduced systemic antioxidative response molecules, such as low levels of zinc
(a SOD cofactor), selenium (a GPx cofactor involved in the elimination of lipid peroxides), and vitamin
C. Half of them had a low ratio of gamma/alpha tocopherol and higher ferritin concentrations. Both
systemic oxidative stress and mitochondrial dysfunction were correlated with functional muscle
impairment. Mitochondrial ATP production was significantly correlated with both quadriceps endur-
ance (TLimQ) and maximal voluntary contraction (MVCQ) values (rho¼0.79, P¼0.003; rho¼0.62,
P¼0.05, respectively). The plasma concentration of oxidized glutathione was negatively correlated
with the TLimQ, MVCQ values, and the 2-min walk distance (MWT) values (rho¼"0.60, P¼0.03;
rho¼"0.56, P¼0.04; rho¼"0.93, Po0.0001, respectively). Our data characterized oxidative stress in
patients with FSHD and demonstrated a correlation with their peripheral skeletal muscle dysfunction.
They suggest that antioxidants that might modulate or delay oxidative insult may be useful in
maintaining FSHD muscle functions.

Abbreviations: FSHD, facioscapulohumeral dystrophy; DUX4, double homebox 4 gene; ROS, reactive oxygen species; HNE, 4-hydroxy-2-nonenal; TBARS, thiobarbituric
acid-reactive substances; MnSOD, manganese-dependent superoxide dismutase; Cu-SOD, copper–zinc-dependent superoxide dismutase; GR, glutathione reductase; GSH,
reduced glutathione; GSSG, oxidized glutathione; MVC, maximal voluntary contraction; TLim, endurance limit time; 2-MWT, 2 minute walking test
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Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is an auto-
somal dominant muscle disease characterized by progressive
weakness and atrophy of facial, shoulder girdle, and upper arm
muscles. Magnetic resonance imaging also revealed widespread
involvement of leg muscles, particularly of the tibialis anterior
and medial gastronemius [1], that may result in walking difficul-
ties. Approximately 10% of all patients and 20% of those who are
older than 50 years will eventually become wheelchair dependent
for outdoor activities [2,3]. Less frequent clinical manifestations
including respiratory [4] and cardiac conduction [5] defects may
occur in patients severely affected with FSHD. Finally, many
patients complain of pain and fatigue, which are likely to reduce
the levels of daily activity.

FSHD is genetically linked to deletions in chromosome 4q35
[6,7] within an array of D4Z4 repeated elements with each
composing the double homeobox 4 (DUX4) gene [8,9]. Several
analyses of gene expression in FSHD muscle have produced
partially overlapping and sometimes contradictory results
[10–15]. D4Z4 contractions are proposed to cause epigenetic
changes, which ultimately increase expression of genes with
myopathic potential [6,16–19], particularly ANT1, FRG1, DUX4c,
FRG2, and DUX4 [9,20–24]. Expression of the DUX4 protein in
muscles is now considered the major contributor to the molecular
pathogenesis of FSHD [23,25,26]. DUX4 is a transcription factor
that initiates a large gene deregulation cascade. Its forced expres-
sion in muscle cells is toxic and induces typical FSHD molecular
features, such as muscle atrophy markers and TP53, diminished
myogenic differentiation capacity, sensitivity to oxidative stress,
and genes expressed in germline and early stem cells where
DUX4 is normally expressed [22,24,25,27,28].

In addition, analysis of the RNA or protein expression profiles
in peripheral muscles of patients with FSHD compared to healthy
controls revealed that many genes differentially expressed in
affected and nonaffected FSHD muscles are specifically involved
in oxidative stress responses [14,29–33]. Indeed, these genes are
not deregulated in other muscular dystrophies such as DMD and
LGMD2B and the activation of some of them (ANT1 encoding a
mitochondrial protein; DUX4 encoding a transcription factor) are
linked to the chromatin opening in 4q35, suggesting that aberra-
tions in this pathway could be the primary events rather than
consequences of the muscle pathology [29–31]. The FSHD speci-
ficity of this defect is also underscored by the susceptibility of
primary myoblasts to oxidative agents and alteration in gene
expression and protein synthesis involved in oxidative stress
responses [14,32].

Since oxidative stress affects peripheral muscle function, we
investigated mitochondrial function and oxidative stress in blood
samples and skeletal muscle biopsies from patients with FSHD
and healthy controls. We then evaluated their association with
physical performance.

Materials and methods

Patients

Fifteen patients with FSHD (9 males and 6 females) and
9 healthy subjects (6 males and 3 females) matched for age
(FSHD, 38.9 years 710.8; controls, 35.7 years 710.2) and
physical activity level were sequentially recruited over 2 years
in the Department of Clinical Physiology, University Hospital,
Montpellier (France). Patients with FSHD were not wheelchair
bound and diagnosis was based on clinical examination, number
of D4Z4 units (4 to 9 by DNA analysis), and positive family history

for FSHD. The Brooke and Vignos functional scales are used to
grade arm and leg function, respectively [34]. Twelve of 15
patients were ranked between 1 and 2 for arms and in rank
1 for legs according to that scale. The other three patients were
more affected and ranked between 4 and 5 for arms and for legs.
Controls and patients were sedentary (Voorrips questionnaire’s
score o9.4) [35] and did not participate in any kind of physical
training or rehabilitation. All were nonsmokers, had no comor-
bidity (such as cardiac or pulmonary disease, diabetes or human
immunodeficiency virus), and were not taking any drug, including
vitamins and/or antioxidants. The protocol was approved by the
local review board (Ethics Committee of the CHU Saint Eloi,
Montpellier, France; reference number 05 05 03). Participants
received extensive information about the study before providing
their written informed consent. All functional and clinical evalua-
tions and muscle biopsies were performed in the Department of
Clinical Physiology, University Hospital, Montpellier (France).

Clinical and functional evaluation

Spirometry was performed using a plethysmograph (Spirometer
Vmax, Sensormedics, US). Maximal inspiratory (PImax) and expiratory
(PEmax) pressures were also measured [36].

For maximal voluntary contraction and endurance of quad-
riceps and deltoid muscles, each leg’s quadriceps maximal
voluntary contraction (MVCQ) and endurance (TLimQ) were
assessed on an adapted exercise bench (Kettler, Germany) in
seated position with knees and hips flexed at 901, as previously
reported [37–40]. MVCQ was recorded through a strain gauge
linked to a computer interface (Biopac, Acknowledge, France).
Three to five maximal trials were performed to obtain at least
two values with less than 10% variability. The best value was
taken as the MVCQ.

To assess quadriceps endurance (TLimQ), subjects had to maxi-
mally extend each knee against a weight that corresponded to
30% of the MVCQ at a pace of 10 movements per minute, imposed
by an audio signal, until exhaustion. The duration of the endur-
ance test (in seconds) was called quadriceps endurance limit time
(TLimQ). The leg with the highest TLimQ was considered the
‘‘reference leg’’ and chosen for the biopsy.

The deltoid maximal isometric voluntary contraction (MVCD)
was bilaterally assessed using the same signal recorder as quad-
riceps measurements with the strain gauge fixed in order to
maintain shoulder and arm at 901. The subjects were in the sitting
position and were asked to develop a maximal contraction by
elevating the arm against the fixed strain gauge during a maximal
effort with verbal encouragement. Three to 5 trials were per-
formed and the best value of 3 reproducible maneuvers (within
10%) was considered as the MVCD. Endurance was also bilaterally
assessed against 30% of the recorded MVCD. Subjects with a
charge connected to a handle were asked to maintain the upper
arm at 901. Verbal encouragement was provided along the effort
until exhaustion; i.e., the subject could not maintain his/her arm
at the desired position and therefore stopped the contraction. The
duration of the endurance test was called endurance limit time of
the deltoid (TLimD).

The 2-minute walking test (2-MWT) was carried out as
previously described [41,42]. Subjects were asked to walk back
and forth around two cones placed in an indoor, straight, 30-m
corridor for 2 min. Two tests separated by 60 min were performed
at a maximum walking pace with the goal being to cover as much
distance as possible and the longest distance covered during the
2-MWT was retained.

Magnetic resonance imaging (MRI) was performed on 9 patients
with FSHD by using a 1.5-T unit (Magnetom Avento, Siemens,
Erlangen, Germany). Transverse T1-, T2-weighted, and inversion
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recovery images were obtained on both thighs. No contrast media
were administered.

Muscle biopsies

Samples from the quadriceps muscle of the ‘‘reference legs’’
were obtained by needle biopsy after local lidocaı̈ne anesthesia at
mid-thigh level, in the vastus lateralis, using the Bergström
technique [43,44]. Each biopsy (approximatively 300 mg) was
divided in three portions (see supplementary data): one part
(100 mg) to evaluate the respiratory parameters and mitochon-
drial adenosine triphosphate (ATP) synthesis; another part
(40 mg) to evaluate tissue organization by hematoxylin/eosin
staining of cross sections and to investigate mitochondria mor-
phology by electron microcopy; the last part was immediately
frozen in isopentane cooled to the freezing point with liquid
nitrogen and stored at "80 1C, for analysis of oxidative stress
markers. In 12/15 patients weakly affected by FSHD (Brooke-
Vignos functional scale), analysis of the histological tissue orga-
nization and MRI showed no fibrosis. However, in the 3 more
affected patients, muscle biopsies showed histological signs of
severe end-stage feature of dystrophic process, and were too
affected to allow any analysis, in agreement with no observable
vastus lateralis muscle structure in MRI images (data not shown).

Blood and urine samples

Concomitantly with the muscle biopsy, venous blood samples
were collected to determine the serum levels of oxidative stress
and inflammatory markers. In two patients with FSHD, (different
from the three patients where biopsy samples were too affected
to allow any analysis), it was not possible to obtain enough
venous blood samples to determine all the parameters. Each
parameter was routinely determined at the CHU Clinical Labora-
tories of the University of Li!ege, Belgium. Normal reference values
in a population of 100 healthy, 18- to 60-year-old individuals
have recently been published [45–47]. Samples were collected in
ethylenediaminetetraacetic acid (EDTA), sodium–heparin as
anticoagulant, or clot-activating gel according to the investigated
parameter and immediately centrifuged; plasmas were frozen in
dry ice and kept at "80 1C until analysis (see supplemental data).
Urine samples were collected to determine the level of an
oxidative damage DNA adduct and kept at "80 1C until analysis
(see supplementary data).

Statistical analysis

Quantitative parameters are presented as means7standard devi-
ation (SD) or standard error of the mean (SEM). Their distribution was

compared with the Student t test (a transformation for a normalized
distribution was applied when necessary) or the Mann-Whitney test.
The distribution of inflammatory parameters was compared with the
two-sided Fisher’s exact test. Correlations were fitted with the
Spearman rank sum test because linearity could not be assumed for
all correlations. For all analyses, a was set at 5%. Statistical analyses
were performed with the Stata v6.0 software (Stata Corporation,
College Station, TX).

Results

Functional limitations in patients with FSHD

Spirometric values did not show any significant respiratory
difference between patients with FSHD and controls, except for
the maximal expiratory pressure (PEmax), which was significantly
lower in patients (Table 1). They also had lower maximal
voluntary contraction (MVC) and endurance limit time (TLim) for
both quadriceps and deltoid than controls (Table 1). However, the
endurance limit time decrease in quadriceps (TLimQ) was not
significant (P¼0.10). Moreover, in patients there was a significant
positive relationship between the TLim and the MVC values
(rho¼0.65; P¼0.01) in quadriceps, but not in deltoid. Exercise
tolerance, assessed with the 2-MWT, was significantly lower in
patients with FSHD than in controls (Table 1).

Oxidative stress in FSHD muscles

Lipofuscin inclusions, a marker of cumulative oxidative stress
[48–51], were significantly more abundant in FSHD than in control
quadriceps biopsies (Po0.001) (Fig. 1A). They were mostly located
in the subsarcolemmal area, a region rich in mitochondria and an
important source of reactive oxygen species (ROS) (Fig. 1B, inset).
The level of 4-hydroxy-2-nonenal (HNE) and the concentration of
thiobarbituric acid-reactive substances (TBARs), two major end
products of lipid peroxidation, as well as the level of protein
carbonylation, which is the most widely used marker of oxidative
stress [52,53], were all significantly higher in FSHD than in control
muscles (Po0.001 for the three) (Fig. 2A, B, and C).

While the decrease of MnSOD in FSHD muscles was not
significant (P¼0.22) (data not shown), catalase, copper–zinc-
dependent superoxide dismutase (Cu-Zn SOD), and glutathione
reductase (GR) (all intracellular antioxidant enzymes) were sig-
nificantly more elevated in FSHD than control muscles (P¼0.05,
P¼0.0005, and P¼0.0006, respectively) (Fig. 2D).

Together, these results demonstrate that an increase in oxida-
tive stress in FSHD skeletal muscle biopsies is associated with
altered expression of antioxidant enzymes.

Table 1
Spirometric and musculoskeletal functional data in 15 patients with FSHD and 9 controls.

FSHD patients (n¼15) Mean (SD) Controls (n¼9) Mean (SD) P value

Respiratory function (% predicted)
Vital capacity 101 (16) 108 (14) 0.17
Total lung capacity 99 (12) 105 (11) 0.33
Maximal inspiratory pressure 102 (26) 109 (32) 0.47
Maximal expiratory pressure 86 (34) 141 (41) 0.006
Peripheral muscle function
Maximal contraction (MVCQ): best leg (kg) 15.7 (8.9) 29.0 (9.2) 0.004
Endurance (TLimQ): best legs (seconds) 384 (353) 603 (357) 0.10
Maximal contraction (MVCD): dominant arm (kg) 6.7 (2.6) 11.7 (3.1) 0.009
Endurance (TLimD): dominant arm (seconds) 55.8 (21.1) 82.2 (35.2) 0.02
2-minute walking test (meters) 187 (49) 255 (36) 0.002

Data are mean7standard deviation (SD).
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Fig. 1. Quantification and localization of lipofuscin inclusions in vastus lateralis muscle biopsies from 12 patients with FSHD and 9 controls (CON). (A) Quantification of
lipofuscin inclusions (number of inclusions/fiber). Data are means7standard error of the mean (SEM). *** Po0.0005. (B) Localization of lipofuscin inclusions.
Representative image of dystrophin membrane staining (red), autofluorescent lipofuscin granules (yellow), and merged with controls (top panel) and patients with
FSHD (bottom panel). Bar scale: 50 mm.

Fig. 2. Oxidative stress and antioxidant response in quadriceps muscle biopsies from 12 patients with FSHD and 9 controls (CON). Data are means7standard error of the
mean (SEM). * Po0.05; ** Po0.005. (A) Level of 4-hydroxynonenal (HNE)-modified proteins (arbitrary units, a.u.). (B) Concentration of thiobarbituric acid-reactive
substances (TBARs) (nM/mg protein). (C) Level of protein carbonylation, the most widely used marker of oxidative stress (arbitrary units, a.u.). (D) Expression of catalase,
copper–zinc-dependent SOD (Cu-Zn SOD), and glutathione reductase (GR) (arbitrary units, a.u.).
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Alteration of mitochondrial ultrastructure in the FSHD skeletal
muscles

The quadriceps ultrastructure and particularly the mito-
chondrial organization were analyzed in longitudinal sections.
In control muscles (Fig. 3A) intermyofibrillar mitochondria
(arrowhead) were mainly organized in pairs at the I-band, as
described [54]. In FSHD muscle fibers (Fig. 3B, C, and D), a similar
mitochondrial organization was observed; however, in some
areas the myofibril and mitochondria ultrastructure was mark-
edly altered, e.g., large mitochondria pools in the intermyo-
fibrillar (arrowhead) and subsarcolemmal (arrow) compartments
(Fig. 3B). In addition, within individual muscle fibers, regions
containing normal myofibrils alternated with areas of pronounced
myofibrillar disorganization often associated with mitochondria
accumulations (Fig. 3C). This abnormal proliferation of intermyo-
fibrillar mitochondria was associated with accumulation of ‘‘gran-
ulofilamentous material’’ (Fig. 3C, arrow). At higher magnification,
mitochondria with some badly formed cristae and apparent
swelling (Fig. 3D, arrow) or separation of the inner and outer
membranes were observed in these disorganized regions.

Mitochondrial dysfunction in FSHD skeletal muscles

Mitochondrial respiration was studied in situ in saponin-skinned
quadriceps fibers as described [55,56] (Table 2). While the maximal
ADP-stimulated respiration (state 3; Vmax) with complex I (pyruva-
teþmalate) and complex II (succinate/rotenone) substrates was

comparable in FSHD and control muscle fibers, a significant decrease
in cytochrome c oxidase (COX) activity (the last respiratory chain
enzyme), determined with complex IV activators (N,N,N0,N0-tetra-
methyl-p-phenylenediamine (TMPD) and ascorbate), was observed.
However, the reduction of COX activity did not affect the total
mitochondrial respiration rates evaluated with different substrates
that assess electron transport in the respiratory chain. The Respira-
tory Control Index (RCI) was comparable in FSHD and control
skinned fibers as well as the level of citrate synthase (an enzymatic
marker of the mitochondrial matrix). The altered complex IV activity
did not result from decreased cytochrome c content because similar
levels were found in FSHD and control muscles (Table 2).

The ATP synthesis capacity of the OXPHOS pathway was also
measured directly in saponin-skinned fibers suspended in mito-
chondrial medium and supplied with respiratory substrates and
ADP [57], as in the oxygraphic experiments. A decrease in ATP
synthesis and in the ATP/O values (ratio between ATP synthesis
and oxygen consumption) was observed in FSHD fibers, using
pyruvateþmalate or succinate as substrates and TMPD/ascorbate
as activators. However, ATP synthase (ATPase) concentration,
assessed by immunodetection on Western blots with antibodies
against its alpha or beta subunits, was comparable in FSHD and
control samples (Table 2). A negative correlation was only found
between the mitochondrial ATP synthesis and the level of protein
carbonylation (rho¼-0.65; P¼0.03).

In conclusion both ultrastructural morphological changes and
functional assays point to deregulations of the mitochondrial
respiratory machinery in FSHD muscles.

Fig. 3. Evaluation of mitochondrial morphology in quadriceps muscle biopsies from 12 patients with FSHD and 9 controls by transmission electron microscopy.
Longitudinal sections from control (A) and FSHD (B, C, and D) quadriceps muscle. Bar scale: 1 mM.
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Systemic oxidative stress and inflammation in FSHD

For all systemic oxidative stress markers analyzed in this
study, the mean values remained within the reference norm
established by the Clinical Laboratories of the University of Liege
Hospital [47], in the control group, while differences were
observed in the disease group (Fig. 4). Moreover, this analysis
indicated that patients with FSHD had higher oxidative damage
than controls. Specifically, patients had lower levels of oxidized
DNA and lipid peroxidation compared to the control group

(P¼0.09 and P¼0.002, respectively) (Fig. 4). However, the oxi-
dized DNA decrease in blood was not significant. The ratio
between reduced (GSH) and oxidized glutathione (GSSG) was
strongly decreased in all FSHD blood samples compared to the
control group (Po0.001) as a consequence of GSSG accumulation
(Po0.001), while the GSH value remained normal (Fig. 4).
Although no significant differences were observed between FSHD
and control samples for many antioxidative stress molecules,
such as vitamin A, ubiquinone, b-carotene, superoxide dismu-
tase (SOD), glutathione peroxidase (GPx), and myeloperoxydase,

Table 2
Assessment of mitochondrial function on skinned fibers of 12 FSHD and 9 control muscles.

FSHD patients (n¼12) Mean (SD) Controls (n¼9) Mean (SD) P value

Skinned fibers: oxygraphy (nmol O2 min"1 mg"1 dw)
VO (pyruvateþmalate) 0.002 (0.0009) 0.002 (0.0005) 0.97
Vmax (pyruvateþmalate) 0.005 (0.002) 0.006 (0.001) 0.62
Vmax (succinate/rotenone) 0.005 (0.001) 0.005 (0.001) 0.83
Vmax (TMPDþascorbate) 0.006 (0.001) 0.12 (0.33) 0.003
RCI 2.50 (0.20) 2.60 (0.20) 0.17
Citrate synthase activity (mmol min"1mg protein) 0.99 (0.2) 0.99 (0.16) 0.99
Cytochrome c (a.u.) 0.97 (0.019) 0.979 (0.019) 0.52

Skinned fibers: ATP production (nmol ATP min"1 mg"1 dw)
ATP (pyruvateþmalate) 0.009 (0.003) 0.014 (0.004) 0.002
ATP/O (pyruvateþmalate) 2.52 (0.16) 2.68 (0.11) 0.002
ATP succinate 0.003 (0.001) 0.008 (0.002) 0.0002
ATP/O succinate 0.623 (0.21) 1.480 (0.185) 0.0001
ATP (TMPDþascorbate) 0.003 (0.0005) 0.005 (0.001) 0.001
ATP/O (TMPDþascorbate) 0.426 (0.05) 0.537 (0.267) 0.0004

ATPase subunits (a.u.)
ATPase a 0.61 (0.05) 0.70 (0.09) 0.43
ATPase b 0.72 (0.12) 0.70 (0.09) 0.80

Basal (V0), without adenosine diphosphate (ADP) and ADP-stimulated (Vmax) oxygen consumption rates, supported by pyruvateþmalate
and succinate/rotenone as substrates and TMPD/ascorbate as activators, are expressed in nmol atom oxygen/min/mg dry weight. The
Respiratory Control Index (RCI) was calculated as the Vmax/V0 ratio. The ATP synthesis rate is expressed in nmol ATP/min/mg dry weight.
The ATP/oxygen ratio (ATP/O) was calculated as the ratio between the rates of ATP synthesis and of the concomitant oxygen consumption
in the presence of ADP. Citrate synthase activity is expressed in mmol/min/mg. ATPase subunit and cytochrome c expression are in
arbitrary units.

Fig. 4. Systemic oxidative stress in 13 patients with FSHD. Values in each individual patient for each studied parameter. LLN and ULN, lower and upper limit of the normal
value obtained in a large normal population; red dashed line, mean value of control subjects; black solid line, mean value of FSHD patients.
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patients could present significantly lower levels of zinc (a SOD
cofactor) and selenium (a GPx cofactor involved in the elimina-
tion of lipid peroxides) as compared to the controls (Po0.001 and
Po0.003, respectively) (Fig. 4). Decreased plasma levels of
vitamin C (P¼0.006) (Fig. 4) and of its ascorbate precursor (FSHD:
1.36þ/"0.30 a.u.; controls: 2.73þ/"1.47 a.u.; P¼0.04) were also
observed in patients with FSHD as well as a lower ratio of gamma/
alpha tocopherol and higher ferritin concentrations than in
controls (Po0.001 and P¼0.004, respectively) (Fig. 4). These
results suggest that patients with FSHD also have a reduced
systemic antioxidative response. Except for GSSG that was nega-
tively correlated with the GSH/GSSG ratio (rho¼"0.90,
Po0.0001), no correlation was observed between any measures
of injury nor between antioxidative stress molecules.

Increased expression of the proinflammatory cytokines RANTES
(regulated on activation, normal T-cell expressed and secreted),
TNF-a (tumor necrosis factor-alpha), and IFN-a2 (interferon alpha-
2) was found in all patients with FSHD (Po0.001 vs controls).
MCP1 (monocyte chemotactic protein-1) and IL6 (interleukin 6)
were increased in 67% of subjects with FSHD (P¼0.001 and
P¼0.01, respectively, vs controls). IL1-a (interleukin 1-alpha) was
increased in 40% of them (P¼0.03) and IL1-b (interleukin 1-beta)
and IFN g (interferon gamma) in 33% of them (P¼0.03 and P¼0.05,
respectively) (Supplemental Fig. 1s). A positive correlation was
only found between TNF-a and GSSG levels (rho¼0.62; P¼0.02).

Association of both mitochondrial dysfunction and oxidative stress
and inflammation with functional parameters in patients with FSHD

These data indicate that patients with FSHD have abnormal
mitochondrial function and increased oxidative stress and inflam-
matory response in comparison with controls. Both systemic oxida-
tive stress and mitochondrial dysfunction were correlated with
functional muscle impairment. The correlations observed in the
disease group were significant but some of them were moderate
(Table 3). Mitochondrial ATP production was significantly corre-
lated with both quadriceps endurance (TLimQ) and maximal voluntary
contraction (MVCQ) values (rho¼0.79, P¼0.003; rho¼0.62, P¼0.05,
respectively). No correlation was observed between the mitochon-
drial ATP production and the 2-MWT distance. The plasma concen-
tration of oxidized glutathione was negatively correlated with the
TLimQ, MVCQ values, and the 2-min walk distance values (rho¼
"0.60, P¼0.03; rho¼"0.56, P¼0.04; rho¼"0.93, Po0.0001,
respectively). No correlation between the other systemic oxidative
stress markers and functional muscle impairment was found. Only
TNF-a, among the proinflammatory cytokines, was negatively corre-
lated with both TLimQ and MVCQ values (rho¼"0.58, P¼0.03;
rho¼"0.74, P¼0.003; respectively). No association between the
TNF-a and the 2-MWT distance was observed. These preliminary
results need to be confirmed with larger samples.

Discussion

This study shows that, in patients with FSHD, functional
muscle alterations are associated with mitochondrial dysfunction
and oxidative stress imbalance, further supporting the idea that
oxidative stress might play a role in FSHD pathophysiological
mechanisms [14,29–31].

The biochemical evidence of mitochondrial dysfunction was
provided by a decrease in COX activity without any effect on total
mitochondrial respiration. The Vmax (state 3) with pyruva-
teþmalate was not significantly altered in FSHD patients, sug-
gesting that COX may be inhibited without any effect on
mitochondrial respiration up to a threshold beyond which a
further decline in COX activity might exert an inhibitory effect.
COX activity decline represents a focal electron transport chain
deficit in a nonclinically affected tissue (vastus lateralis) and a
decline in the ROS detoxification capacity of muscle cells.
A modest reduction of COX activity can lead to ROS production
[58] that can further reduce COX activity and decrease ATP levels
due to oxidative damage to other mitochondrial components.
Moreover, the significant reduction in COX activity may par-
tially explain the impaired ability to synthesize ATP in FSHD
mitochondria.

Since coupling of electron transport to ATP synthesis (indi-
cated by the RCI ratio) did not differ between FSHD and control
muscle fibers (Table 2), the reduced ATP/O ratio suggests that the
alteration of oxidative phosphorylation (OXPHOS pathway)
occurs in the PHOS part, i.e., the ATP synthesis rate. Impaired
energy metabolism resulting from mitochondrial dysfunction has
also been proposed to render cells more vulnerable to ‘‘cellular
stressors’’ due to changes in the energy-dependent cell membrane
potential [59]. These functional disturbances were associated
with striking mitochondrial morphological changes in FSHD
quadriceps, as revealed by electron microscopy. Both subsarco-
lemmal and intramyofibrillar mitochondria were affected, which
indicated common alterations independent of the subcellular
localization.

Furthermore, the data showing a negative correlation between
mitochondrial ATP synthesis and protein carbonylation suggest
that oxidative stress in skeletal muscle could probably be one of
the major determinants of mitochondrial alterations. However, we
cannot exclude that mitochondrial disruption occurs for a reason
other than oxidative stress and that accumulation of protein
carbonyls represents an effect of mitochondrial dysregulation.

These alterations were also associated with a significant
increase of Cu-Zn SOD, catalase, and GR concentrations. The
reasons for these defects in FSHD muscle are unknown, but
cannot be considered the consequence of tissue degeneration.
Indeed, no prominent muscle wasting could be observed in the
vastus lateralis biopsies from this group of patients with FSHD,
either by histologic analysis or by MRIs (Fig. 5). However, it
remains unclear whether the decline in mitochondrial respiratory
function in FSHD muscle results from oxidative stress alone or is
the consequence of synergistic effects of multiple factors, acting
either independently or cooperatively with oxidative stress.
Among several genes that have been proposed to be involved in
the FSHD pathophysiology based on their up-regulation in
patient-derived tissues or cell lines [9,20–22,24] some are con-
nected to oxidative stress such as the mitochondrial ADP/ATP
carrier ANT1 [30]. Similarly, although the precise function of the
FRG1 gene product is not known, overexpression studies in diffe-
rent animal models support a role in RNA processing [60,61], in
actin bundling, and in the regulation of muscle and vasculature
development [11,62,63]. The controversy in the literature about
the actual expression levels of these genes in FSHD muscles
reviewed in [64] might reflect the typical heterogeneity of the

Table 3
Association of both mitochondrial dysfunction and oxidative stress and inflam-
mation with functional parameters in patients with FSHD.

TLimQ MVCQ 2-MWT

Mitochondrial ATP
production n¼12

rho¼0.79
P¼0.003

rho¼0.62
Po0.05

–

TNF-a
n¼13

rho¼"0.58
P¼0.03

rho¼"0.74
P¼0.003

–

GSSG
n¼13

rho¼"0.60
P¼0.03

rho¼"0.56
P¼0.04

rho¼"0.93
Po0.0001

Spearman’s rank correlation coefficient, rho. Underline: moderate correlations
between 0.56 and 0.62.

A. Turki et al. / Free Radical Biology and Medicine 53 (2012) 1068–10791074



disease phenotype and some of these genes might contribute
differently to the mitochondrial dysfunction and oxidative stress
among different patients or different muscles of a given patient.
In a more direct mechanism, several genes involved in suscept-
ibility to oxidative stress are affected by DUX4 expression [24,65].
Furthermore the acute cell toxicity mediated by DUX4 over-
expression in mouse C2C12 myoblasts was alleviated by antiox-
idants such as ascorbic acid and vitamin E added to their culture
medium [24].

We then show that these local alterations are associated with
systemic oxidative stress and inflammation. Patients with FSHD
have reduced antioxidant capacity and higher oxidative damage
than age-matched controls. Some alterations were observed in
most patients, such as low levels of zinc and selenium. In
addition, patients frequently presented increased levels of ferritin,
known to reflect the extent of oxidative stress and inflammation
[66]. The significant decrease in ascorbate content suggests that
patients with FSHD are subjected to free radical-induced oxida-
tive stress that causes ascorbate consumption in plasma [67,68].
Indeed, ascorbate depletion was associated with a significant
increase in lipid peroxidation and oxidized DNA.

Finally, the GSH/GSSG ratio was strongly decreased in FSHD
blood samples, as a consequence of GSSG accumulation, indicating
a shift to a more oxidized intracellular redox state. The GSH/GSSG
ratio decrease might be related to DUX4 activation since the
glutathione redox pathway was repressed on DUX4 overexpression
in C2C12 cells [24]. Systemic oxidative stress was also accompa-
nied by increased expression of proinflammatory cytokines and
chemokines. The mechanisms that trigger the production of
inflammatory cytokines and chemokines in FSHD are unknown,
but they are likely related to GSSG accumulation [69–71].

Accordingly, TNF-a increase was significantly correlated with the
plasma concentration of GSSG (rho¼0.62; P¼0.02), which is
involved in the induction of proinflammatory responses, such as
increased TNF-a release [72]. This correlation has important
implications for FSHD because it supports the notion of a relation-
ship between oxidative stress and inflammation.

The present data are in agreement with the observation that
DUX4 overexpression in mouse or human myoblasts results in
repression of glutathione redox pathway components and
increased sensitivity to oxidative stress [24]. The correlations
between systemic oxidative stress and functional muscle impair-
ment further suggest that muscle weakness could partly result
from oxidation of proteins of the contractile apparatus [73–75]
and the disruption in mitochondrial energy production. In the
long term, high cytokine levels might influence the exercise
capacity in patients by affecting muscle function and volume.
This is in agreement with our data showing a significant negative
relationship between TNF-a and clinical functional assessments.

In conclusion, we show that markers of local and systemic
oxidative stress are elevated in FSHD patients relative to controls.
This leads us to propose that oxidative stress may contribute to
the peripheral skeletal muscle dysfunction in FSHD. During FSHD,
sustained ROS generation from inflammatory and mitochondrial
origin, coupled with an inadequate antioxidant response, results
in inefficient ROS scavenging in muscle and leads to long-term
oxidative stress and oxidative damage of the muscle cellular
components. If oxidative damage is part of the FSHD pathophy-
siological mechanism, then treatments that could modulate or
delay the onset of the oxidative insult and mitochondrial defi-
ciencies in muscle might be useful for maintaining FSHD muscle
functions in the absence of a drug that targets the cause of FSHD.

Fig. 5. Histologic and MRI analysis in quadriceps muscle biopsies from patients with FSHD and controls (CON). Representative hematoxylin/eosin staining of vastus
lateralis cross sections from control (A) and patient with FSHD (B). Representative image obtained by MRI from control (C) and patient with FSHD (D). Axial TSE
T1-weighted MR image shows normal appearance of the right thigh muscles in control and patient with FSHD.

A. Turki et al. / Free Radical Biology and Medicine 53 (2012) 1068–1079 1075



Acknowledgments

We are grateful to the patients of Amis FSH Europe Association
Stichting FSHD (The Netherlands) and the ABMM (Belgium) for
their continuous support. The authors are grateful to M.C. Granat
(Department of Clinical Physiology, CHRU Montpellier, France), C.
Cazevielle, and C. Sanchez (CRIC, Université Montpellier 1, France)
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Appendix A. Technical appendix

Mitochondrial respiration in permeabilized skinned fibers

High-resolution respirometry allowed a routine approach for
multiple substrate–inhibitor titrations, to measure the electron
transport chain (ETC) activity under physiological conditions. It is
an ex vivo approach of the bioenergetic metabolism. Respiratory
parameters of the total mitochondrial population were analyzed
in situ using saponin-skinned muscle fibers as previously described
[55,56]. Respiration rates were recorded in the presence of 10 mM
pyruvate and 2 mM malate as respiratory substrates. For each
sample, basal oxygen consumption without ADP (state 4; V0) was
first recorded and then the ADP-stimulated maximal respiration
rate (state 3; Vmax) was determined in the presence of saturating
concentrations of ADP (2 mM). The Respiratory Control Index (RCI)
was calculated as Vmax/V0 [76]. At the end of each measurement,
cytochrome c was added to evaluate the outer mitochondrial
membrane integrity. Fiber bundles were then removed, dried for
48 h, and weighed the next day. Replicates from the same biopsy
were used to confirm the precision of the measurements. Respira-
tion rates were expressed in nmol of O2 min"1 (mg dry weight)"1.

Assessment of the different complexes of the ETC was done by
successive respiration measurements after addition to the muscle
fibers of 2 mM ADP, 10 mM pyruvate and 2 mM malate, 20 mM
rotenone, 10 mM succinate and 2 mM malate, 6.5 mM antimycin,
2 mM ascorbate, and finally 5 mM TMPD. The ADP-stimulated
maximal respiration under pyruvate/malate feeding represented
the maximal respiration from electron flow through complexes I,
III, and IV. The ADP-stimulated maximal respiration under succi-
nate/malate feeding, with rotenone as inhibitor of complex I,
represented the maximal respiration from electron flow through
complexes II, III, and IV. The ADP-stimulated maximal respiration
under TMPD-ascorbate feeding, with antimycin as inhibitor of
complex III, represented the maximal respiration from isolated
complex IV (cytochrome oxidase complex). Fiber bundles were then
removed, dried over 48 h, and weighed the next day. Replicates from
the same biopsy were used to confirm the precision of these
measurements.

Citrate synthase activity

Muscle extracts were homogenized in 10 mmol/L Tris HCl
(pH 7.4). Citrate synthase activity was measured with 0.5 mmol/L
oxaloacetate, 0.3 mmol/L acetyl-CoA, 0.1 mmol/L 5,50-dithiobis
2-nitrobenzoic acid, 100 mmol/L Tris HCl (pH 8.0) and 0.1%
(vol/vol) Triton 100-X. Citrate synthase activity was monitored
by recording the changes in absorbance at 412 nm at 37 1C for
2.5 min and normalized to tissue weight.

Efficiency of mitochondrial ATP production in permeabilized fibers

Under identical conditions, the rate of mitochondrial synthesis
of ATP in skinned fibers was determined using the ATP bio-
luminescence assay kit HS II from Roche Diagnostics GmbH

(Mannheim, Germany) after addition of 2 mM ADP [57]. Basal
respiration without ATP synthesis was measured after addition of
70 mM atractyloside and 1 mM oligomycin. Ten aliquots were
collected from the oxygraph chamber at various time points after
ADP addition, quenched in 100 ml DMSO, and diluted in 5 ml ice-
cold distilled water. Standardization was performed with known
quantities of ATP measured under the same conditions. ATP
synthesis rate was expressed in nanomoles of ATP produced per
minute and per milligram of fiber (dry weight). The efficiency of
oxidative phosphorylation was taken as the ratio between the
ATP synthesis rate and the oxygen consumption rate and was
expressed as ATP/O [57].

Measurements of ATPase subunits and cytochrome c in muscle
biopsies by Western blotting

Thirty micrograms of each muscle biopsy was lysed in Laemmli
buffer as previously described [30]. The following primary anti-
bodies were used: anti-ATP synthase alpha and beta (BD Bios-
ciences) and cytochrome c (Santa Cruz Biotechnology). Anti-alpha
sarcomeric actin (Sigma) was used as loading control. Protein
levels were quantified using the Image J Launcher Software (NIH).

Transmission electron microscopy

Freshly obtained muscle samples (5 mg) were fixed in 3.5%
(vol/vol) glutaraldehyde in 0.1 M phosphate buffer, pH 7.4, at 4 1C
overnight. Samples were then prepared as previously described
[77]. Electron microscopy was carried out at the Centre Régional
d’Imagerie Cellulaire (CRIC) of Montpellier (France).

Evaluation of oxidative stress in FSHD muscle biopsies

Detection by fluorescence microscopy of lipofuscin, a product
of the oxidation of unsaturated fatty acids, was based on its
autofluorescence. Ten-micrometer quadriceps sections were
mounted in Mowiol and then viewed under a fluorescence
microscope with an FITC (DM510) filter. Muscle membrane
staining was performed using rabbit antibody H4 (1:500) directed
against dystrophin as previously described [78]. Immunoreactiv-
ity was detected with goat anti rabbit IgG antibodies coupled to
Alexa 647 (Invitrogen 1:1000). Data were analyzed with the
Histolab software (Microvision 6.1.0; license number 3105).
Results were expressed as number of lipofuscin granules per fiber.

The amount of 4-hydroxy-2-nonenal-modified proteins was
determined by Western blotting according to the manufacturer’s
recommendation (Alpha Diagnostic International; HNE11-S).
Muscle thiobarbituric acid-reactive substances, used as a marker
of muscle lipid peroxidation, were determined spectrophotome-
trically using the method described by Ohkawa et al. [79]. The
final results were expressed in nM/mg proteins. The TBAR
coefficient of variation (to assess reproducibility) was less than
10%. Protein oxidation was measured by evaluating the levels of
carbonylated proteins by immunoblotting (S7150, Oxyblot pro-
tein oxidation detection kit; Millipore; Molsheim, France). Muscle
protein carbonyl content was calculated by adding the integrated
density of individual protein bands (Alpha Innotech Corporation,
San Leandro, CA) obtained by Western blot analysis [80].

The antioxidant response was analyzed by Western blotting
using antibodies anti-catalase 11A1 (LF-MA0010, Euromedex,
Souffelweyersheim, France), which catalyzes the breakdown of
hydrogen peroxide to oxygen and water, anti-glutathione reduc-
tase GR (LF-PA0056, Euromedex, Souffelweyersheim, France), an
enzyme that reduces glutathione disulfide (GSSG) to the sulfhy-
dryl form GSH, and anti-manganese superoxide dismutase
MnSOD (SOD-110, Euromedex, Souffelweyersheim, France), and
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anti-copper–zinc superoxide dismutase Cu-ZnSOD (SOD-101,
Euromedex, Souffelweyersheim, France) enzymes, which catalyze
the reduction of superoxide anions to hydrogen peroxide. Alpha
sarcomeric actin (A2172, Sigma-Aldrich, Saint-Quentin Fallavier,
France) was used as loading control. For all primary antibodies,
dilution was 1:1000. Secondary antibodies were coupled to
horseradish peroxidase (HRP) and were sheep anti-mouse and
donkey anti-rabbit IgG antibodies (respectively, NA931 and
NA934, GE Healthcare Life Sciences, Velizy-Villacoublay, France)
with 1:5000 dilution. Protein staining intensities were quantified
using the ImageJ Launcher software (NIH). However, the small
biopsy size precluded enzymatic activity assays.

Evaluation of oxidative stress in FSHD blood

Antioxidants
For vitamin C determination, 0.5 ml plasma was immediately

transferred in ice-cold tubes containing 0.5 ml of 10% metapho-
sphoric acid and then frozen in dry ice. Analysis of vitamin C was
performed using a spectrophotometric method and the reduction
of 2,6-dichlorophenolindophenol (Perkin Elmer Lambda 40, Nor-
walk, USA) [81]. Plasma vitamin A, vitamin E (a- and g-tocopher-
ols), and b-carotene were determined simultaneously by HPLC
(Alliance Waters, USA) coupled with a diode array detector [82].
Blood levels of vitamin E were normalized to those of a reference
lipid (i.e., cholesterol) [83], which were determined by an enzy-
matic method with cholesterol oxidase. The ratio of vitamin C/a-
tocopherol was used as a potential risk factor for cardiovascular
disease [84]. The g/a-tocopherol ratio was determined as a
sensitive index of a-tocopherol ingestion [85]. Total GSH and
GSSG were determined in whole blood using the GSH/GSSG-412
kit (Bioxytech, Oxis International Inc., Portland, WA, USA). SOD
and GPx enzymatic activities in whole blood were determined
with the Ransod and Ransel kits (Randox, England) and expressed
as UI/g of hemoglobin. Ubiquinone analysis was performed by
HPLC with a diode array detector (PDA 2996, Waters, USA) and
the Co-Enzyme Q10 kit (68100) developed by Chromsystems
(Germany).

Trace elements
Plasma levels of selenium, copper, and zinc were determined

by inductively coupled plasma–mass spectroscopy [86].

Markers of lipid peroxidation and DNA damage. The analysis of lipid
peroxides as markers of oxidative damage of lipids was performed
with a commercial kit (Oxystat, Biomedica Gruppe, Austria). Briefly,
the peroxide (-OOH) concentration was determined spectrophoto-
metrically by reaction of the biological peroxides with peroxidase
and 3,30,5,50-tetramethylbenzidine as substrate. Oxidized LDL in
plasma samples was determined spectrophotometrically with a
competitive enzyme-linked immunosorbent assay (ELISA) kit
(Immunodiagnostik, Germany). The titer of free antibodies (IgG)
against antibodies bound to oxidized LDL (Ab-Ox-LDL) was assessed
with a commercial enzyme immunoassay (Biomedica Gruppe,
Austria) using Cu2!-oxidized LDL as antigen. 8-Hydroxy-20-
deoxyguanosine (8-OHdG), an oxidative DNA damage adduct, was
analyzed in fresh urine samples with the new 8-OHdG ELISA kit that
uses the anti-8-OHdG monoclonal antibody (clone N45.1) developed
by the Japan Institute for the Control of Aging, Nikken SEIL Co.,
Shizuoka, Japan. 8-OHdG concentrations were standardized to
the urine dilution by expressing the data as the 8-OHdG/urinary
creatinine ratio.

Miscellaneous. Ferritin concentration was determined with the Fe
kit from Roche (Roche Diagnostics) (Belgium). Myeloperoxidase, a

marker of leukocyte activation, was determined with the Elisa K
6631 kit from Immundiagnostik, Germany.

Determination of ascorbyl free radical (AFR) content in plasma by
electron spin resonance (ESR). Blood samples from patients with
FSHD and healthy controls were collected in heparinized tubes
which were immediately inverted five times and left at room
temperature for 2 h. Plasma samples were then obtained by
centrifugation (4700g; 4 1C; 10 min) and immediately frozen in
liquid nitrogen. Each sample was rapidly thawed, diluted in 1:1 v/v
dimethyl sulfoxide (DMSO), and placed in 50-ml calibrated glass
capillary tubes (Hirschmann Lab., Germany) sealed at both ends
with Critoseal. Tubes were fitted into the cylindrical cavity of a
Bruker ESP 300 ESR spectrometer (Karlsruhe, Germany) operating
at X-band (9.87 GHz) with 100 kHz modulation frequency, 10 mW
microwave power, 0.787 G modulation amplitude, 2.5$105

receiver gain, and 1.92 ms time constant. Spectral recording was
initiated at room temperature 75 s after thawing and the relative
concentration of the AFR-DMSO ESR doublet (aH¼1.83 G), which
resulted from the signal averaging 10 scans at 1.07 G/s sweep rate,
was calculated by double integration of the simulated signal using
the Winsim software [87].

Blood levels of inflammatory markers

Serum was collected by centrifugation, aliquoted, stored, and
processed at the end of the study by blinded staff. Inflammatory
markers were simultaneously identified using the BD cytometric
bead array immunoassay (CBA) (BD Bioscience, San Jose, CA, USA).
CBA is a multiplexed bead assay in which a series of spectrally
discrete particles can be used to capture soluble analytes. Ana-
lytes are then quantified by flow cytometric analysis of their
fluorescence-based emission. The method employs a series of
different particles that are stably labeled with a discrete level of
fluorescent dye whose emission wavelength is read at%650 nm.
The beads within each group are covalently coupled with anti-
bodies that can specifically capture a particular type of molecule
present in biological fluids.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.freeradbiomed.
2012.06.041.
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