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Closely related fungi employ diverse
enzymatic strategies to degrade plant biomas
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Abstract

Background: Plant biomass is the major substrate for the production of biofuels and biochemicals, as well a
textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi ar¢
tial for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex proces
involves a large number of extracellular enzymes as well faydwatytic proteins, whose production in fungi is
controlled by a set of transcriptional regulatdspergilluspecies form one of the best studied fungal genera in t
eld, and several species are used for the production of commercial enzyme cocktails.

Results: It is often assumed that related fungi use similar enzymatic approaches to degrade plant polysacch
In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the ¢
radation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, w
exception ofA. clavatuthat has a strongly reduced pectinolytic ability. Despite this similar genomic potential tf
approaches to degrade plant biomass di er markedly in the overall activities as well as the speci ¢c enzymes
employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the correspag
enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, signi €an
ences were observed between the enzyme sets produced on these feedstocks, largely correlating with their
charide composition.

Conclusions: These data demonstrate thaspergilluspecies and possibly also other related fungi employ sig-

ni cantly di erent approaches to degrade plant biomass. This makes sense from an ecological perspective w
mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining
approaches from di erent species could result in improved enzyme mixtures for industrial applications, in pa
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of sacchari cation e ciency than adding speci ¢ enzymes to the mixture of a single fungus, which is currently|the
most common approach used in biotechnology.

Keywords: Aspergillus, Enzyme production, Polysaccharides, Biofuel, Sacchari cation, Diversity, Plant biomass
degradation

Background these strategies will not only increase our knowledge of
Plant biomass is a highly attractive substrate for the pro fungal biodiversity, but will help in the design of e cient
duction of biofuels and biochemicals as it is a renewabldndustrial enzyme mixtures for plant biomass degrada
resource with a lower carbon footprint as compared to fos tion. In this study, we compared the plant biomass deg
sil substrates. It is also the predominant carbon source forradation potential and approaches of eight Aspergillus
most fungi and consists largely of polymeric compounds,speciesiA. clavatus,A. scheri, A. avus, A. fumigatus,
of which polysaccharides are the main components, [1A. nidulans, A. niger,A. oryzae and A. terreus (Addi
2]. In addition, lignin encrusts the polysaccharides andtional le 1: Table S1). e main aim was to evaluate if
acts as a physical barrier that impedes fungal enzymethese related fungi have signi cant dierences in their
from gaining access to them. Fungi cannot take up intactapproach to degrade plant biomass and if this could
polysaccharides, but need to degrade them extracellularlyprovide leads to improve the sacchari cation e ciency
to monomeric and oligomeric compounds using diverse of commercial enzyme cocktails. To do this we cem
enzymatic mixtures [l Plant polysaccharide degradation pared the genomic potential of these fungi as well as the
by fungi has been a topic of study for many decades due tenzymes sets they produce during growth on two cem
its relevance in many industrial applications, such as papemon feedstocks, wheat bran and sugar beet pulp, that dif
and pulp, food and feed, beverages, textiles and detergentfer signi cantly in their composition (Table 1).
e increasing interest in the production of alternative
fuels and chemicals from plant biomass has provided arResults
even greater push for research into fungal decompositionGenomic potential of the studied Aspergilli related to plant
of plant biomass. In contrast to the earlier applications, biomass utilization
production of biofuels and biochemicals would ideally Based on the Carbohydrate-Active enZymes (CAZy) [17]
involve complete depolymerization of the polysaccharidesannotation pipeline, total numbers of glycoside hydro
to monomers, putting a much higher demand on the e  lases (GH), polysaccharide lyases (PL) and carbohydrate
ciency of the enzymatic mixtures employed by industry.  esterases (CE) vary among the species (EijgTable2).
Analysis of an increasing number of fungal genome e percentage of GH genes related to plant polysaccha
sequences has demonstrated the fundamental dier ride degradation (PPD) is 58—-66% for all genomes, except
ences in the plant polysaccharide degrading machinerythat A. clavatus has 20-30% less GH genes than the
of fungi [3-8]. In addition, the regulatory systems that others (Fig.1), largely due to a reduction in pectinases
control plant biomass degradation also dier strongly (GH28, GH54, GH78, GH88) (Tablg). A. clavatus also
among fungi, although they are largely conserved amongontains the lowest percentage of PPD-related PL genes
di erent Aspergillusspecies [9—-16]. Results from a previ (71% as compared to >86%), which are also all related to
ous study on the utilization of polysaccharides by threepectin degradation. e variations in CAZy content are
Aspergilli [6] suggest that related fungal species mayrelatively small compared to previous studies with a more
have developed dierent approaches to plant biomassdiverse set of fungal species [3-8]. is can be explained
degradation. In nature, biomass-degrading fungi live inby their close phylogenetic relationships and their similar
mixed communities with other microorganisms. It can habitats, which would push genome evolution in a simi
be expected that di erent species target distinct compo lar direction.
nents of the substrate and degrade them using dissimilar When the Aspergilluggenomes were compared for indi
enzyme combinations. An enhanced understanding ofvidual CAZy families, signi cant di erences in numbers

Table 1 Composition of the plant biomass substrates used in this study

Rhamnose  Arabinose  Xylose  Mannose  Galactose Glucose Uronic acid  Polysaccharides

Wheat bran 0 17 35 1 2 42 3 Cellulose, (arabino) xylan
Sugar beet pulp 1 28 2 2 7 33 26 Cellulose, pectin, xyloglucan

Values are given in mol%. Polysaccharide composition is inferred from the monomer values.
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Fig. 1 Taxonomic tree of the species used in this study and the numbers of glycoside hydrolases, polysaccharide lyases and carbohydrate esterases
detected in their genomes. PPD plant polysaccharide degradation related. The number of unique genes per species is indicated behind their name
in the taxonomic tree.

of genes were observed (Additional [Q: Table S2A, Table S3B). In general, the CAZyme distribution among
B). Variations in gene numbers are particularly obviousthe species follows their phylogenetic relationship. In
in certain CAZy families involved in the degradation of total, this means that only 70 genes are shared by all spe
mannan (GH26), pectin (GH28, GH53, GH78, GH88, cies, while the number of unique genes di ers strongly by
GH93, PL1, PL3, CE8 and CE12), xyloglucan (GH29 andpecies (Fig. 1).
GH74), starch (GH31), sucrose/inulin (GH32), cellulose
(GH45 and AA9), and xylan (GH115 and CE15). Genessrowth on plant biomass related substrates
encoding lignin-modifying peroxidases are not present Growth of the eight Aspergillusspecies was evaluated
in any of these genomes, but signi cant di erences areon 35 plant biomass related carbon sources (Fig.full
found in the number of laccases and other oxidoreduc pro les are available at www.fung-growth.org). Two iso
tase enzymes, which may play a role in lignin or poly lates per species were tested to check that the di erences
saccharide degradation (Additional |&: Table S2B). A. are species specic and not strain specic. e general
niger is richest in laccases (13 in its genome), while thgrowth speed di ered between the strains of a species,
other species have two to nine. but for most species no signi cant carbon source related
Orthologous clustering of the CAZymes showed that di erences were observed between the strains. An excep
only 14.7% of the genes encoding hydrolytic enzymesion to this is A. niger CBS513.88 that grew poorly on all
are shared by all species (Additional [ Table S3A). In pure carbon sources and was shown to have an amino
contrast, 27.5% of the genes are unique to a single spacid auxotrophy (unpublished data), which explains this
cies, with the largest number i&. nidulans A. niger and phenotype. Apparently, both wheat bran (WB) and sugar
A. terreus. For the oxidative enzymes, 10.8% of the gend®et pulp (SBP) contain su cient proteinfamino acids
are shared by all species, while 40.8% of the genes ae@ supplement this de ciency. All other strains grew
unique to a single species, with again the largest numbewell on MM glucose and glucose was therefore used
in A. nidulans A. niger and A. terreus (Additional 1€: as an internal reference to compare the strains, to avoid
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Fig. 2 Growth pro ling of eight Aspergilli on plabiomass related carbon sources. A selection of the growth pro le of the eight Aspergillus |species
on 35 plant biomass related carbon sources is presented. Minimal medium (MM) [1] was used supplemented with 25 mdt dfsacciwaride,
1% polysaccharide or 3% crude plant biomass. Strains were grown for 5 days after which pictures were taken immediately.

misleading di erences caused by general di erences invery low number of pectin-targeting genes (only 30 puta
growth speed between the species. Growth on the othetive genes), which was less than half of the other species
substrates relative to growth on glucose was then com (Additional le 2: Table S2A, B).
pared between the species. All species grew well on wheat bran and also, with only
Growth on pure cellulose was zero to very poor for all A. clavatus having reduced growth, on sugar beet pulp.
species. Most fungi had similar growth on glucose, malt ese substrates were therefore selected to analyze their
ose, starch and xylan, with the exception of A. nidulans enzymatic ability in more detail. Composition analysis
for which poor growth on maltose was observed for one(Table 1) showed that wheat bran contains mainly eel
strain. Growth on sucrose was similar to growth on glu lulose and (arabino)xylan, with xyloglucan and pectin as
cose for nearly all strains, but strong di erences were minor components. In contrast, sugar beet pulp contains
observed on inulin. Good growth on this substrate wasmainly cellulose, xyloglucan and pectin, which explains
observed forA. niger ATCC1015 andA. scheri, while the reduced growth of A. clavatus.
for all other species growth was reduced compared to
sucrose. is does not correlate with the number of puta  Enzyme pro les during growth on wheat bran and sugar
tive inulin-targeting genes in the genomes @ scheri  beet pulp
has only two (Table2), while A. niger has six just like A. A preliminary test in which eight plant biomass degrad
terreus, which grows poorly on inulin. Good growth cem ing enzymes were measured at day two, three and four
pared to the other species was observed for A. niger, of cultivation, demonstrated that at day three activities
nidulans, A. fumigatus and A. avus on guar gum (gakac were maximal for all fungi (data not shown). is time
tomannan). While A. nidulanshas the highest number of point was therefore selected for the full enzymatic analy
galactomannan-targeting genes (TabB, A. niger has in sis. Nineteen extracellular, lignocellulose-active enzyme
fact the lowest number and A. terreus again grows poorlyactivities of the liquid cultures were measured (Addi
even though it has the second highest number of galactional le 1: Figures S1-S3). Comparison of these pro
tomannan-targeting genes. Growth of A. clavatus was les demonstrated strong di erences among the species,
particularly poor on pectin which correlates well with its not only in the quantities of the activities, but also in the
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induction of specic enzymes. For instance, the high related species, A. nidulanand A. terreus, can display
est activity levels for most enzymes of A. terreus weresimilar CAZy content. A possible explanation for this
observed during growth on sugar beet pulp, while wheat nding is that natural habitat exerts a stronger in uence
bran resulted in higher levels of most enzymes for A- a on genome evolution than phylogenetic relatedness.
vus (Additional le 1: Figure S1). When the individual No clear correlation was observed between the enzyme
activities were compared across the species, speci ¢ difactivities produced in response to complex substrates
ferences became noticeable. Wheat bran consists mainland evolutionary relatedness (Figb), possibly due to the
of cellulose and arabinoxylan and the main regulatorrange of non-plant substrates some species are known
controlling degradation of these polysaccharides is XInR,to consume (e.g. collagen for A. terreus, avus and A.
which is present in all Aspergilli [18]. Endoxylanase andnidulans and insect larvae for A. clavatus), resulting in a
-xylosidase were mainly produced on wheat bran, andvarying biotope range and dependence on plant biomass.
levels were particularly high forA. niger (Additional e composition of wheat bran and sugar beet pulp is dif
le 1: Figure S1). Endoarabinanase, -rhamnosidase,pecferent and they should elicit di erent activity pro les. For
tate lyase and endogalactanases, all related to pectin degix of the tested species, the wheat bran and sugar beet
radation, were mainly produced on sugar beet pulp, butpulp activity pro les diverge strongly. Unexpectedly, the
rarely were all four activities produced by one speciessugar beet pulp and wheat bran activity pro les clustered
Sugar beet pulp contains mainly cellulose and pectin andogether for A. avus and A. oryzae. Two of the three
therefore pectinases and cellulases would be expected testedA. niger strains (N402 and ATCC 1015) clustered
be the main enzymes produced on this substrate, whichtogether for both substrates, while the third (CBS 513.88)
is con rmed by our data. was strongly divergent in the enzyme activity pro le.
Mass spectrometric analysis of the extracellular pro ese results show that strains of the same species (CBS
teins con rmed the activity measurements with respect 513.88 and ATCC 1015) with near identical genomic
to the enzymes that were detected (Additional 1€: content can use signicantly dierent sets of enzymes
Table S4A-D). Figure3 shows the presence of ortholo to hydrolyze complex biomass. It should be noted that
gous enzymes involved in the degradation of di erent genome sequence analysis suggests that strains ATCC
polysaccharides in wheat bran and sugar beet pulp. is 1015 and N402 are likely descended from the same iso
analysis demonstrates the high degree of diversity amondate (A. Tsang and co-workers, unpublished data), which
the species in the production of orthologous enzymes.explains the clustering of their activity pro les.
Only a few orthologous enzymes are produced by all or Correlation of the proteomics data did not follow the
most species and in most cases they are produced oactivity correlation (Fig 4b, c), which can be explained by
both wheat bran and sugar beet pulp (Fig) although the production of non-orthologous enzymes for the same
often with signi cantly di erent levels (Additional le 2: general activity by dierent species (Additional le2:
Table S4A-D). ese data highlight the dierent enzy Table S4A-D). is adds an additional dimension to the
matic approaches used by the eight species to degradeighly divergent strategies of these Aspergilli. Consider

plant biomass. ing the fairly similar genome content of these species,
we conclude that the dierences in their plant biomass

Correlation of CAZy pro les, taxonomy and enzyme degrading strategies are mainly at the regulatory level.

activity of the eight Aspergilli More detailed studies into the regulation of orthologous

Figure4 shows the correlation of the species for genomeCAZyme encoding genes in several species could reveal
content, enzyme activity and production of individual whether this is due to di erent sets of target genes of the
enzymes. Correlating the number of genes per CAZymain regulators or whether additional unknown regua
family demonstrated that with respect to genome con tors modulate the in uence of the main regulators.

tent, closely related species (A. oryzae — A. avus,

scheri — A. fumigatus) cluster together (Figda). is Discussion

indicates that the evolution of their genome content In this study, we compared eight Aspergilli with respect
related to plant biomass degradation follows the evelu to plant polysaccharide degradation. e variations in
tionary history of the species. However, more distantly CAZyme content between these species were relatively

(See gure on next page)

Fig. 3 Proteins secreted by the eight Aspergillus species during growth on sugar beet pulp (SBP, purple) and wheat bran (WB, orange) as|determined
by mass spectrometry. Samples were taken after 3 days and are the same samples used for activity assays. The proteins are plotted using the ortholog
clusters (Additional le:Zable S3). Presence of the gene in a genome is depicted by a grey box in the circle corresponding to the species/strain.




Benoitet al. Biotechnol Biofuels (2015) 8:107 Page 7 of 14




Benoitet al. Biotechnol Biofuels (2015) 8:107 Page 8 of 14

Fig. 4 Correlation analysis of the genome (a), enzyme activity (b) and proteomics data (c).
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low as compared to previous studies in which a morethe latter being the actual inducer. Indications for simi
diverse set of fungal species was compared [3-8]. is lar regulation have been reported for the other species
can be explained by the close phylogenetic relationshipg29—-35], although the range of target genes can di er per
and/or by and the highly similar habitats of these Asper species [3637]. Regulation studies in A. niger have pre
gilli, which would direct genome evolution in a similar viously demonstrated that pectinolytic genes are induced
direction. Human use of and/or interaction with the spe by galacturonic acid, rhamnose, polygalacturonic acid or
cies di ers markedly; withA. niger andA. oryzae being pectin [38—40]. Di erences in pectinolytic gene content
widely used industrial fungi, A. fumigatus one of the mostbetweenA. niger,A. nidulansand A. oryzae may be inu
signi cant opportunistic fungal human pathogens, and enced by the pH of their natural habitat [41]. An acidic
A. avus a plant pathogen. However, all these species arpH favors pectin hydrolases, while a neutral to alkaline
common inhabitants of soil and stored agricultural pred pH favors pectin lyases, supported by the nding that all
ucts, and their spores are widespread in both indoor andfungal GH28 pectin hydrolases have activity optimum
outdoor environments. Although some of the sequencedbetween pH 2 and pH 5, while pectin lyases have opti
strains are domesticated and not recent natural isolatesmum between pH 7 and pH 10 (https://mycoclap.fungal
the comparison to a second strain that is a natural iso genomics.ca) [42]. e pH of most samples was 7 except
late showed that growth on 35 carbon sources is nearlffor A. nidulans on sugar beet pulp (pH 8), A. niger on
identical for two strains of the same species. is demon wheat bran (pH 5.5) and sugar beet pulp (pH 4.5), and A.
strates that the sequenced isolates have maintained theiclavatus on sugar beet pulp (pH 6). e pH in the sugar
natural ability to use the tested carbon sources. beet pulp cultures correlates well with the pectin hydro
Hierarchical clustering of the plant polysaccharide lase and lyase activities and with the proteomics results
degrading enzymes of these species demonstrated thdfAdditional le 2: Table S4A-D). erefore, the dier-
in general the species with the most similar CAZome areences in enzyme levels are likely caused by regulatory
also taxonomically close. variation. Since the major regulators are shared by all
e number of unique genes (Additional le 2: tested species [16], their function or range of target genes
Table S2A, B) per species also correlates well with thén the tested Aspergilli is dierent and/or additional
phylogenetic distance of the species. e lowest num non-shared regulators are involved in the utilization of
ber was found for A. oryzaed. avus, A. scheri and complex biomass. A di erence in the function of the ara
A. fumigatus. As the rst two and the last two species, binanolytic regulator AraR in A. niger and A. nidulans
respectively, are closely related, their high similarity was recently described [43], and the inducers for activa
explains this low number. e more distant species (A. tion of AmyR also appear to di er between A. nigeA.
nidulans, A. terreus,A. niger, A. clavatus) have higher nidulans and A. oryzae [44—47]. More detailed analysis of
numbers of unique genes. the set of target genes, and function and mechanism of
A high level of variation was detected in the enzymethe polysaccharide related regulators in the other species
activities of the tested species during growth on sugamwill be required to understand the mechanism respon
beet pulp and wheat bran. While all species grew welkible for these dierences. Interestingly, the production
on these substrates, with the exception of somewhat lessf several cellulases appears to be conserved among the
growth of A. clavatus on sugar beet pulp, the enzymespecies, suggesting that this may be a core-activity for all
pro les of the species showed strong di erences. Wheat species. In contrast, the production of hemicellulases is
bran consists mainly of cellulose and arabinoxylan,highly varied, suggesting speci ¢ adaptations of the spe
while sugar beet pulp contains mainly cellulose and pec cies in their biomass degrading approach.
tin. Enzymes able to degrade these dierent combina Laccase activity was detected for most species, with
tions of polysaccharides would therefore be expected tahe highest activity on wheat bran for A. avus and on
be prominent in the culture ltrate of all species grown sugar beet pulp for A. fumigatus. is does not corre
on these substrates. Our study con rmed this as nearlylate with the numbers of putative laccases detected in
all enzyme activities detected on wheat bran in all spethe genomes, suggesting signi cantly dierent regu
cies are involved in xylan and cellulose degradation]ation of the production of these enzymes among the
while mainly pectinolytic and cellulolytic enzymes were species. Induction of laccase-encoding genes has been
detected on sugar beet pulp. e main regulator con mainly studied in basidiomycetes in which transcrp
trolling the production of xylanolytic and cellulolytic tion is modulated by metal ions (Cu, Ag , Mn? ), aro-
enzymes in Aspergilluss XInR, which has been studied matic compounds, nitrogen and carbon sources (nature
in detail in A. niger,A. oryzae and A. nidulan$19-28]. and ratio) [48]. In ascomycetes, regulatory elements such
XInR activates the expression of xylanolytic and cellulo as heat shock elements, metal response elements and
lytic genes in response to the presence of xylan or xylosejitrogen metabolite regulation elements (NIT-2 like)
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were identi ed in the promoter region of laccase-like respectively. e pH of the medium was adjusted to 6.0.
multicopper oxidase [49]. In addition, laccases are alsd-or plate growth, the center of the plates was inoculated
involved in other biological processes, such as spore pigwith 2 | of a suspension of 500 spores/ | and plates were
ment formation [50], and not only in lignin degradation, incubated for 5 days at 30°C. All eight species were grown
so the total number of laccases likely does not re ect theon minimal medium with 35 carbon sources including
number of laccases which play a role in plant biomassrude plant biomass, pure plant polysaccharides, oligo
degradation. saccharides, monosaccharides and control substrates
Although the fungi tested in this study produce diverse (casein, lignin) (Additional le 1: Figure S1, www.fung-
enzyme sets, they all grow well on the crude plant bio growth.org). To con rm that the detected dierences
mass substrates. is suggests that dierent strategies were species specic, a second isolate of each species
for the degradation of plant biomass may be equallywas examined along with the sequenced strain. Growth
e cient (as measured by fungal growth). In biotechno on 25 mM glucose was used as a reference because the
logical applications, such as biofuel production, cem tested strains grow at di erent rates and glucose, among
plete hydrolysis of the plant biomass is di cult to achieve the monosaccharides, supported the fastest growth for
with currently available enzyme cocktails. is may in all species. Growth on the other substrates relative to
part be explained by the absence of specic activities ingrowth on glucose was then compared among the spe
these mixtures. e data obtained in this study show the cies. Growth on plates was analyzed by visual inspection
existence of distinctly di erent enzymatic approaches to by two authors independently after which these were
degrade biomass. A judicious mix of these approaches isompared and discussed.
likely to result in improved enzyme cocktails for biomass Liquid cultures were inoculated with 19 spores/ml
hydrolysis. Recently it was shown that addition of Poeos ( nal concentration) and incubated at 250 rpm for 3 days.
pora anserina hydrolases increases the e ciency of aAll cultures were incubated at 30°C and performed in
Trichoderma reesei enzyme mixture [51]. In this study weduplicate. Two to three strains of all species were grown
provide indications that similar results could be obtained in liquid cultures with 1% wheat bran or 1% sugar beet
with more closely related fungi. e advantage of using pulp. Culture Itrates after 3 days of cultivation were ana
enzymes from other Aspergilli to improve enzyme cock lyzed for the presence of free monomeric sugars, but no
tails of A. niger or A. oryzae is that heterologous produc glucose, xylose, galacturonic acid, rhamnose or fructose
tion of these enzymes is not likely to cause problems duavas detected. SDS-PAGE analysis of the extracellular
to the high similarity in gene structure of these species. proteins revealed nearly identical proles for strains of
the same species (Additional lel: Figure S6), indicat
Conclusions ing that enzyme production is highly conserved within a
In this study we demonstrated that closely related fungispecies. Detailed analysis of the produced enzymes was
use highly diverse enzymatic strategies for the degradatherefore only performed on a single strain.
tion of the same substrates, but with similar e ciency. Glucose, maltose, sucrose, inulin, beechwood xylan,
It can be assumed that in nature not all fungi target the Guar gum, apple pectin and all p-nitrophenyl-substrates
same parts of the substrate. erefore the identi cation were from Sigma-Aldrich. Soluble starch was from
of the enzyme sets employed by di erent fungi can beDifco. Red Debranched Arabinan (S-RDAR), Azo-CM-
used to design e cient commercial enzyme cocktails by cellulose (S-ACMC), Azo-galactan (S-AGALP) and
combining these enzyme sets. is could signi cantly AZ-rhamnogalacturonan (S-AZRH), Azo-wheat ara
improve the saccharication e ciency of industrial binoxylan (S-AWAXP) and polygalacturonic acid (PGA)
enzyme cocktails. Combining the complete enzymes setvere from Megazyme International Ireland.
of two fungi is likely to improve saccharication e-
ciency more than adding speci c enzymes to the cocktail Composition analysis of plant biomass substrates

produced by a single species. Sugar composition was determined by analyzing the sug
ars as their alditol acetate derivatives using GC-FLD as
Methods described previously [53].

Media, growth conditions and chemicals

e fungal strains used in this study are listed in Addi CAZy annotation

tional le 1: Table S1. Aspergilluminimal medium was e identi cation step of CAZymes followed the pro-
described previously [52]. All monomeric and oligomeric cedures previously described [6] where sequences are
carbon sources were added to a nal concentration ofsubject to BlastP analysis [54] against a library com
25 mM, while pure polymeric substrates and crude sub posed of modules derived from the CAZy database, the
strates were added to a nal concentration of 1 and 3% positive hits are then subjected to a modular annotation
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procedure that maps the individual modules onto the reactions with a 2501 solution of sodium acetate tri
peptide using hits against libraries of catalytic and €ar hydrate (40 mg/ml) and zinc acetate (4 mg/ml) in 76%
bohydrate models derived from CAZy using BlastP orethanol. Precipitated reactions were then centrifuged at
Hidden Markov models [5455]. e functional annota - 1,000 g for 10 min and optical density of supernatants
tion step involves BlastP comparisons against a librarywas measured at 590 nm. Endoarabinanase reactions
of modules derived from biochemically characterized were measured at 520 nm. Endo-acting enzyme aetivi

enzymes [6]. ties are expressed as amount of dye released (absorbance
change)/ml sample/min.
Orthology and synteny analysis Pectate lyase activity was assayed using polygalactu

Genome scale protein ortholog clusters were constructedronic acid (PGA). Reaction mixtures contained equal vol
using OrthoMCL [56] by in ation factor 1, E value cuto umes of 50 mM N-cyclohexyl-3-aminopropanesulfonic
1E 3, percentage match cuto 60% as for identi cation acid (CAPS) (pH 10.0) and 2.5 mg/ml PGA, to which
of distant homologs [57]. e orthologs clusters were fur  suitably diluted culture Itrate was added. Changes in
ther split according to the synteny detected by the Sybilabsorbance at 235 nm were measured for approximately
algorithm [58] at www.aspgd.org Sequences of genes 30 min at 40°C.

were manually double checked by multiple sequence Laccase activity was assayed using 2,2 -azino-di-(3-eth
alignments with MAFFT [59] and potential errors of ylbenzothiazoline-6-sulphonic acid) (ABTS). Reaction

gene models were corrected. mixtures contained 700 pl HO, 100 pl 0.5 M glycine—
HCI (pH 3.0), 100 pl culture ltrate and 100 pl 14 mM
Enzyme assays ABTS. e reaction was monitored by measuring the

All exo-acting CAZy enzyme activities were performed change in absorption at 436 nm at 30°C. e extinction
in microtiter plates. Reactions were carried out in 100 pl coe cient of 29,300/M/cm was used for oxidized ABTS.
volumes containing 25 mM sodium acetate (pH 5), 0.01%Activity is expressed as is in nmol/min/ml.
substrate and suitably diluted culture Itrate. e mix- Feruloyl esterase activities were determined speetro
ture was incubated at 30°C for 2 h and the reaction wagphotometrically (Shimadzu PharmaSpec UV-1700) at
terminated by the addition of 100 pl 250 mM sodium 37°C in 100 mM MOPS (3-(N-morpholino)propanesul
carbonate. Enzyme activities ( -arabinofuranosidase, fonic acid) bu er (pH 6.0). Methyl ca eate (MC), methyl
cellobiohydrolase, -galactosidase, -galactosidase, ferulate (MF), methyl p-coumarate (MpC) and methyl
-glucosidase, -glucosidase, glucoamylase sinapate (MS) (1.18 mM stock solutions in 100 mM
(-maltosidase), -mannosidase, -rhamnosidase and MOPS, pH 6.0) were used as substrates. Reaction-mix
-xylosidase) were determined spectrophotometrically at ture contained 100 pl of culture liquid, 870 pl MOPS
405 nm by measuring the release of p-nitrophenol (pNP)(3-(N-morpholino)propanesulfonic acid) bu er and the
from their appropriate pNP-substrates and standardized reaction was started by the addition of 30 pl substrate.
against a known concentration of p-nitrophenol (pNP). Absorbance was monitored for 5 min at 308 nm for MpC
Activities were expressed as nmol pNP/ml sample/min. ( 353 20,390/M/cm), 320 nm for MF ( 35, 29,680/M/
Endoarabinanase, endo-1,4- -glucanase (cellu cm) and MS (55, 15,890/M/cm), and 322 nm for MC
lase), endo-1,4--galactanase and rhamnogalactu ( 35, 14,720/M/cm). FAE activities were expressed as
ronanase activiies were measured using 20 mg/minkat/l (10° mol/s/l).
of Red Debranched Arabinan (S-RDAR), Azo-CM-
cellulose (S-ACMC), Azo-galactan (S-AGALP) and Determination of monomeric sugars in the cultures
AZ-rhamnogalacturonan (S-AZRH), respectively. Endo- Presence of monomeric sugars in wheat bran and sugar
1,4- -xylanase activity was measured using 10 mg/mlbeet pulp liquid cultures was measured by using Mega
Azo-wheat arabinoxylan (S-AWAXP). 100 reactions  zyme’s Assay kits for glucose and fructose (K-FRUGL),
were carried out containing equal volumes of bu xylose (K-XYLOSE), glucuronic acid (K-URONIC) and
ered substrate (pH 4.5) and suitably diluted culture- I rhamnose (K-RHAMNOSE) using the provider’s instrec
trate which were then incubated at 40°C for 1 h in thetion. All measurements were done with two biological
case of the endoarabinanase, endo-1,4- -glucanase andeplicates.
endo-1,4- -xylanase activities and 16 h for the endo-
1,4- -galactanase and rhamnogalacturonan activities. SDS-page
Endoarabinanase reactions were terminated with theProtein pro les were obtained by combining 2% of cul -
addition of 400 | 95% ethanol, endo-1,4- -galactanase, ture supernatant supplemented with 30of5 Laemmli
rhamnogalacturonanase and endo-1,4- -xylanase reac Loading Bu er (50 mM Tris—HCI pH 6.8, 2% SDS, 10%
tions with 250 | 95% ethanol and endo-1,4- -glucanase glycerol, 0.1 M dithiothreitol, 0.2 mg/ml Bromophenol
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Blue) and separating this on 12% SDS-PAGE gels- Prazdditional les
teins were visualized by silver staining and a PageRuler
Unstained Protein Ladder ( ermo Scienti C) was used Additional le 1: Combines Additional File Figures S1-S4 and Table|S1.

as protein marker. Figure S1: Hydrolytic enzyme activity pro les of the eight species. Figure

S2: Laccase activity of the eight species. Figure S3: Di erences in feruloyl

. . esterase production. Figure S4: Conserved SDS-PAGE pro les for isolates of
PrOte(?m'CS analysis o the same species. Table S1. Strains used in this study.
Proteins from 3 ml of culture ltrate were preC|p|tated Additional le 2: Combines Additional le Tables S2—S4 (excel

with cold TCA/acetone and the amount of protein recev | format). Table S2A. Numbers of putative genes per CAZy family for the
ered was determined using the RCDC kit assay (BioRad,lO genomes addressed in this study. Table S2B. Numbers of putative

L . . . | "genes per Plant Polysaccharide Degradation-related CAZy family for|the
Mississauga, ON, Canada)' Five micrograms of protein 10 genomes addressed in this study. Table S3A. Orthology clusters @

were digested with trypsin and an aliquot analyzed by feruloyl esterase (SF), glycoside hydrolase (GH), carbohydrate esterase
LC—MS/MS as previously described [60] on a Velos LTQ- and polysaccharide lyase (PL) families. Table S3B. Orthology clusters of

Orbit t t Fish s J auxiliary activities (AA). Table S4A. Detection of proteins in cultures grown
roirap mass spectrometer ( ermo-rFisher, san JOSE€, |, \yheat bran sorted by CAZy family. Table S4B. Detection of proteins

CA, USA). MS/MS data were processed using Proteome in cultures grown on sugar beet pulp sorted by CAZy family. Table S4C.
Discoverer Quant 1.3 ( ermo-Fisher) and spectral data | Detected proteins in cultures grown on wheat bran sorted by number|

hed inst A il tein datab of species that contain an orthologue. Table S4D. Detected proteins in
were searched agains spergilluprotein - databases |y res grown on sugar beet pulp sorted by number of species that

downloaded from the Aspergillus Genome Database contain an orthologue.
(AspGD). Search parameters used were 0.80 Da for-frag
ment ion tolerance and 10.0 ppm for parent ion tolerance,

xed iodoacetamide cysteine modi cation and variable Abbreviations o o
hioni idati Protei d tide identi cati ABTS: 2,2 -azhdld-(3-ethylbenzothiazoliné-sulphonic acid); CAPS:
methionine oxidation. Protein and peptide identi cation N-cyclohexyl-3-aminopropanesulfonic acid; CE: carbohydrate esterase; GH:

con dence lters were applied to satisfy a 1% false dis€ov glycoside hydrolase; MC: methyl ca eate; MF: methyl ferulate; MM: minimal
ery rate at the Peptide and Protein level. Protein groupingmedium; MOPS: 3-(N-morpholino)propanesulfonic acid; MpC: metiy p-

lied isfv th inciol f . marate; MS: methyl sinapate; PGA: polygalacturonic acid; PL: polysaccharide
was applied so as to satisty the principles o parSImonylyase; pNP: p-nitrophenol; PPD: plant polysaccharide degradation; S-ACMC:

e mass spectrometry proteomics data have been AzoCMecellulose; S-AGALP: Agadactan; S-AZRH:-Amnogalacturonan;
deposited to the ProteomeXchange Consortium (http:// S-AWAXP: Azeheat arabinoxylan; S-RDAR: Red Debranched Arabinan; SBP:

. sugar beet pulp; WB: wheat bran.
proteomecentral.proteomexchange.org) via the PRIDE

partner repository with the dataset identi er PXD000982. Authors' contributions
IB, GAO, EB, BSG, EM, HMN, BTA and AW carried out the growth pro ling
. . . . . studies. 1B, HC, JvdB, KSH, LAJB, MRM, VM, BMC and HBOEB performed or
Hierarchical CIUSte”ng and correlation anaIyS|s supervised the enzyme assays. MZ, CPIMB, PAvK, PMC, AL, BH, AT and RPdV
Matrix les of presence/absence and activity of CAZyme performed the bioinformatics studies. MDF and AT performed the proteomic

encoding genes and protein production measured bystudies. OB performed the sugar analysis. JH performed the phylogenetic

; . d hi hical analysis. IB, HC, MZ, AT and RPdV drafted the manuscript. RPdV conceived of,
proteomics experiments were generated. e hierarchica designed and coordinated the study. All authors read and approved the nal

clustering of CAZyme encoding genes were created usingnanuscript.
R [61] using the Euclidean distance with complete link )
Author details

age and visualized by iTOL [653]' e dendrogram and 1 Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre and Fungal
heatmaps of protein abundance were created and visuMolecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The
alized using Genesis [64] with Pearson’s correlation and\letherlandsz. Microbiology and Kluyver Centre for Genomics of Industrial Fer
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