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Abstract
The organization of cortical networks can be investigated functionally in brain slices. Laser

scanning photostimulation (LSPS) with glutamate-uncaging allows for a rapid survey of all

connections impinging on single cells recorded in patch-clamp. We sought to develop a var-

iant of the method that would allow for a more exhaustive mapping of neuronal networks at

every experiment. We found that the extracellular field recordings could be used to detect

synaptic responses evoked by LSPS. One to two electrodes were placed in all six cortical

layers of barrel cortex successively and maps were computed from the size of synaptic neg-

ative local field potentials. The field maps displayed a laminar organization similar to the

one observed in maps computed from excitatory postsynaptic currents recorded in patch-

clamp mode. Thus, LSPS combined with field recording is an interesting alternative to

obtain for every animal tested a comprehensive map of the excitatory intracortical network.

Introduction
The organization of neuronal networks has been the object of investigations since the onset of
neuroscience research. Networks are dynamic, changing with development, learning, aging
and with insults. Hence, their organization demands to be re-assessed in an ever increasing
number of conditions. The functional mapping of sensory cortical networks has been princi-
pally approached using two methods. The first monitors the synaptic activity of single cells
while searching for presynaptic partners, whereas the second delivers stimuli and tracks the
propagation of synaptic signals often with fluorescence imaging. Exhaustive connectivity
matrices with the highest degree of resolution have been generated thanks to studies based on
single cell electrophysiological recordings where presynaptic partners were searched either
with electrophysiological methods such as in paired recordings [1] or optically such as with
UV-evoked glutamate uncaging [2]. Stimulating with light considerably speeds up the process
of mapping. In a laser scanning phostimulation (LSPS) set-up, small groups of neurons (< 50)
are sequentially stimulated at different sites which were patterned so as to generate a
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connectivity matrix [3]. Connections are indexed at sites where stimulation produced synaptic
responses. This method has been used to map basic functional connectivity in sensory cortices
[2,4,5,6,7], in motor and prefrontal cortex [8,9,10], in subcortical structures [11,12,13,14] and
in the spinal cord [15]. Other studies mapped cortical connectivity in non-basal conditions
such as in the context of brain development [16,17,18,19], pathologies [10,20,21,22] or after
associative learning [23]. But these experiments remain arduous and often limited to the inves-
tigation of one or two layers because of technical constraints imposed by patch-clamp. The
frustration is more pronounced in cases when mapping is the end-point of a lengthy and chal-
lenging process that began with the genesis of an animal model or with the conditioning of its
behavior or when animals were allowed to age for several months. In addition to patch-clamp
recording, extracellular electrophysiology is routinely done in cortex either in the intact brain
or in slices [24,25]. Cortex is ideally suited to this simple recording method due to the abun-
dance of pyramidal neurons and to the parallel alignment of their apical dendrite. In slices,
local field potentials are generally evoked with electrical stimulations in order to screen phar-
macological agents or for testing protocols inducing long-term plasticity. Here, we combined
the relative ease of extracellular field recordings with the rapidity of LSPS to generate functional
connectivity maps in barrel cortex.

Extracellular recordings were performed in layers of barrel cortex while projections were
stimulated with LSPS. We found that UV-evoked glutamate uncaging generated local field
potentials large enough to be detected in a set-up normally used for patch-clamp recordings.
Direct and synaptic potentials were distinguished based on their latency to onset and on their
differential sensitivity to blockers of synaptic transmission. Maps generated from evoked syn-
aptic local field negativities displayed a laminar organization similar to that of excitatory cir-
cuits investigated with patch-clamp recordings. Along the horizontal axis, the columnar
organization of inter-laminar projections was visible albeit with a smaller diameter. Hence,
LSPS combined with extracellular recordings provides an interesting solution to quickly map
the entire neocortex circuitry and readily identify projections that will merit further in-depth
investigations.

Materials and Methods

Electrophysiological recordings
All experiments were performed according to INSERM ethics. This study and protocols were
approved by the ethics committee of Ministère de l'enseignement supérieur et de la recherche,
France, under the reference #00094.01. C57Bl6 males were between 6 and 7 week old. They
received an intraperitoneal injection of a Ketamine/Xylazine mix (65 mg/kg, 6 mg/kg) and a
cervical dislocation prior to decapitation. Across-row barrel cortex slices (300 μm thick) were
prepared as described [26] in an ice-cold solution containing (in mM): 110 choline chloride, 25
NaHCO3, 25 D-glucose, 11.6 sodium ascorbate, 7 MgCl2, 3.1 sodium pyruvate, 2.5 KCl, 1.25
NaH2PO4, and 0.5 CaCl2. Slices were transferred to artificial cerebrospinal fluid (ACSF) con-
taining (in mM): 127 NaCl, 25 NaHCO3, 25 D-glucose, 2.5 KCl, 1 MgCl2, 2 CaCl2, and 1.25
NaH2PO4, aerated with 95% O2 and 5% CO2, first at 34°C for 15 minutes and then at room
temperature prior to use. ACSF was complemented with (in mM): 0.2 MNI-caged glutamate
(Tocris), 0.005 (±)-CPP (Sigma) an antagonist of NMDA receptors, 4 CaCl2 and 4 MgCl2 for
LSPS mapping. 100 nM TTX (Tocris), a blocker of voltage-gated sodium channels, 100 nM
LY379268 (Tocris), an agonist of group 2 metabotropic glutamate receptors (mGluR) or 5 mM
gabazine, a blocker of GABAA receptors, was added to the extracellular medium for pharmaco-
logical tests. Perfusion was recirculating except during the wash of LY379268. Recordings were
performed at room temperature in the B, C or D whisker columns. Neuronal activity was
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recorded extracellularly or in patch-clamp. For extracellular recording, thin borosilicate elec-
trodes with low resistance (0.5–1 MO) were filled with extracellular medium (see above) and
lowered ~120 μm deep into the tissue. For patch, standard glass electrodes (4–6 MO) were
filled with intracellular solution containing (in mM): 128 K-methylsulfate, 4 MgCl2, 10 HEPES,
1 EGTA, 4 Na2ATP, 0.4 Na2GTP, 10 Na-phosphocreatine, 3 ascorbic acid; pH 7.25. Recorded
neurons were 60–90 μm deep. Slices illuminated with infra-red light were inspected with a 4×
and a 60× objective in order to position the recording pipettes in distinct layers (L). L6 and L4
neurons had small cell bodies compared to neurons located in adjacent layers and L4 had bar-
rel-like structures. L5A was a clear band below L4 and above a denser L5B. No clear demarca-
tion was visible below L1 and down to L4. Hence, recordings from L2 or L3 were obtained by
placing pipettes in the lower or upper half of the supragranular layer, respectively.

Traces of extracellular recordings were sampled at 10 kHz and filtered at 800 Hz (Multi-
clamp 700b, Molecular devices). 50/60 Hz noise and harmonics were removed with a noise
eliminator (HumBug, Quest Scientific). Traces of whole-cell voltage-clamp recordings were
sampled and filtered at 10 kHz. Focal photolysis of caged glutamate was accomplished with a 2
ms 20 mW pulse of a UV (355 nm) laser (DPSS Lasers Inc.) through a 0.16 NA 4 × objective
(Olympus). The full optical pathway and scanning system are described in [27]. The stimulus
pattern consisted of 256 positions on a 16 × 16 grid (75 μm spacing). The uncaging grid was
centered vertically on a barrel or between two barrels. The 9th and 10th lines were above L4 and
L5A, respectively. A picture of the slice with the overlying uncaging grid was saved for every
pipette position. In experiments where consecutive maps were obtained at different locations,
the position of the uncaging grid was kept the same, guided by landmarks and dark spot-like
irregularities visible at the surface of the slice. The UV stimuli were presented once every 700
ms in a spatial order designed to avoid consecutive glutamate uncaging at neighboring sites
[4]. Three to four maps with different sequential orders of UV stimulations were acquired for
every pipette position. Custom software for instrument control and acquisition [3] was written
in Matlab (MathWorks, Inc.).

Data analysis
For extracellular recordings, traces were smoothed with a 2 ms sliding window. The four traces
evoked at every uncaging site were averaged together to construct mean single-position maps.
Two types of responses were evoked by glutamate-uncaging: direct or synaptic responses.
Maps of direct evoked responses were constructed based on the measurement of the peak
responses evoked in a 5 ms window starting with the UV stimulus onset for each location of
photostimulation. Two maps of direct responses were generated: The first for negative evoked
potentials, the second for positive evoked potentials. Synaptic input maps were based on the
peak amplitude of negative potentials within a 50 ms time window starting 5 ms after the UV
stimulus onset. For voltage-clamp recordings, the traces were smoothed with a 1.1 ms sliding
window. Three synaptic input maps were computed and averaged for every pipette position
based on the amplitude of synaptic responses averaged over a 50 ms time window starting 5 ms
after the UV stimulus onset. Single-position maps acquired from same layers were then used to
generate group-average maps. Interpolation was performed on mean input maps for display
purposes only.

The mean distance of L4 synaptic inputs feeding into L2/3 was calculated as follows: Ʃ(syn-
aptic input × lateral distance from the recording site)/Ʃ(synaptic input).

The excitation profile of excitatory L2/3, L4 and L5A neurons under glutamate uncaging
was investigated in a previous study in which the same stimulating protocol and animals as of
strain, age and sex were used [23]. Spikes were recorded in the single-cell loose-seal mode and
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glutamate was uncaged over an 8 x 8 grid (spacing, 50 μm; dimension 350 x 350 μm). Neurons
fired a total of three (L4), four (L2/3) or six (L5A) action potentials (AP) over the entire grid.
They fired a single AP in 84% to 98% of trials. AP were evoked when stimulating perisomati-
cally, at a mean distance of ~ 40 μm (computed from Ʃ(AP × distance from the recording site)/
Ʃ AP). A larger grid (8 x 16; spacing, 75 μm; dimensions, 525 x 1125 μm) was used for generat-
ing the excitation profile of L5B pyramidal cells in order to test whether AP could be evoked
when glutamate was uncaged in the superficial layers. L5B pyramidal cells fired a total number
of 2.5 ± 0.6 action potentials over the entire grid (1 spike per site at 88%; n = 11 cells). These
were evoked at one to five perisomatic sites, at a mean horizontal distance of 43 ± 3 μm from
the cell-body. The mean distance along the vertical axis was 44 ± 4 μm from the cell-body.
Spikes were never evoked when glutamate was uncaged in L2-4. This indicates that depolariza-
tions generated in the apical dendrites of L5B pyramidal cell were sub-threshold. Hence, local
field potentials recorded in L5B when stimulating in L2/3 should be interpreted as synaptic
events evoked at L2/3 to L5B connections. A shorter laser pulse (1 ms) was used in previous
studies. Bureau and collaborators reported that excitation of L4 and L5A neurons were about
two times lower then, whereas the excitation of L2/3 pyramidal cells was the same [20]. We
found that a 2 ms pulse excited L5B pyramidal cells more reliably (5/11 did not fire with a 1 ms
pulse). Remarkably, increasing the duration of the laser pulse did not increase the mean dis-
tance from the cell-body at which action potentials were evoked, indicating that the mapping
resolutions were similar (see Fig 2 of [9] and the Methods of [20]).

Data presented are mean ± s.e.m. The statistical p values are fromMann-Whitney tests or
Wilcoxon tests.

Results
Extracellular field recordings and glutamate uncaging were first combined by Kötter and col-
laborators [25,28]. Recordings in each layer displayed a singularity in terms of inputs but neu-
rons of deep layers were excited beyond threshold when superficial layers were stimulated [25],
hampering a simple interpretation of the data in terms of interlaminar connectivity. In the
present study, the experimental conditions were such that the detection of a synaptic response
could unambiguously indicate the existence of direct connections between neurons with cell-
bodies located at the stimulated site and the recorded neurons. Indeed, neurons recorded in the
loose-seal mode fired solely when stimulated sites were located close to their cell-body: the
half-width of the distributions of spikes as a function of distance from the soma was between
35 and 45 μm depending on layers (see Methods). Neurons fired most often a single spike.
Could such stimulation generate local field potentials large enough to be detected from the
extracellular space? We placed one to two low resistance glass pipettes for field recordings in
the layer (L) 3 of barrel cortex and stimulated presynaptic neurons with glutamate uncaging
following the pattern of a 16 × 16 sites grid (75 μm spacing; Fig 1A). Each site was stimulated
four times with intervals of several minutes (see Methods) and the evoked responses were aver-
aged on a pixel-by-pixel basis.

Like in LSPS combined with patch-clamp recordings in the voltage-clamp mode, glutamate-
uncaging evoked both direct and synaptic events that could be detected from the extracellular
space. Direct responses were measured in a short time window immediately following the stim-
ulus onset (0–5 ms post stimulus). They were either positive or negative potentials (Fig 1B).
Direct negative evoked potentials were up to several hundreds of μV and were resistant to TTX
(100 nM) (93 ± 5% of control; n = 5 maps; Fig 1C and 1D). They were contained in a 3 × 4
pixel region in the close vicinity of the pipette tip (within 150 μm; Fig 1C and 1D). Thus, these
negativities were analogous to the large depolarizations recorded in patch clamp when
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Fig 1. Field postsynaptic potentials (fPSP) are evoked by laser scanning photostimulation with glutamate uncaging in slice. A, One to two glass
pipettes were placed in barrel cortex slice to record local field potentials. Responses where evoked with glutamate uncaging at sites positioned in a 16 × 16
grid with a 75 μm spacing.B, Examples of evoked local field potentials. Direct and synaptic responses could be distinguished based on their latency. The
numbers refer to the stimulation sites shown in A. C, The black traces are the same as in B. Synaptic events were blocked by 100 nM TTX (in green). Blue
dots indicate the stimulation onset and the light blue shade the time window for the rising of direct responses. D, Example of a map reporting with colors the
peak amplitude of direct responses evoked 0 to 5 ms after the stimulus onset. Top panels are in control conditions, the bottom panels are in the presence of
TTX. Left panels show the negative potentials, the right the positive potentials. The white circles indicate the position of the recording, the rectangles the
position of barrels in the slice. All panels are from the same recording. E, Example of a map in control condition (top) and in the presence of TTX (bottom)
showing the mean amplitude of local field potentials evoked 5 to 50 ms post stimulus onset. In blue, the isolines of regions with negative potentials; in red, the
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glutamate was uncaged on the cell-body or on close proximal dendrites [4]. Positive potentials
measured in the same early time window were smaller but evoked at many more stimulation
sites (Fig 1B–1D). They were also resistant to TTX (89 ± 4% of control; n = 5 maps; Fig 1D)
suggesting they were return currents that "balanced" extracellular sinks evoked at a distance
from the recording site [29] such as when glutamate was uncaged on apical dendrites (example:
trace 2 in Fig 1C). Return currents were similarly observed when glutamate was uncaged below
the recording site (example: trace 3 and 4 in Fig 1C) at greater distances, down to L4 and L5
(Fig 1D). These were most likely return currents of direct depolarizations evoked at the soma
of deep pyramidal neurons whose apical dendrites extended close to the recording pipette.

Glutamate uncaged more than two pixels away (> 150 μm) from the recording pipette
evoked post-synaptic events characterized by delayed onsets and small amplitudes (trace 3 and
4 in Fig 1C). However, traces in the 5–50 ms time window were complex such that when color
maps displayed the averaged responses, both negative and positive responses emerged (shown
as blue and red isolines respectively in Fig 1E). The group-average map generated from multi-
ple recordings in L2/3 showed a spatial organization of these responses: one hotspot of negative
responses occupied the barrel in L4 aligned with the recording pipettes and the L3 region
directly above (Fig 1F). This pattern was reminiscent of maps computed from excitatory post-
synaptic events (EPSC maps) recorded in single cell voltage-clamp mode displaying strong L4
to L2/3 projections. Hotspots of positive responses were visible above the recording sites and in
layers below L4. Considering the long decay time of return currents of direct depolarization
evoked in the presence of TTX (Fig 1C), it is most likely that the responses averaged over the
5–50 ms time window still integrated direct glutamate-evoked responses. Indeed, TTX did
not block positive responses taken from the L1/2 and L5 regions but increased them slightly
(+13 ± 3%; n = 85 responses over 5 maps; p< 0.001; Fig 1C and 1E). Hence, to optimize the
detection of synaptic events, 'fPSP maps' were computed from the negative peak of field poten-
tials detected in the 5–50 ms time window from then on (Fig 1G). Note how hotspots of synap-
tic responses appear at sites where they were masked by residual return currents when the
mean amplitude was computed instead of the negative peak (compare the top panels in E and
G).

fPSP measured at the peak were blocked by TTX (-93 ± 1%; n = 64 responses over 5 maps;
p< 0.001; Fig 1G). A blocker of synaptic transmission that preserved the firing of presynaptic
neurons was tested too. AMPA receptor antagonists were inappropriate because they blocked
neuronal firing evoked by glutamate-uncaging. Neurotransmitter release at L4 stellate cell axon
terminals is durably depressed by the activation of the presynaptic group 2 mGluR [30].
LY379268 (100 nM), a specific agonist of these receptors [31] had a major effect on fPSP: a 15
min bath application of LY379268 followed by a 20 min washout period decreased by -76 ± 5%
(n = 11 maps; p< 0.001) the size of fPSP evoked by stimulations in L4 (Fig 1H and 1I). In con-
trast, direct negative potentials measured in the 0–5 ms time window were intact (86 ± 11% of
control; NS), consistent with a presynaptic-only effect. These results validate our method for
detecting synaptically-evoked local field potentials. We conclude that synaptic projections can
be mapped with LSPS and extracellular recordings combined in slices.

isolines of regions with positive potentials. The green and purple show regions where responses were larger than 15 μV. Same recording as in D. F, Group-
average isoline map of recordings performed in layer 2/3. The isolines show the regions in the map where the mean amplitude of potentials evoked within the
5–50 ms time window were negative (blue) and positive (red).G, Example of a color map reporting the peak amplitude of negative potentials (fPSPmap)
evoked in control condition (top) and in the presence of TTX (bottom). Same recording as in D and E. H, Group-average map for recording performed in layer
3 prior (left) and after application of LY379268, an agonist of group 2 metabotropic glutamate receptors (right). I, The effect of LY379268 on synaptic events
evoked by stimulations in layer 4 or on the direct responses evoked by stimulations in the vicinity of the recording pipette.

doi:10.1371/journal.pone.0132008.g001
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We next investigated the map patterns as a function of cortical layers. Maps were obtained
by moving pipettes from L6 to L2 according to landmarks in the slice. The position of the
uncaging grid was kept constant with the L4/L5A border for reference (see Methods). Record-
ings were made simultaneously in two adjacent columns to increase the yield and a total of 122
single position maps were acquired out of 11 slices (n = 11 mice). Maps acquired from the two
columns were re-aligned and pooled together in order to generate a functional connectivity
map from an 'average column' for every layer.

Layers received unique patterns of projections: they all received their strongest inputs from
themselves but also received weaker inputs from layers either deeper when they were in L2/3 or
L4 or more superficial when they were in L5 or L6 (Fig 2A). This switch from ascending to
descending projections around L4 was most obvious when looking at maps collapsed along the
horizontal axis (Fig 2B).

There is no clear cytoarchitectural demarcation between L2 and L3. Previous studies have
set the L2/3 border at midrange of the supragranular layer [27] or, more recently, few tens of
microns below L1 leaving L2 as a narrow band [1,9,32]. Fig 2A presents the fPSP maps gener-
ated according to the two conventions. Both representations show that neurons close to barrels
received stronger L4 inputs than neurons located more superficially. The collapsed representa-
tion of maps in Fig 2B indicates that the strength of L4 projections to superficial layers changed
in a continuum. Another example of smooth transition was between L5A and L5B, despite the
existence of a clear optical demarcation here. Indeed, L5A and L5B both received inputs from
L2/3 but the center of mass slowly shifted downward for pipettes positioned deeper and deeper.
In contrast, changes of map pattern were abrupt between L4 and L5A and between L5B and L6.
Indeed, L4 received inputs from L5A only whereas L5A cells received inputs from L2/3, L5B
and the bottom of L4. The L5B/ L6 switch occurred at 200 μm below the L4/L5A border and L6
cells received little inputs from L5B but none from L3 or L4. These features made the fPSP
maps remarkably similar to the maps computed from excitatory post-synaptic current (EPSC)
measurements obtained in single cell mode [7,9,23,33,34].

We next directly compared fPSP maps and EPSC maps generated from a same layer. L2/3
cells recorded in patch-clamp were held at -70 mV, close to the reversal potential of inhibitory
currents, in order to isolate EPSC. We found that the origin of synaptic inputs was more spa-
tially diffuse in the EPSC maps than in the fPSP maps (Fig 3A and 3B). The distance along the
horizontal axis between the recording site and the origin of L4 input was 87 ± 9 μm in EPSC
maps (n = 23) and 24 ± 3 μm in fPSP maps (n = 46, p< 0.001; see Methods).

This dissimilarity along the horizontal axis between fPSP maps and EPSC maps was evalu-
ated further with pairwise comparisons. Recordings in single cell voltage clamp mode and/or
in extracellular mode were performed in L3 either simultaneously or sequentially on the same
slice keeping the coordinates of the uncaging grid identical (see Methods). To quantify similari-
ties and differences in pairs of input maps, we computed correlation coefficients on a pixel-by-
pixel basis (Fig 3C and 3D).

We first tested whether the two recording methods yielded the same reliability and
single-position maps were generated twice for a subset of experiments. Correlation
coefficients were high both in extracellular mode and in single-cell voltage-clamp (field,

Fig 2. fPSPmaps are generated for every layer of barrel cortex. A, Group-average maps for the layer 2, 3, 4, 5A, 5B and 6. L2 and L3 group-average
maps were generated according to two conventions: In the upper row, L2 and L3 had similar thicknesses (n = 24 and 22 recordings, respectively). In the
middle row, L2 was a narrow band (68 μm) below L1 and L3 was thicker (n = 10 and 36, respectively). L4, n = 20; L5A, n = 20; L5B, n = 21; L6, n = 12.
Regions in purple are where fPSP peak amplitudes were greater than the upper limit of the color scale. Regions in grey are where directly-evoked responses
prevented fPSPmeasurement. The solid white circles indicate the recording positions. B, Stack of maps for 122 recordings each compressed in one
dimension.

doi:10.1371/journal.pone.0132008.g002
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0.95 ± 0.001, n = 2; patch, 0.90 ± 0.02, n = 3; Fig 3E) indicating that responses evoked over the
course of several maps (8 total) were stable for both recording methods.

Fig 3. Comparison of the fPSPmaps with maps computed from excitatory postsynaptic currents recorded in patch-clamp. A, The group-average
fPSPmap (left) and EPSCmap (right) computed from recordings in layer 2/3 show similar patterns of inputs. The region in purple is where fPSP peak
amplitudes were greater than the upper limit of the color scale. Numbers on the side indicate the layers. The regions in grey are where directly-evoked
responses prevented the measurement of synaptic responses.B, Horizontal profile of synaptic inputs evoked by stimulations in layer 4 and received by layer
2/3 for extracellular field recordings (red) and patch-clamp recordings (black).C, Three fPSP maps obtained from a single slice.D, The plots show the pixel-
wise comparison for two pairs of maps shown in C. r is the correlation coefficient. The diagonal dashed line shows the perfect correlation. Some sites gave
inputs in one of the maps only, yielding points that fall along the zero lines (horizontal/vertical axis). The distances indicated above the plots are the horizontal
distances between recording positions. E, Correlation coefficient as a function of distance between recording positions in pairwise comparisons of fPSP
maps (left) or EPSCmaps (middle). The right panel shows the comparison between fPSP and EPSCmaps. The black symbols are for pairs recorded in a
same cortical column, the whites for pairs recorded in neighboring columns and the red for pairs recorded at the exact same position (i.e., repetitions).

doi:10.1371/journal.pone.0132008.g003
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We next evaluated the map correlations for pairs of cells separated by various horizontal
distances. It was previously shown for rat barrel cortex that EPSC maps showed similar pat-
terns if they were from the same barrel-column, independently of the intersomatic distance of
the cells: map correlation was stable over the extent of a barrel, consistent with the importance
of the column-unit in the anatomy of cortical networks [27]. We repeated these measurements
for our extracellular and patch-clamp recordings in mice and compared the distributions of
correlation coefficients as a function of inter-pipette distance (Fig 3E). We used a combination
of simultaneous and sequential mapping to record input maps for groups of two to four record-
ing sites per slice and we performed all possible pairwise comparisons and computed correla-
tion coefficient for each.

Like in rats, intersomatic distance was a poor predictor of correlation coefficient (r) for
EPSC maps: r was on average 0.59 ± 0.03 (from 0.45 to 0.86, n = 14 pairs; Fig 3E) for cells
located in a same column and showed almost no decline for distances up to 260 μm. However,
correlation dropped if cells were in different columns (r = 0.34 ± 0.01, n = 2).

In contrast, correlation of fPSP maps showed a steep decline for increasing distances,
regardless of whether recordings were in a same column or not: r started higher between 0.8
and 0.9 for distances shorter than 40 μm but was already down to 0.5 at 80 μm and down to 0.2
at 200 μm (n = 27 pairs; Fig 3E). The distribution could be fitted with an exponential and
yielded a length constant (λ) of 125 μm. In contrast, λ was 3.3 mm for patch-clamp recordings.

The distribution of correlation coefficients for 'field/patch' pairwise comparisons had attri-
butes from the two distributions described above (n = 24 pairs; Fig 3E): Like for patch-clamp,
correlation started low with r close to 0.4 for small inter-pipette distances. In addition, similar
to field recordings, r decreased rapidly as the inter-pipette distance increased regardless of the
column boundaries. The distribution fitted with an exponential yielded a λ of 500 μm.

Because glutamate-uncaging excites both excitatory and inhibitory neurons, we next evalu-
ated the respective bearing of excitation and inhibition on the extracellular currents by testing
the effects of gabazine (5 mM), a blocker of GABAA receptors. Could synaptic inhibition be
responsible for the sharp spatial profile of L4 inputs in the fPSP maps? Experiments were per-
formed in the presence of high extracellular Mg2+ in an attempt to contain the enhancement of
network activity that was bound to happen once inhibition would be silenced in the slice. Rais-
ing Mg2+ to 6 mM (Ca2+ was at 4 mM) failed to prevent this phenomenon completely because
LFP traces showed the signs of a larger, prolonged and most likely indirect excitation of presyn-
aptic neurons (Fig 4A). This prevented a simple comparison of the fPSP maps with and with-
out gabazine. However, it was possible at some sites to separate an early component of the
evoked response from the delayed polysynaptic events that were induced in the presence of
gabazine (Fig 4B). On average, gabazine decreased the slope of this early fPSP evoked from L4
stimulations by—6 ± 4% (n = 74 measurements over 4 trials; p< 0.05). This suggests that
although blocking inhibition has a dramatic effect on the excitation of L4 cells, the contribution
of GABAergic transmission to the size of fPSP is small. Hence, it is unlikely that synaptic inhi-
bition explains the sharp spatial profile of fPSP seen in Fig 3A and the loss of the column-unit
in pairwise comparisons (Fig 3E).

We previously described how LSPS evoked direct responses under the form of return cur-
rents when glutamate was uncaged above and below the recording site (Fig 1B–1D). Because
return currents had a slow kinetic and were partially masking the responses arising in the syn-
aptic window, we investigated whether they could be responsible for the sharp horizontal pro-
file of L4 synaptic inputs in the fPSP map generated from L2/3 recordings (Fig 3B). Fig 5A
shows the map of direct responses evoked in the presence of TTX (n = 5) and Fig 5B their hori-
zontal profile in the L4 region. The amplitude of return currents measured in the synaptic win-
dow (5–50 ms post stimulus) was the largest at stimulation sites that were vertically aligned
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with the recording pipette and decreased slowly as a function of distance. The slope to reach a
minimum was shallower than in the horizontal profile obtained for EPSC (Fig 5B) and residual
positive potentials were still visible at the edges of the LSPS map. Hence, it is likely that gluta-
mate-evoked direct responses alter the shape of L4 input in the fPSP map and that their inter-
ference is the most detrimental at stimulation sites that are off-centered with the recording
pipette where synaptic responses are on average smaller and return currents still relatively
large.

Discussion
We find that local field potentials can be evoked by LSPS with glutamate-uncaging in barrel
cortex in similar experimental conditions that were previously used for LSPS combined with
patch-clamp recordings. Maps computed from the peak measurements of evoked synaptic neg-
ative potentials revealed some well known features of cortical excitatory networks: a layer-spe-
cific pattern of inputs and a vertical organization of projections.

Although LFP are simple to record, their interpretation is more complex. One same event
can take two appearances, either positive or negative local field potential, depending on the dis-
tance between the recording site and where the event is taking place (reviewed in [29]). How-
ever, by focusing on negative potentials, we selected the depolarizing events that occurred in
the vicinity of the pipette tip, most likely in cells whose soma was located nearby. This was
made particularly clear in the case of direct glutamate-evoked responses: All responses arose at
the stimulus onset and were TTX resistant, but they were of two types: the first type was a large
negative potential evoked when glutamate was uncaged at the pipette tip. These depolarizations
were analogous to the direct AMPA currents that were observed in LSPS maps computed from
patch-clamp recordings and they occupied a small region in the map. The second type was a

Fig 4. The block of GABAA receptors has little effect on fPSP postsynaptically. A, Superposition of the
256 traces of a map recorded in layer 3 in control condition (black) and in the presence of gabazine (green).
Blocking the synaptic inhibition increased and prolonged considerably the excitation of neurons stimulated by
the uncaging of glutamate. B, Superposition of responses evoked by stimulating in layer 4 and recorded in
control and in the presence of gabazine. The blue dots indicate the stimulation and the arrow heads the
synaptic events chosen for the comparison of their slope.

doi:10.1371/journal.pone.0132008.g004
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smaller positive potential when glutamate was uncaged at greater distances from the pipette
tip. These responses were return currents of depolarizations that occurred in distal dendrites of
the recorded cells or in the soma of neurons located in a different layer. They occupied a large
portion of the LSPS maps. Based on these observations, we decided to generate functional con-
nectivity maps based on the evoked synaptic negativities so as to constrain as much as possible
the detection to synaptic events that occurred in cells with a soma located near the pipette tip.

The fPSP maps have hallmarks of connectivity maps generated with LSPS: 1- The stimula-
tion sites yielding synaptic inputs are distributed in small hotspots, down to 1 pixel in size, in
an individual map. 2- The fPSP maps are highly reproducible across repeated measurements.
3- They are highly variable when generated for different recording sites, provided that a mini-
mum distance of 40 μm is respected. 4- The group-average maps show distinct patterns of
inputs for each layer.

Moreover, the resemblance of the fPSP maps with the EPSC maps is striking. This is true for
the recordings performed in L2/3 (Fig 3A) as well as for every other layer. Indeed, the six maps
in Fig 2 show the major ascending and descending pathways that were previously described for
cells recorded in the voltage-clamp mode at -70 mV: L2 and L3 received major inputs from L4
[9,23], while L5A and L5B received theirs from L2/3 [7,9,33]. The subtle differences between
laminae were visible too. For instance, cells in L5B received inputs from a lengthy region in L2/
3 whereas L5A cells were targeted by superficial L2/3 neurons only [9]. One other detail is that
L4 cells targeted L3 more strongly than L2 [1,9,23,34]. This suggests that fPSP maps not only
permit a qualitative description of the intracortical functional connectivity, they also deliver
quantitative information. One marked difference between the fPSP and EPSC maps is the lack
of L5A input targeting L2 [9,23,34]. The probability of finding a L5A pyramidal cell connected
to a L2 pyramidal cell is low in barrel cortex, ~ 4%, which is about two times lower than finding
the reverse connection and three times lower than finding a L4 to L3 connection [1]. A weak
L5A to L2 projection might also have been masked by return currents (Fig 5A) or by noise in
the extracellular recordings. The comparison of the 2009 study from Lefort and collaborators
with this one suggests that fPSP maps display connections with probability> 5%. Unexpect-
edly, a connection from L5A to L4 was observed in fPSP maps whereas it was especially rare
(< 1%) in previous studies [1,9]. Our preliminary unpublished work investigating L4 EPSC
maps suggests that the age of the animals which were two to three weeks older here could
explain this discrepancy. Finally, as in EPSC maps [9], the fPSP maps showed that L6 neurons
were principally connected to themselves. However, L4 to L6 excitatory synaptic connections
were observed in dual patch-clamp recordings [35]. The fact that synapses between L4 spiny
stellate cells and L6 neurons are principally located on the distal dendrites of L6 neurons within
the layer 4 [35] could explain why they were not detected by positioning extracellular elec-
trodes in L6. This exception highlights one property that is true for most interlaminar excit-
atory networks within barrel cortex and that helps making the fPSP maps and EPSC maps so
similar: their synapses are the densest on dendrites close to the cell body of the postsynaptic
cells [36,37,38]. Hence, fPSP are more likely to originate in cells whose cell-body is located near
the tip of the recording electrode.

Fig 5. Return currents of direct depolarizations alter the pattern of synaptic inputs in the fPSPmaps.
A, Top panel, an averaged isoline map showing the mean amplitude of direct evoked potentials measured in
the synaptic window (5–50 ms post stimulus onset) in the presence of TTX. The red isolines show the positive
potentials, the blue the negative potentials. Return currents (in red) were still detected in the synaptic window
when stimulating in the layers 4 and 5. Bottom panel, the same positive return currents shown in a color map.
Recordings (n = 5) were in layer 3.B, Horizontal profile of return currents evoked by stimulations in the layer 4
in the presence of TTX (green) superposed on the horizontal profiles of fPSP (red) and EPSC (black) evoked
by stimulations in layer 4.

doi:10.1371/journal.pone.0132008.g005
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Our data suggests that GABAergic transmission has little bearing on the size of fPSP. We
found that gabazine's major if not only effect was to unleash the excitation of presynaptic neu-
rons. This lack of effect on the postsynaptic side was expected given that responses became
globally more positive in the presence of TTX (Fig 5), which suggested that positive potentials
measured in the synaptic window were principally the residuals of direct responses. The lack of
obvious contribution of GABA differs from other studies where synaptic inhibition contributes
actively to shaping LFP (reviewed in [29]). One may attribute this specificity to a combination
of factors linked to the stimulation method and to the recording mode. With LSPS, neurons
are excited at the level of their cell body not their axon and the propagation of input is blocked
after the very first synapse (i.e. transmission is monosynaptic only, [4]). Hence, the effective
stimulation is confined to a small volume (~ 80 μm diameter,< 100 μm in depth; ~ 45 neurons
in the L4 and L2/3; [23]) which is the condition for interpreting the LSPS map. This stimula-
tion method gives an advantage to the excitatory projections because of the prevalence of gluta-
matergic neurons in cortex (70–90% in L2-6; [39]). Despite this, large inhibitory postsynaptic
currents are evoked with LSPS and inhibitory maps have been generated when neurons were
recorded in patch-clamp at a depolarized potential [6]. The advantage given to the excitatory
connections is reinforced in the present study by the fact that responses are recorded from the
extracellular space. Indeed, multiple currents must overlap in time in order to be detected [29].
This implies that several presynaptic–connected–neurons must be activated simultaneously for
a projection to emerge in the fPSP maps. This is more likely to happen for the glutamatergic
neurons given their high density at any given stimulated site. The effect of gabazine was evalu-
ated on the synaptic events evoked by stimulations in L4. It is possible that the blocker had a
pronounced effect on fPSP evoked at sites overlapping with the recorded neurons in L3 because
this is where the density of presynaptic interneurons was the highest [6]. However, synaptic
responses could not be disambiguated from the evoked direct responses at these sites.

Despite their similarities, the average fPSP map and EPSC map generated from recordings
in L2/3 showed an important difference when the spatial distribution of inputs was compared
along the horizontal axis: inputs were narrowly distributed in the fPSP map, and the averaged
hotspot was vertically aligned with the recording site. As a direct consequence, pairwise com-
parison of fPSP maps did not bring to light the column-unit in the organization of excitatory
projections because sites with inputs trailed the recording location closely. There is likely more
than one reason for this phenomenon. First, direct return currents partially masked the synap-
tic responses and their size declined with increasing distances at a slower pace than the size of
synaptic responses. This means that fPSP maps must be interpreted in the scope of the spatial
distribution of directly evoked return currents. A second factor that could control the spatial
distribution of fPSP in the map is the anatomy of the L4 to L2/3 projections. Indeed, L4 neu-
rons project their axons in L2/3 in an almost straight vertical line. Their morphological recon-
struction shows that the half-width of their distribution is 100–150 μm on each side of the cell
body [17,40,41]. This value is also the half-width of the distribution of L4 inputs in the fPSP
map (Fig 3B). Hence, the stimulation at sites vertically aligned with the recording pipette
excites the largest number of presynaptic L4 cells and it is also the most efficient at activating a
large number of synapses located in the vicinity of the recording pipette tip.

To conclude, we propose that LSPS combined with field recording is a simple and sensitive
assay to quickly map all the excitatory projections that are not severed in a slice. One could
increase the yield per animal further by increasing the recording capacity with multi-electrode
probes [25]. This would also permit current source density analysis. The approach should help
providing a connectivity diagram to cortical areas less explored than barrel cortex. It could also
drive the way research on the effects of a genotype or any other manipulation is planned.
Indeed, the decision to focus in-depth investigations of cellular mechanisms on a given
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connection could be based on a first round of empirical observations aimed at selecting the
largest or most interesting difference and not on an initial bias. Finally, investigating the trans-
formation of several projections in same animals as opposed to investigating them serially
could bring up correlated changes and allow extracting knowledge from inter-individual
variability.
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