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Abstract
Insulin resistance, altered lipid metabolism and mitochondrial dysfunction in skeletal muscle

would play a major role in type 2 diabetes mellitus (T2DM) development, but the causal rela-

tionships between these events remain conflicting. To clarify this issue, gastrocnemius

muscle function and energetics were investigated throughout a multidisciplinary approach

combining in vivo and in vitromeasurements in Goto-Kakizaki (GK) rats, a non-obese

T2DMmodel developing peripheral insulin resistant without abnormal level of plasma non-

esterified fatty acids (NEFA). Wistar rats were used as controls. Mechanical performance

and energy metabolism were assessed strictly non-invasively using magnetic resonance

(MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Compared with control

group, plasma insulin and glucose were respectively lower and higher in GK rats, but plas-

ma NEFA level was normal. In resting GK muscle, phosphocreatine content was reduced

whereas glucose content and intracellular pH were both higher. However, there were not

differences between both groups for basal oxidative ATP synthesis rate, citrate synthase

activity, and intramyocellular contents for lipids, glycogen, ATP and ADP (an important in
vivomitochondrial regulator). During a standardized fatiguing protocol (6 min of maximal re-

peated isometric contractions electrically induced at a frequency of 1.7 Hz), mechanical per-

formance and glycolytic ATP production rate were reduced in diabetic animals whereas

oxidative ATP production rate, maximal mitochondrial capacity and ATP cost of contraction

were not changed. These findings provide in vivo evidence that insulin resistance is not

caused by an impairment of mitochondrial function in this diabetic model.

Introduction
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglyce-
mia leading to long-term damage, dysfunction and failure of various organs, especially
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pancreas, heart, skeletal muscle and blood vessels. T2DM is initially caused by peripheral insu-
lin resistance syndrome, i.e., the inability of insulin to stimulate glucose absorption in peripher-
al tissue, in association with the progressive failure of the pancreatic cells to supply a sufficient
amount of insulin [1]. The development of insulin resistance is itself caused by marked distur-
bances in insulin signaling induced by excess intake of carbohydrates and fats [2].

It is noteworthy that skeletal muscle plays a predominant role in the development of insulin
resistance because it is one of the major organs participating in the assimilation, storage and
utilization of glucose provided by food [3]. Insulin resistance causes in return a reduction of
both exercise tolerance and mechanical performance [4]. Lipid metabolism alteration and mi-
tochondrial dysfunction in skeletal muscle have been implicated in the etiology of T2DM but
the causal relationships with insulin resistance development are still unclear [5–8]. Lipid oxida-
tion has been reported to be increased in the early stage of insulin resistant state [9] while in-
creased non-esterified fatty acids (NEFA) plasma level would inhibit skeletal muscle glucose
uptake and glycogen synthesis [10]. Further, it has been clearly disclosed that the increase in
intramyocellular lipids (IMCL) content reduces insulin sensitivity [11–13]. Besides, a link be-
tween mitochondrial function impairment and insulin resistance development is highly sus-
pected [7]. On the basis of biochemical [14–16], gene expression [17, 18] and in vivo
31-phosphorus magnetic resonance spectroscopy (31P-MRS) [7, 8, 19, 20] measurements, it
has been initially proposed that mitochondrial capacity reduction contributes to IMCL accu-
mulation thereby leading to insulin signaling failure and insulin resistance development. For
instance, Bonnard et al. [21] compared mitochondrial density in mice receiving a high-fat-
high-sucrose diet (HFHSD) and KKAγmice, a genetic model of obesity and diabetes with a
normal plasmatic NEFA. Interestingly, mitochondrial density and structure were abnormal
only in the HFHSD model but not in the KKAγ strain, thereby suggesting a direct link between
the increased plasmatic NEFA level and the mitochondrial number and integrity [21].

On the contrary, a growing number of studies has proposed that mitochondrial impairment
is not the causative factor of insulin resistance development [22–27]. In a recent review, Hol-
loszy [25] underlined that mitochondrial biogenesis increases in rodents receiving a high-fat
diet, and mitochondrial deficiency severe enough to impair fat oxidation in resting muscle
causes an increase, not a decrease, in insulin action. Overall, the causal link between mitochon-
drial function and lipid metabolism in the context of T2DM is still a matter of debate. Howev-
er, it is noteworthy that most of the studies mentioned above have investigated mitochondrial
density and enzymes activity but not mitochondrial function per se. Under these conditions,
energy requirement is minimal and regulatory mechanisms of energy production have not
been investigated. Data regarding in vivomitochondrial function under conditions of high-en-
ergy demand such as in exercising muscle are then missing.

The purpose of the present study was to investigate mitochondrial function in electrically
stimulated muscle of diabetic GK rat, a non-obese T2DMmodel displaying insulin resistance
and normal NEFA plasmatic level [28–32]. Metabolic fluxes were measured strictly non-inva-
sively with respect to mechanical performance using magnetic resonance (MR) imaging and
31P-MRS, and mitochondrial content was evaluated on the basis of citrate synthase activity.
The corresponding results were analyzed together with measurement of plasmatic levels of in-
sulin, glucose and NEFA, IMCL and intramuscular contents for ATP, glycogen and glucose.

Materials and Methods

Animal care and feeding
Wistar (WT; n = 8) and Goto-Kakizaki [GK/Par subline [33]] (n = 10) 7-month-old male rats
were used for these experiments. All animal work and care were carried out in strict accordance
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with the guidelines of the European Communities Council Directive 86/609/EEC for Care and
Use of Laboratory Animals with the approval of the animal experiment committee of Aix-Mar-
seille University. Animals were socially housed as 2–3 per cage in an environmentally con-
trolled facility (12–12 h light-dark cycle, 22°C) with free access to commercial standard food
(diet 113; SAFE, Augy, France) and water until the time of the experiment. Every attempt was
made to minimize the number and the suffering of animals.

In vivo investigation of gastrocnemius muscle function and energetics
Animal preparatio. Rats were initially anesthetized in an induction chamber with 4% iso-

flurane (Forene; Abbott France, Rungis, France) mixed in 33% O2 (0.5 L/min) and 66% N2O
(1 L/min). The right lower hindlimb was shaved and electrode cream was applied at the knee
and heel levels in order to optimize transcutaneous electrical stimulation. Anesthetized animal
was placed supine in a home-built cradle allowing the strictly non-invasive MR investigation of
gastrocnemius muscle function and energetics [34]. Briefly, the setup integrates an ergometer
consisting of a foot pedal coupled to a force transducer, and two rod-shaped transcutaneous
surface electrodes (located above the knee and at the heel level, respectively) connected to an
electrical stimulator (Type 215/T; Harvard Apparatus, Germany). Corneas were protected
from drying by applying ophthalmic cream and animal’s head was placed in a facemask contin-
uously supplied with 2.5% isoflurane in 33% O2 (0.2 L/min) and 66% N2O (0.4 L/min)
throughout the experiment. The facemask was connected to an open-circuit gas anesthesia
machine (Isotec 3, Ohmeda Medical, Herts, UK). Exhaled and excess gases were removed
through a canister filled with activated charcoal (Smiths Industries Medical System, London,
UK) mounted on an electrical pump extractor (Equipement Vétérinaire Minerve, France). The
hindlimb was centered inside a 30 mm-diameter 1H-MR Helmholtz imaging coil so that the
belly of the gastrocnemius muscle located above an elliptic (10 x 16 mm) 31P-MRS surface coil
and the foot was positioned on the pedal of the ergometer. The gastrocnemius muscle was pas-
sively stretched at rest by adjusting the pedal position, thereby modifying the angle between the
foot and the lower hindlimb in order to produce a maximum isometric twitch tension in re-
sponse to a supramaximal square wave pulses (1 ms duration; 6–8 mA). During experiment,
animal body temperature was controlled and maintained within a physiological range during
anesthesia, using a feedback loop including an electrical heating blanket (Prang+Partner AG,
Pfungen, Switzerland), a temperature control unit (Ref. No. 507137, Harvard Apparatus, Les
Ulis, France) and a rectal probe (Ref. No. 507145, Harvard Apparatus, Les Ulis, France).

Muscle electrostimulation protocol and force output measurement. Mechanical perfor-
mance was assessed during a standardized fatiguing protocol consisting in 6 min of repeated
maximal isometric contractions induced electrically with square-wave pulses (6–8 mA, 1 ms
duration) at a frequency of 3.3 Hz. Electrical signal coming out from the ergometer was ampli-
fied with a home-built amplifier (Operational amplifier AD620; Analog Devices, Norwood,
MA, USA; gain = 70 dB; bandwidth 0–5 kHz) and converted to a digital signal (PCI-6220; Na-
tional Instrument, Austin, TX, USA) that was continuously monitored and recorded on a per-
sonal computer using the WinATS 6.5 software (Sysma, Aix-en-Provence, France). Absolute
isometric force production was calculated by integrating the isometric tension (in N) with re-
spect to time, and was expressed as tension-time integral (in N�s). Specific force was defined as
the absolute force normalized by muscle volume calculated from hindlimb MR images.

MR data acquisition. MR explorations were done in the 4.7-Tesla horizontal magnet of a
47/30 Biospec Avance MR system (Bruker, Karlsruhe, Germany). Sixteen consecutive non-con-
tiguous axial images (1 mm thickness, spaced 0.5 mm) were acquired across the resting lower
hindlimb using a rapid acquisition relaxation-enhanced (RARE) sequence (8 echoes; effective
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echo time = 49.3 ms; actual echo time = 16 ms; repetition time = 2000 ms; 30 x 32 mm field of
view; 256 x 192 matrix size). 31P-MR spectra (16 accumulations; 1.8 s repetition time; 8 kHz
spectral width, 512 data points) from the gastrocnemius muscle region were continuously ac-
quired during 6 min of rest, 6 min of electrostimulation (ES) and 16 min of post-ES recovery.
MR data acquisition was gated to muscle ES in order to reduce potential motion artifacts due
to contraction. A fully relaxed spectrum (12 scans, 20 s repetition time) was acquired at rest,
followed by a total of 768 saturated free induction decays (FID) (1.875 s repetition time). The
first 64 FIDs were acquired at rest and summed together. The next 192 FIDs were acquired
during the ES period and were summed by packets of 32, allowing a temporal resolution of
*60 s. The remaining 512 FIDs were obtained during the post-ES recovery period and were
summed as 7 packets of 32 FIDs followed by 3 packets of 64 FIDs and one packet of 96 FIDs.

MR data processing. MR data were processed using a custom-written image analysis pro-
gram developed with the IDL software (Interactive Data Language, Research System, Inc.,
Boulder, CO, USA). For each MR image, regions of interest were manually outlined using the
DISPIMAG software [35] so that the corresponding cross-sectional areas could be measured
(Fig 1A). Gastrocnemius muscle volume was then calculated as the sum of the volumes includ-
ed between the consecutive slices. Relative concentrations of phosphocreatine (PCr), inorganic
phosphate (Pi) and β-ATP were obtained by a time-domain fitting routine using the AMAR-
ES-MRUI Fortran code [36] and appropriate prior knowledge of the ATP multiplets. Signal
areas were corrected for magnetic saturation using fully relaxed spectra collected at rest with a
repetition time of 20 s. Absolute concentrations of phosphorylated compounds were expressed
relative to a resting β-ATP concentration determined by bioluminescence as detailed below. In-
tracellular pH (pHi) was calculated from the chemical shift of the Pi relative to the PCr signal
[37]. Time-points for the time course of phosphorylated metabolite concentrations and pHi

were assigned to the midpoint of the acquisition interval.
Metabolic fluxes calculations. ATP productions from the different pathways (PCr degra-

dation via CK reaction, mitochondrial oxidative phosphorylation and glycolysis) were calculat-
ed as described previously [38–40]. ATP cost of contraction was calculated as the rate of ATP
production scaled to force output during the same period of time.

ATP production rate from PCr degradation via creatine kinase (CK) reaction (D) was di-
rectly calculated using the [PCr] time-course throughout the stimulation period: D = -dPCr/dt.

Oxidative ATP production rate (Q) was calculated considering that ADP stimulates oxida-
tive ATP synthesis throughout a hyperbolic relationship: Q = Qmax/(1+Km/[ADP]), in which
Km (the ADP concentration at half-maximal oxidation rate) is 50 μM as previously reported in
rat gastrocnemius muscle [41] and Qmax is the maximal oxidative capacity. [ADP] was calculat-
ed from [PCr], [ATP] and pHi using the CK equilibrium constant (K = 1.67 109 M-1) [42].
Qmax was calculated using the rate of PCr resynthesis at the start of the post-stimulation recov-
ery period (VPCrrec) and the concentration of free cytosolic ADP measured at the end of the
stimulation period:Qmax = VPCrrec (1 + Km/[ADP]end). VPCrrec was the product of k (the pseu-
do-first-order rate-constant of PCr recovery) and [PCr]cons (the amount of PCr consumed at
the end of the stimulation period). In order to determine k, the PCr time-course during the
post-stimulation recovery period was fitted to a first-order exponential curve: [PCr]t =
[PCr]rest—[PCr]cons e

-kt, where [PCr]rest is the concentration of PCr measured at rest.
Glycolytic ATP production rate (L) was inferred considering that, when coupled to

ATP hydrolysis, glycolytic ATP production is related to proton production (HGly) with a
stoichiom try of 1.5 moles ATP per proton (L = 1.5 HGly) [43]. This proton production can be
calculated from the observed changes in pHi and taking into account protons consumed by
PCr degradation throughout the CK reaction (HCK), passively buffered in the cytosol (Hβ),
leaving the cell (rate of net proton efflux, HEfflux) and produced by oxidative phosphorylation
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Fig 1. Typical transversal slice obtained by MRI of a rat lower hindlimb (A), 31P-MRS spectra obtained
from a singleWT rat gastrocnemius muscle at rest (B) and at the end of 6-min of in vivo
electrostimulation protocol (C). Abbreviations for signal assignments (in p.p.m.) are PME
(phosphomonoester), Pi (inorganic phosphate), PCr (phosphocreatine), and γ-, α-, and β-resonances of ATP.

doi:10.1371/journal.pone.0129579.g001
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(HOx):HGly =HCK +Hβ +HEfflux—HOx. Calculation ofHCK was done from the time-dependent
changes in [PCr] and with the stoichiometric coefficient φ = 1/(1+10(pHi-6.75)), which repre-
sents the number of protons associated to Pi production [44]:HCK = φ dPCr/dt. Besides, Hβ

was the product of βtotal (in Slykes, millimoles acid added per unit change in pHi) and pHi

changes (ΔpHi = pHobserved—pHrest):Hβ = (-βtotalΔpHi). The apparent buffering capacity (βto-
tal) takes into account the buffering capacity of Pi (βPi) and the buffering capacity of muscle tis-
sue (βtissue): βtotal = βPi +βtissue, where βPi = 2.3[Pi]/((1+10

(pHi-6.75))(1+10(6.75-pHi))) [44]. It has
been shown that βtissue varies linearly between pH 7 (16 Slykes) and pH 6 (37 Slykes) in
murine gastrocnemius muscle [45]. Accordingly, βtissue was calculated as follows: βtissue =
-21pHi+163. During muscle stimulation,Hefflux was calculated using the proportionality con-
stant λ (in μmol/s/pH unit) referring to the ratio between the rate of proton efflux and pHi:Hef-

flux = -λΔpHi. This constant was determined at the start of the post-stimulation recovery period
as λ = -Veff /ΔpHi. At that time, although protons are generated throughout the aerobic PCr re-
synthesis, pHi recovers back to basal because of net proton efflux from the cell: Hefflux can then
be calculated taking into account proton loads associated with CK reaction and mitochondrial
ATP synthesis on the one hand and the rate of pH changes on the other hand. Hefflux =HCK +
HOx +βtotaldpHi/dt. The rate of aerobic proton production coupled to oxidative ATP synthesis
was quantified as follows [44]:HOx =mVPCrrec, withm = 0.16/(1+10(6.1-pH)).

In vitro analytical procedures
After MR experiments, transcardiac blood samples (0.25 ml) were obtained with a thin needle
carefully introduced into the heart during the anesthetic epoch. Plasma was immediately sepa-
rated after blood centrifugation (15 min at 4,000 rpm) in EDTA-treated tubes. Afterwards,
anesthetized animals were immediately euthanized by cervical dislocation, and gastrocnemius
muscles were quickly removed, freeze-clamped with liquid nitrogen-chilled metal tongs and
stored at -80°C.

Plasmatic concentrations of insulin, glucose and NEFA were measured using insulin (Mer-
codia, Uppsala, Sweden), glucose (Randox Laboratories, Crumlin, Antrim, UK) and NEFA
(Roche Diagnostics, Roche Applied Science, Mannheim, Germany) determination kits.

Intramuscular contents for ATP, glycogen and glucose were determined in freeze-clamped
gastrocnemius muscles (50 to 60 mg) homogenized in ice-cold 0.6 M perchloric acid (1.2 ml)
with a Polytron PT2100 (Kinematica AG, Luzern, Switzerland). After incubation for 15 min at
4°C, the homogenate was centrifuged (15 min, 2000 x g, 4°C) and the supernatant was neutral-
ized with K2CO3 and placed for 30 min at 4°C. ATP concentration was measured using a biolu-
minescence-based determination kit (ref. A22066, Invitrogen, Eugene, Oregon, USA), and
glycogen and glucose contents were assessed by colorimetric procedure (ref. E2GN-100, Enzy-
Chrome, Hayward, California, USA).

IMCL content was determined in freeze-clamped gastrocnemius muscle (50 to 70 mg) ho-
mogenized in 1 ml of a 1% (w/v) Triton X-100 in chloroform solution. Briefly, homogenate
was centrifuged (10 min, 13000 x g, 20°C), the organic phase was collected and the chloroform
was removed using a nitrogen evaporator (N-EVAP-111, Organomation, Berlin, Massachu-
setts, USA). IMCL content was then measured using a colorimetric detection kit (ref. MAK044,
Sigma-Aldrich, St. Louis, Missouri, USA).

Citrate synthase activity was measured (ref. CS0720, Sigma-Aldrich, St. Louis, Missouri,
USA) in another part (20 to 30 mg) of the freeze-clamped muscle, which was homogenized
with a lysis reagent (ref. C3228, Sigma-Aldrich, St. Louis, Missouri, USA) and a protease inhib-
itor cocktail (P8340, Sigma-Aldrich, St. Louis, Missouri, USA).
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Statistical analysis
Data were analyzed with JMP software (SAS Institute Inc., Cary, North Carolina, USA). For
variables changing with respect to time during ES and post-ES recovery periods, overall time-
courses were analyzed with two-way (group x time) analyses of variance (ANOVAs) with re-
peated measures on time. When appropriate, post-hoc Tukey tests were used in order to identi-
fy differences at each time-point. Other variables were compared using unpaired two-tailed
Student's t-test. P< 0.05 was considered as significant. Values are presented as means ± SE.

Results

Animal characteristics
The corresponding data are summarized in Table 1. Body weight and gastrocnemius muscle
volume were lower (-14% and -15%, respectively) in GK rats, but body weight-to-gastrocnemi-
us volume ratio was similar between both groups. Plasmatic and muscle glucose contents were
higher (+79% and +23%, respectively) in GK animals whereas plasma insulin was lower
(-37%). On the other hand, there were no differences between both groups for NEFA, IMCL
and intramuscular glycogen contents.

Mechanical performance
For GK andWT animals, both absolute and specific force displayed a biphasic profile with an
initial transient increase in the early stage of the 6-min ES period followed by a progressive de-
crease until the end of the ES protocol as a sign of fatigue development (Fig 2A and 2B). At this
stage, the extent of force reduction was significantly lower (-14%) in GK animals. Overall, the
total absolute and specific force developed during the whole 6-min ES period were both lower
(-34% and -22%, respectively) in the GK group (Fig 2C and 2D).

Metabolic changes
Typical 31P-MR spectra recorded from a single WT gastrocnemius muscle are presented in Fig
1B and 1C. At rest, [PCr] and PCr/ATP ratio were lower (-23% and -21%, respectively) in the
GK group whereas pHi was higher (Table 2). On the other hand, there were no differences be-
tween both groups for [ATP], [ADP] and citrate synthase activity (Table 2).

Table 1. Animal characteristics.

WT GK P-value

Body weight (g) 491 ± 16 423 ± 4 < 0.001

Gastrocnemius muscle volume (cm3) 1.84 ± 0.04 1.56 ± 0.02 < 0.001

BW/GV (g/cm3) 268 ± 10 272 ± 3 n.s.

Plasma

Insulin (ng/ml) 3.4 ± 0.3 2.2 ± 0.2 < 0.01

Glucose (mM) 10.9 ± 0.6 19.4 ± 1.9 < 0.001

NEFA (mM) 0.22 ± 0.02 0.21 ± 0.02 n.s

Gastrocnemius muscle

Glycogen (μmol/g) 20.5 ± 1.4 20.2 ± 1.5 n.s.

Glucose (μmol/g) 8.1 ± 0.4 10.0 ± 0.7 0.031

IMCL (μmol/g) 1.8 ± 0.1 1.6 ± 0.1 n.s.

Data are means ± SEM; n.s., not statistically significant; BW/GV, body weight/gastrocnemius muscle volume ratio.

doi:10.1371/journal.pone.0129579.t001
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At the onset of the ES protocol, PCr was rapidly consumed (Fig 3A) at an initial rate that
was significantly lower in the GK group (Table 2). Afterward, PCr level reached a steady state
that was maintained until the end of the ES period. At this time, the extent of PCr consumption
(ΔPCr) was 25% lower in the GK group (Table 2). During the first 3 minutes of the ES period,
pHi fell rapidly to reach a steady state that was fairly constant during the remaining ES period
(Fig 3B). The extent of acidosis (ΔpHi) at the end of the ES period was similar between both
groups (Table 2). For each group, ATP level decreased linearly throughout the ES protocol, but
to a lower extent in GK animals (P< 0.005, Fig 3C).

During the post-ES recovery period, phosphorylated compounds and pHi progressively
reached their respective basal values (Fig 3). The maximal oxidative capacity (Qmax) and both
the initial rate (VPCrrec) and rate constant (kPCrrec) of PCr resynthesis were similar in GK and
control groups (Table 2).

Metabolic fluxes and ATP cost of contraction
The time-courses of ATP production rates from CK reaction and oxidative phosphorylation
throughout the 6-min ES period did not differ between both groups (Fig 4A and 4B). On the
other hand, glycolytic ATP production rate in the early stage of the ES protocol was lower in
GK animals (Fig 4C). Overall, the total rate of ATP production (calculated as the sum of ATP
produced by the three metabolic pathways over the whole ES protocol) was similar between
GK and WT rats (Fig 4D). Besides, the average ATP cost of contraction (calculated across the

Fig 2. Time-dependent changes in absolute (A) and specific (B) force during the 6-min in vivo electrostimulation protocol, total amount of absolute
(C) and specific (D) force produced during the whole protocol. Values are means ± SEM. *Significant difference between GK andWT.

doi:10.1371/journal.pone.0129579.g002
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whole 6-min ES period as the total amount of ATP production scaled to the total force output
during the same period) did not differ between GK and Wistar rats (Fig 5).

Discussion
The causative relationships between insulin-resistance, mitochondrial dysfunction and lipid
metabolism alteration are still a matter of debate. The GK model is of interest in order to ad-
dress this issue given that it is a non-obese T2DMmodel displaying a normal NEFA plasmatic
level and an insulin-resistance [28–32]. Although this model has been widely used for the
study of T2DM, data regarding the in vivomitochondrial function are very scarce.

In agreement with previous studies, we found increased plasmatic glucose and decreased in-
sulin level in GK rats whereas both NEFA and IMCL levels were unaltered [30, 46]. These find-
ings are in line with the view that this model exhibits a moderate but stable fasting
hyperglycemia early in life and develops beta-cells failure with increasing age, thereby reducing
the insulin secretion [29] and leading to insulin resistant state [47, 48].

Our data clearly showed that energy metabolism was disturbed in resting GK muscle. In
particular, PCr/ATP ratio and PCr content were both lower, whereas ATP level was un-
changed. PCr is considered to play a crucial role in cellular energy metabolism [49]. Actually,
PCr level is under the control of creatine kinase (CK), which transfers high-energy phosphate
from PCr to ADP to form ATP (via the reaction: PCr + ADP + H+ $ ATP + creatine) and the
PCr-CK system is involved (i) in energy buffering in order to maintain ATP pool charged and

Table 2. Energy metabolism of gastrocnemiusmuscle.

WT GK P-value

Rest

[PCr]/[ATP] 4.4 ± 0.2 3.5 ± 0.2 0.005

PCr (μmol/g) 32 ± 2 24 ± 1 0.002

ATP (μmol/g) 7.22 ± 0.04 7.06 ± 0.4 n.s.

ADP (nmol/g) 8.8 ± 0.2 10.4 ± 0.7 n.s.

pHi 7.06 ± 0.01 7.14 ± 0.03 0.026

Citrate synthase activity (mmol/g/min) 0.27 ± 0.04 0.24 ± 0.03 n.s.

Onset of the stimulation period

VPCrstim (μmol/g/min) 63 ± 4 37 ± 3 < 0.001

kPCrstim (min-1) 2.4 ± 0.1 2.2 ± 0.2 n.s.

End of the stimulation period

PCr (μmol/g) 7 ± 1 10 ± 1 0.031

ΔPCrcons (%) 78 ± 1 58 ± 4 < 0.001

ADP (nmol/g) 23 ± 1 21 ± 2 n.s.

pHi 6.34 ± 0.03 6.41 ± 0.03 n.s.

ΔpHi (pH units) 0.72 ± 0.03 0.73 ± 0.04 n.s.

Recovery

VPCrrec (μmol/g/min) 8 ± 1 6 ± 1 n.s.

kPCrrec (min-1) 0.38 ± 0.04 0.39 ± 0.04 n.s.

Qmax (μmol/g/min) 26 ± 4 22 ± 3 n.s.

Data are means ± SEM; n.s., not statistically significant; VPCrstim, initial rate of PCr breakdown at the start of the 6-min stimulation period; kPCrstim, PCr

breakdown rate constant at the start of the 6-min stimulation period; ΔPCrcons, PCr consumption at the end of 6-min stimulation period; VPCrrec, initial rate

of PCr resynthesis at the start of the post-stimulation period; kPCrrec, PCr resynthesis rate constant at recovery period start; Qmax, maximal

oxidative capacity.

doi:10.1371/journal.pone.0129579.t002
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(ii) in high-energy phosphate transport between the site of production (mitochondria) and uti-
lization of ATP. Thus, the reduction of PCr content reported herein could indicate that ATP
homeostasis was preserved in GK muscle at the expense of PCr stores in order to ensure the
basal energy demand. Considering that ATP generation is mainly aerobic at rest [50], these

Fig 3. Time-dependent changes in gastrocnemiusmuscle [PCr] (A), intracellular pH (B) and [ATP] (C) during 6min of in vivo electrostimulation and
15min of post-electrostimulation recovery periods. The first point (t = 0) indicates the measured value during the resting period. Values are
means ± SEM.

doi:10.1371/journal.pone.0129579.g003
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findings might suggest an impaired mitochondrial ATP generation. However, neither of the re-
sults we obtained in vivo (31P-MRS) or in vitro (citrate synthase activity assays) support any re-
duction in mitochondrial capacity, which is consistent with the unaffected mitochondrial
respiration reported in isolated mitochondria from GK rat quadriceps muscle [51]. On that
basis, the reduced basal PCr content would not be linked to an impaired mitochondrial func-
tion. Besides, a decline in basal PCr content has been previously observed as the result of mus-
cle ischemia in association with intracellular acidosis [52]. Interestingly, in situmicroscopy
experiments have reported a disturbed muscle microcirculation in the spinotrapeziusmuscle of
GK rats, hence leading to reduced delivery and transport of oxygen [53]. Nevertheless, any

Fig 4. Rates of ATP production from CK reaction (A), oxidative phosphorylation (B) and glycolysis (C) during the 6-min in vivo electrostimulation
protocol and total rate of ATP produced the whole protocol (D). Values are means ± SEM. *Significant difference between GK andWT.

doi:10.1371/journal.pone.0129579.g004

Fig 5. Averaged ATP cost of contraction during the 6-min electrostimulation protocol. Values are
means ± SEM.

doi:10.1371/journal.pone.0129579.g005
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disturbed oxygen supply can be dismissed in the present study given that we did not observe a
concomitant acidosis in the gastrocnemius muscle but on the contrary a basal alkalosis. On the
other hand, considering that ADP stimulates mitochondrial ATP generation through a feed-
back loop [38] and basal [ADP] was similar in both groups, PCr content reduction we mea-
sured in GK muscle could be interpreted as a compensatory mechanism aiming at keeping
[ADP] constant in the face of the increased pHi in order to maintain a normal mitochondrial
function.

However, the fact that ATP level and mitochondrial function were not altered in resting GK
muscle does not necessarily imply that oxidative capacity was preserved in working muscle,
i.e., when energy demand may increase substantially. As compared to rest, muscle energy de-
mand can actually increase by several orders of magnitude in exercising muscle in order to
maintain ATP homeostasis [54]. In the present study, we implemented an intense fatiguing
protocol consisting in 6-min of repeated maximal isometric contractions to produce wide
changes in metabolic and mechanical changes. Despite this, we did not measure any alteration
of oxidative ATP production in contracting GK muscle. Moreover, the maximal oxidative ca-
pacity and the initial rate of post-electrostimulation PCr resynthesis–an in vivo index of mito-
chondrial function [55]–did not differ between both groups thereby indicating that
mitochondrial function was not altered in the GK model.

It must be pointed out that the rate of glycolytic ATP production in the early stage of the
electrostimulation period was significantly lower in GK muscle. One can assume that this
lower rate was linked to the reduced glucose uptake already observed in skeletal muscle of insu-
lin resistant and diabetic patients [56]. This assumption appears however unlikely herein con-
sidering the unaltered glycogen content and the even higher glucose content in the GK rats
gastrocnemius muscle. The decreased glycolytic flux could rather be related to decreased glu-
cose utilization. In the diabetic state, glucose is indeed preferentially catabolized into the polyol
pathway away from energy-producing glycolysis as a result of a reduced glyceraldehydes
3-phosphate dehydrogenase (GAPDH) reaction kinetics and other downstream reactions, e.g.,
enolase and pyruvate kinase [57].

Another interesting result is that mechanical performance was reduced in GK rats. The
lower (-34%) absolute force developed throughout the fatiguing protocol is in line with the re-
duced muscle strength observed in diabetic patients [4]. Interestingly, this lower force-generat-
ing capacity was not fully accounted by the smaller size of the GK gastrocnemius muscle
measured from anatomic MR images. Indeed, specific force (i.e., absolute force scaled to mus-
cle size) was also reduced in the diabetic animals, but to a lower extent (-22%), which indicates
that additional mechanisms are involved in the impairment of muscle performance. Limitation
of energy supply is considered to play a major role in the failure of muscle to sustain force [58],
but such an issue is unlikely in contracting GK muscle given that we found that throughout the
whole electrostimulation period, ATP level did not fall down to any critical threshold and was
even higher than the corresponding level in Wistar rats, hence indicating that the rate of ATP
regeneration was not compromised. Further, it can be dismissed that a proportion of ATP pro-
duced in contracting GK muscle would be wasted in non-contractile processes because we
found that ATP cost of contraction, i.e., the contractile efficiency, was not altered in these ani-
mals. Our findings might be at a first glance considered as opposite to that of a previous calori-
metric study showing that basal energy expenditure is increased in patients with congenital
insulin resistance [59]. Nevertheless, it must be kept in mind that this increased energy expen-
diture was measured at rest at the whole body level, and might differ from the results we ob-
tained at the skeletal muscle level. Besides, an attractive explanation for the reduced
mechanical performance would rather lie in the diabetic neuropathy previously reported in GK
model [60]. This nerve disorder causes indeed motor dysfunction leading to muscle weakness
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and atrophy [61–63]. Diabetic neuropathy could further, in combination to increased autop-
hagy already reported in this model [64], explains the smaller size of gastrocnemius muscle we
reported herein.

In conclusion, oxidative ATP generation capacity at rest and during sustained fatiguing
electrostimulation protocol was not altered in the GK rat model. These findings provide in vivo
evidence that insulin resistance is not caused by a primary defect in mitochondrial function in
this diabetic model.
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