
HAL Id: hal-01208071
https://amu.hal.science/hal-01208071

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pharmacological targeting of the protein synthesis
mTOR/4E-BP1 pathway in cancer-associated fibroblasts

abrogates pancreatic tumourchemoresistance
Camille Duluc, Siham Moatassim-Billah, Mounira Chalabi-Dchar, Aurélie

Perraud, Rémi Samain, Florence Breibach, Marion Gayral, Pierre Cordelier,
Marie-Bernadette Delisle, Marie-Pierre Bousquet-Dubouch, et al.

To cite this version:
Camille Duluc, Siham Moatassim-Billah, Mounira Chalabi-Dchar, Aurélie Perraud, Rémi Samain, et
al.. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated
fibroblasts abrogates pancreatic tumourchemoresistance. EMBO Molecular Medicine, 2015, pp.735-
753. �hal-01208071�

https://amu.hal.science/hal-01208071
https://hal.archives-ouvertes.fr


Research Article

Pharmacological targeting of the protein synthesis
mTOR/4E-BP1 pathway in cancer-associated
fibroblasts abrogates pancreatic
tumour chemoresistance
Camille Duluc1, Siham Moatassim-Billah1,2, Mounira Chalabi-Dchar1, Aurélie Perraud3, Rémi Samain1,

Florence Breibach4, Marion Gayral1, Pierre Cordelier1, Marie-Bernadette Delisle4, Marie-Pierre

Bousquet-Dubouch5, Richard Tomasini6, Herbert Schmid7, Muriel Mathonnet3, Stéphane Pyronnet1,

Yvan Martineau1 & Corinne Bousquet1,*

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is extremely stroma-
rich. Cancer-associated fibroblasts (CAFs) secrete proteins that
activate survival and promote chemoresistance of cancer cells.
Our results demonstrate that CAF secretome-triggered chemo-
resistance is abolished upon inhibition of the protein synthesis
mTOR/4E-BP1 regulatory pathway which we found highly acti-
vated in primary cultures of a-SMA-positive CAFs, isolated from
human PDAC resections. CAFs selectively express the sst1
somatostatin receptor. The SOM230 analogue (Pasireotide) acti-
vates the sst1 receptor and inhibits the mTOR/4E-BP1 pathway
and the resultant synthesis of secreted proteins including IL-6.
Consequently, tumour growth and chemoresistance in nude
mice xenografted with pancreatic cancer cells and CAFs, or
with pieces of resected human PDACs, are reduced when
chemotherapy (gemcitabine) is combined with SOM230 treat-
ment. While gemcitabine alone has marginal effects, SOM230 is
permissive to gemcitabine-induced cancer cell apoptosis and
acts as an antifibrotic agent. We propose that selective inhibi-
tion of CAF protein synthesis with sst1-directed pharmacological
compounds represents an anti-stromal-targeted therapy with
promising chemosensitization potential.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most intract-

able solid malignancies in humans. The survival rate at 5 years is

< 5%. Due to a silent evolution for several years and the lack of

biomarkers, patients usually have late-stage cancer, with metastasis at

the time of diagnosis. Surgery, which is the only available strategy

which may increase survival rate, is feasible in very few cases

(< 15%), and patient survival rarely extends beyond 5 years. Standard

chemotherapy using gemcitabine or targeted therapies directed at

molecular alterations in cancer cells has provided almost no survival

benefit in clinical trials, despite cytostatic results in in vitro and in vivo

preclinical PDAC models (Hidalgo & Von Hoff, 2012). Therapeutic

inadequacy may be attributed, in part, to the under-estimation of the

influences exerted by the microenvironment on cancer cells, and the

use of preclinical models that do not mimic this critical feature (Singh

et al, 2010; Feig et al, 2012; Perez-Mancera et al, 2012).

PDAC is one of the most stroma-rich cancers, with the stroma

forming more than 80% of the tumour mass. The most abundant

cells present in PDAC stroma are a-SMA (alpha-smooth muscle

actin)-expressing cancer-associated fibroblasts (CAFs), which in the

pancreas are also called activated pancreatic stellate cells. PDAC
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stroma also contains immune, inflammatory and nerve cells and

blood vessels, surrounded by acellular components which form the

extracellular matrix (ECM) (Erkan et al, 2012b; Feig et al, 2012).

These features have been observed in other advanced stage carcino-

mas (e.g. breast cancer) (De Palma & Hanahan, 2012).

In the pancreas, fibroblasts are involved in the deposition of

ECM and the secretion of soluble factors (e.g. growth factors),

which regulate normal epithelial differentiation and homeostasis

(Apte et al, 2012). Upon ‘activation’ during inflammation, fibro-

blasts are the principal source of ECM constituents and are consid-

ered to be the main mediators of scar formation and tissue fibrosis

and also secrete large amounts of growth and inflammatory factors.

Once the wound is repaired, the resting phenotype is thought to be

restored. Conversely, as with organ fibrosis, CAFs at the site of a

tumour remain perpetually activated.

In PDACs, the abundant fibrotic stroma produced by CAFs

constitutes a mechanical scaffold and a physical barrier against the

effective delivery of therapeutic agents (Olive et al, 2009). Anti-

fibrotic therapy therefore appears promising for the treatment of

PDAC, although it is a ‘symptomatic’ and non-selective strategy

(Erkan, 2013). Besides secreting fibrillar ECM components, CAFs

secrete soluble growth, angiogenic and inflammatory factors, that

engage in cancer and other stromal cell survival and metastatic and

angiogenic signalling that promotes tumour growth and invasion

(Hwang et al, 2008; Vonlaufen et al, 2008). Importantly, the signals

stimulated by CAFs in cancer cells are redundant to those targeted

by therapies, conferring innate resistance (Apte et al, 2013; Erkan,

2013). Since CAFs are master ‘secretors’ of soluble and insoluble

factors which form these specific stromal features, we hypothesized

that targeting CAF secretion would represent a specific therapeutic

option for PDAC. Further understanding of the mechanisms govern-

ing CAF secretion may assist in the development of novel therapies

to overcome CAF-triggered drug resistance. In this manuscript, the

critical role of mTOR/4E-BP1 signalling pathway activation in

promoting protein synthesis and secretion in CAFs has been eluci-

dated. Additionally, a specific pharmacological strategy to stop

protein synthesis and secretion through inhibition of this pathway

in CAFs is proposed as a novel promising strategy, which has to be

used in combination with chemotherapy in the treatment of PDAC.

Results

The normal human exocrine pancreas is essentially composed of

acinar and ductal cells whose network is supported by a discrete

extracellular matrix, present mostly at the interlobular spaces and

around the tubular ductal structures (Supplementary Fig S1A, H&E

and Masson’s trichrome stainings). In contrast, PDAC is rich in

stroma produced by a-SMA-expressing CAFs that reside both inside

the tumour and at the boundaries between the invasive cancer and

the host pancreatic tissue. In the normal human pancreas, these cells

are present in an inactive a-SMA-negative state (Supplementary Fig

S1A). It has been shown that CAFs confer chemoprotective features

on pancreatic cancer cells (Hwang et al, 2008), though the underlying

mechanisms and, consequently, targets for chemoprotection inhibi-

tion remain unclear. To explore this, primary CAF cultures were

established by the outgrowth method (Fig 1A) (Erkan et al, 2012a)

from fifteen surgically obtained human resected PDAC tumours of

different disease stages (Supplementary Table S1). After a few days,

cells that migrated from the tumour tissues exhibited a fibroblast-like

phenotype as confirmed by the expression of vimentin and were

considered ‘activated’ since nearly 100% also expressed a-SMA

(Fig 1B). This phenotype was maintained throughout 10 passages

before senescence occurred (not shown). By contrast, vimentin-positive

pancreatic stellate cells (PaSCs), obtained from normal human

pancreas samples, did not express a-SMA and were considered to be

non-activated (Fig 1B). The doubling-time period was longer in

CAFs (6 days) than in PaSCs (2-days) (Supplementary Fig S1B), and

most a-SMA-positive cells in PDAC were Ki67 negative, whereas a

significant number of cancer cells were positive for Ki67 (Supple-

mentary Fig S1C). Interestingly, CAFs secreted two-fold more

proteins than PaSCs, as measured in their respective secretomes

(hereafter referred to as conditioned media, CM) (Supplementary Fig

S1D). We hypothesized that activation of PaSCs into CAFs correlated

with an increased secretion of factors that mediate de novo pancre-

atic cancer cell resistance to chemotherapy (Meads et al, 2009).

To verify this possibility, the chemosensitivity of different

pancreatic cancer cell lines was tested in the presence of CM from

CAFs or PaSCs that had been grown for 48 h without foetal

calf serum (passages 3 to 8) (Fig 1C). An MTT viability assay

demonstrated that the cytotoxic action of gemcitabine (Fig 1D),

5-fluorouracil (5FU) or oxaliplatin (Supplementary Fig S2A–B) on

pancreatic Panc-1 cancer cells was completely reversed upon Panc-1

cell co-treatment with CM from CAFs, whereas CM from PaSCs did

not provide any chemoprotection. In addition, heating CM to 95°C

significantly diminished the chemoprotective capacity, suggesting a

significant role of proteins in the process (Supplementary Fig S2C).

We hypothesized that the chemoprotective features of the CAF

secretome are derived from soluble paracrine peptides or proteins that

could be targeted using pharmacological drugs currently used as

medical treatments to inhibit excessive hormone/peptide secretions

from neuroendocrine tumours, that is somatostatin analogues. To test

this hypothesis, Panc-1 cell response to gemcitabine, 5FU or oxalipla-

tin was assessed after 48 h of treatment with CM from CAFs, which

had previously been incubated with or without a multi-receptor

somatostatin analogue SOM230 (Pasireotide� Novartis) (Fig 1C).

SOM230 did not directly inhibit CAF proliferation or survival, nor

did it reduce expression of the CAF marker a-SMA (not shown).

Importantly, the chemoprotective property of CM from CAFs was

dose-dependently reversed once CAFs had first been treated with

SOM230 (Fig 1E and Supplementary Fig S2D–F). When applied

directly to Panc-1 cells, SOM230 alone had no direct cytotoxic effect

in addition to the chemotherapeutic drugs, and nor did it inhibit the

chemoprotection induced by CAF-CM (Fig 1E). Various apoptosis

assays (caspase-3 and PARP cleavage, Fig 1F and S2G–H; apoptotic

annexin V-positive cells, Fig 1G; executioner caspase activity,

Supplementary Fig S3A) confirmed the cytotoxic action of chemo-

therapies on pancreatic cancer Panc-1 cells, which was abolished

upon Panc-1 co-treatment with CM from CAFs, but restored when

CM from CAFs treated with SOM230 was used. These results were

also confirmed in two additional pancreatic cancer cell lines, Capan-1

and BxPC-3 cells (Supplementary Fig S3B–D). The calculated IC50

values for gemcitabine cytotoxicity on Panc-1 and BxPC-3 cells incu-

bated with or without the CM from CAFs, previously treated with or

without SOM230, are shown in Supplementary Fig S3E–G. These

data demonstrate a large potential therapeutic benefit of treating
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Figure 1. CAFs, but not PaSCs, secrete soluble proteins providing pancreatic cancer cell resistance to gemcitabine that is inhibited by CAF pre-treatment
with SOM230.

A CAFs isolation from human pancreatic tumour resections (left panel) and in vitro primo-culture (right panel).
B Isolated CAFs and PaSC characterization in vitro by immunofluorescence using anti-vimentin (left panel) or anti-a-SMA (right panel) antibody (one representative

field of n = 3).
C Experimental method schematic representation. CAFs or PaSC was treated or not with SOM230 (10�7 M) for 48 h. Conditioned media (CM) were collected.

Pancreatic cancer cells were incubated for 48 h with the indicated CM, in the presence or not of gemcitabine (100 lg/ml).
D, E Panc-1 cell viability was assessed by MTT. Results (mean � SD) are presented for each treatment (CM from PaSC, or from CAF, or from CAF � SOM230, SOM230) as a

percentage of the respective gemcitabine-untreated cells (= 100%) (n = 4; from left to right: **P = 0.007, ##P = 0.006 in D; *P = 0.032, #P = 0.041, #P = 0.047 in E).
F Apoptosis induced by gemcitabine was evaluated by Western blot using an anti-cleaved caspase-3 or anti-PARP antibody (representative of n = 3).
G Panc-1 was analysed by flow cytometry. Percentages (mean � SD) of annexin V-positive cells are indicated (n = 3; from left to right: **P = 0.005, ##P = 0.004, **P = 0.006).

Data information: * effect of treatment (gemcitabine or SOM230) versus untreated cells; #CM-incubated versus non-incubated gemcitabine-treated cells.
Source data are available online for this figure.
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CAFs with SOM230 to enhance pancreatic cancer cell sensitivity to

different chemotherapeutic drugs.

High protein synthesis in CAFs through mTORC1 activation is
responsible for the secretion of chemoprotective factors—
phenotypic reversion with the somatostatin analogue SOM230

We hypothesized that the chemoprotective property of CAFs relies on

elevated synthesis and secretion of soluble growth factors, cytokines

and/or chemokines. To test this hypothesis, protein synthesis rates

were first monitored by SUnSET (a non-radioactive equivalent of the
35S-Met assay based on puromycin incorporation into nascent poly-

peptides) (Schmidt et al, 2009) in human CAFs and PaSCs which were

previously serum-starved for a period or 48 h. CAFs incorporated

much more puromycin into nascent polypeptides than PaSCs (Fig 2A,

compare lanes 1 and 3). This high rate of protein synthesis was totally

suppressed upon SOM230 treatment, while no effect was detected for

PaSCs (Fig 2A). The inhibitory effect of SOM230 on CAF protein

synthesis was further confirmed by a polysomal fractionation assay,

which demonstrated that much fewer polysomes (containing trans-

lated mRNAs) were formed upon treatment with the somatostatin

analogue (Fig 2B). The high rate of protein synthesis might be due to

activation of the mTORC1 pathway, a strong regulator of mRNA trans-

lation. This is further supported by our previous data showing that

somatostatin analogues inhibit PI3K activity (Bousquet et al, 2006).

Consistently, the PI3K/mTOR targets Akt and S6 appeared to be intrin-

sically phosphorylated (i.e. activated) and fully sensitive to SOM230

treatment in CAFs while not constitutively activated and hence not

inhibited by SOM230 in PaSCs (Fig 2C). Similarly, 4E-BP1, which is

considered to be the major mTORC1 target regulating mRNA

translation (Martineau et al, 2013), was severely hypophosphorylated

(i.e. active in inhibiting translation) upon CAF treatment with

SOM230 (Fig 2D). Consistently, global protein concentrations in CAF

extracts and CM were dramatically decreased by SOM230 treatment

(Fig 2E) although SOM230 did not affect total RNA concentration

(Supplementary Fig S4A), indicating that SOM230-triggered inhibition

of protein synthesis may be correlated to an inhibition of the

mTORC1/4E-BP1 axis. Silencing of 4E-BP1 using specific siRNA (si4E-

BP1) (Fig 2F) circumvented the inhibitory effects of SOM230 on CAF

protein synthesis (Fig 2G) and on CAF-CM-dependent protection

against gemcitabine-triggered cancer cell viability (Fig 2H) and apop-

tosis (Fig 2I). Furthermore, SOM230 was shown to be at least as

potent as the mTORC1 (RAD001) and mTOR (PP242) inhibitors at

suppressing protein synthesis and re-sensitizing pancreatic cancer

cells to gemcitabine cytotoxicity (Supplementary Fig S4B–C).

These results demonstrate that through constitutive neutraliza-

tion of the translational repressor 4E-BP1 by intrinsic activation of

the mTORC1 pathway, the rate of protein synthesis is permanently

higher in CAFs than in PaSCs. The data also reveal that abrogation

of the chemoprotective property of CAF-CM by SOM230 results from

its ability to efficiently inhibit 4E-BP1 phosphorylation in CAFs.

The somatostatin receptor sst1 mediates SOM230
effects on CAFs

Somatostatin mediates its effects through five different G protein-

coupled receptors named sst1–sst5. However, as the low affinity of

SOM230 for sst4 (Schmid, 2008) is not compatible with the effects

observed in CAFs, we suspected the involvement of one of the other

four receptors. Consistently, qRT–PCR experiments performed on

CAFs isolated from fifteen different patients revealed that sst1 was

the only somatostatin receptor expressed in CAFs (not shown).

Furthermore, it was shown that CAFs expressed sst1 as efficiently

as neuroendocrine pancreatic tumour BON cells, which are known

to contain high levels of sst1 (Xiao et al, 2012) (Fig 3A). Western

blot analyses showed that neither PaSCs (Fig 3B) nor other pancre-

atic cancer cell lines (Fig 3C) expressed sst1. Immunofluorescence

analyses localized sst1 to a-SMA-positive CAF primary cultures

(Fig 3D). Knock-down of sst1 by RNA interference (siRNA targeting

sst1, sisst1) in CAFs demonstrated the specificity of the signal

detected by the anti-sst1 antibody (Western blot and immuno-

fluorescence, Supplementary Fig S5A–B). Immunofluorescence

confocal microscopy analyses of serial sections of 42 human

PDACs demonstrated that sst1 and cytokeratin-19 staining did not

co-localize, demonstrating that sst1 was not expressed in epithelial

cancer cells (Fig 3E). In contrast, sst1 staining was present in

69% � 19 of a-SMA-positive stromal cells (quantified in n = 42

PDACs) (Fig 3F, Supplementary Table S2A). In PDAC stroma, all

sst1-positive cells expressed a-SMA (Fig 3F). A significant propor-

tion of sst1-positive (40% � 16) and a-SMA-positive (39% � 17)

cells (quantified in n = 15 PDACs) also yielded positive and

correlated staining for the phosphorylated (inhibited) form of

4E-BP1 (r = 0.96), indicating PI3K/mTOR pathway activation in

sst1-expressing a-SMA-positive cells (Fig 3G, Supplementary Fig S5C,

Supplementary Tables S2B–C). Knock-down of sst1 in CAFs (sisst1)

demonstrated the importance of this G protein-coupled receptor

(GPCR) in SOM230-triggered inhibition of the PI3K/mTOR pathway

(dephosphorylation of Akt, S6 and 4E-BP1) and protein synthesis

(Fig 3H–I), and restoration of chemosensitivity (Fig 3J). The data

also indicated that treatment of CAFs with SOM230 did not alter sst1

expression (Fig 3H, top). These results demonstrate that SOM230

affects protein translation and the secretion of soluble chemoprotec-

tive factors in CAFs via the sst1 receptor. Accordingly, CAF treatment

with another somatostatin analogue octreotide, which does not acti-

vate sst1 (Schmid, 2008), was not able to reverse the chemoprotec-

tive effect conferred by the corresponding CAF-CM, nor directly

regulate apoptosis, on gemcitabine-treated pancreatic cancer cells

(Panc-1 or BxPC-3 cells), as measured by various apoptosis and

survival assays (executioner caspase activity, Supplementary Fig

S6A–B; MTT, Supplementary Fig S6C–D; caspase-3 and PARP cleav-

age, Supplementary Fig S6E).

Mechanisms underlying sst1 inhibitory effect on the PI3K/mTOR
pathway in CAFs

Because sst1 is a GPCR, we treated CAFs with an inhibitor of either

Gai (PTX, pertussis toxin) or Gbc (gallein) (Fig 4A–B). PTX, but not

gallein, reversed the SOM230 inhibitory effect on PI3K/mTOR path-

way activation, demonstrating that Gai and not Gbc mediates this

signal downstream of sst1. It has been previously demonstrated that

sst1 induces the activation of phosphotyrosine phosphatases,

including the SH2-containing SHP-2 and PTPe. This successive acti-

vation also involves the activity of Src (Arena et al, 2007). To test

the involvement of this protein complex in the SOM230-induced

inhibition of the PI3K/mTOR pathway, CAFs were treated with the

phosphotyrosine phosphatase inhibitor NSC87877 (which inhibits
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Figure 2. High protein synthesis in CAFs mediates chemoprotective effect on pancreatic cancer cells—reversion through inhibition of protein synthesis
with SOM230.

A Immunoblotting of protein extracts from PaSCs or CAFs treated (+) or not with SOM230 (10�7 M) for 48 h, using the anti-puromycin antibody (representative of
n = 3).

B Polysomes profiles of CAFs treated or not with SOM230 for 48 h (representative of n = 3).
C Immunoblotting using an anti-P-Akt, anti-P-S6 or anti-b-actin (loading control) antibody of protein extracts from PaSCs or CAFs treated (+) with SOM230 for 30 min

(representative of n = 3).
D Immunoblotting of protein extracts from CAFs treated (+) or not with SOM230 (10�7 M) for the indicated times, using anti-P-Akt, anti-P-S6 or anti-4E-BP1 antibody

(representative of n = 3).
E Protein concentration in untreated or SOM230-treated CAF-CM or extracts normalized per 1 × 106 cells. Results (mean � SD) are presented as a percentage of the

untreated CAFs (= 100%) (n = 3; from left to right: ##P = 0.008, ##P = 0.007).
F Immunoblotting using an anti-4E-BP1 or anti-GAPDH (loading control) antibody of protein extracts from siCTR- or si4E-BP1-transfected CAFs (representative of

n = 3).
G Immunoblotting of equal amounts of protein from siCTR- or si4E-BP1-transfected CAFs treated (+) or not with SOM230 for 48 h, using the anti-puromycin antibody

(representative of n = 3).
H Panc-1 cell viability was assessed by MTT. Panc-1 cells were incubated with gemcitabine in the presence of CM from untreated or SOM230-treated CAFs transfected

with the siCTR or si4E-BP-1. Results (mean � SD) are presented as a percentage of the untreated CAFs (= 100%) (n = 3; **P = 0.003, §§P = 0.002).
I Caspase-3 and PARP cleavage induced by gemcitabine in Panc-1 was evaluated by Western blot using the respective antibodies (representative of n = 3). Arrow

indicates cleaved forms of PARP.

Data information: * gemcitabine-treated versus gemcitabine-untreated cells; # SOM230-treated versus SOM230-untreated cells; § si4E-BP1-transfected versus siCTR-
transfected cells.
Source data are available online for this figure.
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SHP-1, SHP-2 and PTPe) (Fig 4C). The effects of SOM230 were

potently reversed. However, a Src inhibitor had no effect on the

mTOR signalling pathway (Fig 4D). In CAFs, SHP-2 knock-down by

specific siRNA (siSHP-2) also reversed the SOM230 inhibitory effect

on the PI3K/mTOR pathway (Fig 4E), in contrast to PTPe knock-

down (Fig 4F). We then investigated which phosphoprotein in the

PI3K/mTOR pathway could be the target of SOM230-induced

phosphotyrosine phosphatase activity. We searched for upstream

signals that could induce basal activation of the PI3K/mTOR

pathway in CAFs. Because platelet-derived growth factor (PDGF) is

a well-known signal that activates PaSCs (Bachem et al, 2005) and

also induces PaSC migration through PI3K activation (McCarroll

et al, 2004), these cells were treated with a PDGF receptor inhibitor

which efficiently inhibited basal activation of the PI3K/mTOR path-

way, in contrast to the EGFR inhibitor (Fig 4G). CAF treatment with

a JAK1/2 inhibitor also suppressed the activation of this pathway.

These results indicate that, in CAFs, the PI3K/mTOR pathway is

activated by the autocrine secretion of PDGF and JAK2-dependent

cytokines. Interestingly, addition of recombinant PDGF to CAF

further enhanced activation of this pathway (Fig 4H). SOM230

inhibited PDGF-induced activation of the PI3K/mTOR pathway by

dephosphorylation of Akt, S6 and 4E-BP1, which was reversed by

the phosphotyrosine phosphatase inhibitor NSC87877. These results

demonstrate that SOM230 inhibits basal and PDGF-induced activa-

tion of the PI3K/mTOR pathway in CAFs through activation of

phosphotyrosine phosphatases including SHP-2.

SOM230 sensitizes pancreatic cancer cells to gemcitabine
cytotoxicity in vivo

To verify that SOM230 is capable of inhibiting the chemoprotective

features of CAFs, SOM230 efficacy was tested in combination with

gemcitabine in vivo, in athymic mice that had been xenografted

either with human pancreatic cancer cells (MIA PaCa-2 or Panc-1

cells, orthotopically or sub-cutaneously, respectively) with or

without CAFs, or with pieces of human pancreatic tumour resec-

tions (sub-cutaneous PDX, patient-derived tumour xenograft)

(Fig 5, Supplementary Figs S7–S8). To dynamically estimate the

growth of intra-pancreatic tumours, xenografted MIA PaCa-2 cells

were first transduced with a lentivector expressing secreted Gaussia

Luciferase, whose activity, when measured in mouse plasma,

reflects tumour growth non-invasively. Mice were treated with or

without SOM230-LAR, a long-acting release form of SOM230, and

with gemcitabine. Our results show that cancer cells (MIA PaCa-2

or Panc-1) alone were unable to form tumours (Fig 5A and

Supplementary Fig S8A), even up to 9 weeks after sub-cutaneous

cell grafting (Supplementary Fig S8A). In contrast, tumours

resulting from the cancer cell and CAF co-xenografts showed

exponential growth (Fig 5A and Supplementary Fig S8A). Interest-

ingly, SOM230-LAR or gemcitabine treatment did not affect

the growth of these combined cancer cell and CAF tumours

(Fig 5A and Supplementary Fig S8B), which was confirmed at

sacrifice (tumour weight) (Fig 5B–C and Supplementary Fig S8C).

Importantly, the gemcitabine + SOM230-LAR bi-therapy decreased

tumour growth of cancer cell and CAF co-xenograft tumours

(Fig 5A and Supplementary Fig S8B). Strikingly, the synergistic

inhibition of pancreatic tumour growth induced by the association

between SOM230-LAR and gemcitabine has been further demon-

strated in a mouse model which mimics human pancreatic tumour

biology and involves the subcutaneous xenografting of pieces of

human PDAC resections (PDX) (Fig 5D). Consistently, the gemcita-

bine + SOM230-LAR bi-therapy-induced tumour growth reduction

was associated with a dramatic increase in cell apoptosis (cleaved

caspase-3 and TUNEL), and an inhibition of cell proliferation

(Ki67) (Fig 5E–H, Supplementary Figs S7A–B, D and S8D–E) in the

three tumour mouse models was tested. A decrease in collagen

deposition (Masson’s trichrome stain) and a-SMA staining was also

consistently observed with the gemcitabine + SOM-LAR bi-therapy

in these models (Supplementary Figs S7A–C, E and S8D, F–G).

Individual gemcitabine or SOM230-LAR therapy decreased the

growth of human PDAC resections xenografted in mice (Fig 5D),

which was consistent with the faint pro-apoptotic effect of gemcita-

bine (Fig 5H) and with the antifibrotic action of SOM230-LAR

(Supplementary Fig S7B and E). Consistently, in vitro collagen type

I synthesis by CAFs was increased when compared to PaSCs, and

was decreased upon treatment with SOM230, as evidenced by

reduced production and deposition of soluble and insoluble colla-

gens in both CAF-CM and cell extracts (Supplementary Fig S9A–E).

These results demonstrate that in vivo gemcitabine treatment of

pancreatic tumours containing abundant ECM bundles is inefficient

(cancer cell and CAF co-xenografted models) or only partially

effective (human PDAC resection xenografted model) at reducing

◀ Figure 3. CAFs express the somatostatin receptor subtype 1 sst1 that mediates SOM230 inhibitory effect on CAF-induced chemoprotection.

A Expression of the somatostatin receptor subtype 1 (sst1) analysed by RT–qPCR in the human pancreatic endocrine cell line BON and in CAFs isolated from 11
different patients (mean � SD).

B Immunoblotting of protein extracts from PaSCs and CAFs, using anti-sst1, anti-a-SMA, anti-P-S6 or anti-GAPDH (loading control) antibody (representative of n = 3).
C Immunoblotting of protein extracts from BON, CAFs and indicated pancreatic cancer cell lines, using anti-sst1 or anti-GAPDH (loading control) antibody

(representative of n = 3).
D Immunofluorescence confocal microscopy analyses of a-SMA and sst1 in CAFs. Co-localization of a-SMA and sst1 is shown (merge) (one representative field of

n = 3) (scale bar = 100 lm).
E–G Representative immunofluorescence confocal microscopy analyses of sst1 co-localization with cytokeratin-19 (n = 42 PDAC samples) (E), a-SMA (n = 42 PDAC

samples) (F) or with P-4E-BP1 (n = 25 PDAC samples) (G) in serial slides (scale bar = 100 lm). Dashed white lines represent the limits between stroma and tumour
epithelial glands.

H, I Immunoblotting of protein extracts from siCTR- or sisst1-transfected CAFs treated (+) or not with SOM230 for 48 h (sst1, puromycin and GAPDH as loading control,
H) or for 30 min (P-Akt, P-S6, 4E-BP1 and GAPDH as loading control, I) (representative of n = 3).

J Panc-1 cell viability was assessed by MTT. Panc-1 cells were incubated with gemcitabine in the presence of CM from untreated or SOM230-treated CAFs
transfected with siCTR or si-sst1. Results (mean � SD) are presented as the percentage of the untreated cells (= 100%) (n = 3; **P = 0.003, §§P = 0.002).

Data information: * gemcitabine-treated versus gemcitabine-untreated cells; § si-sst1-transfected versus siCTR-transfected cells.
Source data are available online for this figure.
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Figure 4. Molecular mechanisms of SOM230 action through sst1 for inhibition of Akt-4E-BP1 signalling pathways in CAF.

A–D Immunoblotting using an anti-P-Akt, anti-P-S6, anti-4EB-P1 or anti-GAPDH (loading control) antibody of protein extracts from CAFs pre-treated (+) or not
overnight with PTX (100 ng/ml) (A), gallein (10 lM) (B), NSC87877 (10 lM) (C), Src inhibitor (5 lM) (D), treated (+) or not with SOM230 (10�7 M) for 30 min
(representative of n = 3).

E, F Immunoblotting using anti-P-Akt, anti-P-S6, anti-4EB-P1 or anti-GAPDH (loading control) antibody of protein extracts from CAF siCTR- or siSHP2- (E) or siPTPe-
(F) transfected CAF treated or not with SOM230 for 30 min (representative of n = 3).

G, H Immunoblotting using an anti-P-Akt, anti-P-S6, anti-4EB-P1 or anti-GAPDH (loading control) antibody of protein extracts from CAFs treated with the indicated
molecules (PDGF receptor inhibitor, 5–10 lM; Jak1/2 inhibitor ruxolitinib, 5 or 10 lM; EGFR inhibitor, 150 or 300 nM and recombinant PDGF, 5 lg/ml)
(representative of n = 3).

Source data are available online for this figure.

EMBO Molecular Medicine Vol 7 | No 6 | 2015 ª 2015 The Authors

EMBO Molecular Medicine Anti-stromal-targeted therapy Camille Duluc et al

742



tumour growth. In contrast, gemcitabine + SOM230-LAR bi-therapy

yielded potent therapeutic benefits in all tested models, demonstrat-

ing that SOM230 co-treatment facilitates gemcitabine cytotoxicity

in vivo. The expression of sst1 in a-SMA-positive fibroblasts,

present in tumours (Supplementary Fig S7F–G), is compatible with

a direct inhibitory effect of SOM230 on CAFs in vivo (matrix

deposition).

Mechanisms for CAF-mediated chemoprotection on pancreatic
cancer cells—inhibition upon CAF co-treatment with SOM230

We reasoned that through secreted factors, CAFs may affect pancre-

atic cancer cell sensitivity to chemotherapeutic drugs and that

SOM230 may inhibit this feature. IAPs (inhibitors of apoptosis) are a

family of major anti-apoptotic factors that reduce cancer cell

sensitivity to chemotherapies. Whereas XIAP is highly expressed in

pancreatic cancer cells, survivin and other IAPs (cIAP1, cIAP2, livin)

(not detected) are not (Supplementary Fig S10A). However,

treatment with CAF-CM dramatically increased survivin, but not

XIAP (or other IAPs, not detected), expression (Supplementary Fig

S10A), suggesting a role for survivin (but not XIAP) in mediating

CAF chemoprotection. Survivin expression was not further affected

by gemcitabine treatment in the presence or absence of CAF-CM

(Supplementary Fig S10B). Expression of survivin was not increased

upon pancreatic cancer cell treatment with SOM230-treated CAF-CM,

with or without gemcitabine. In CAFs, the ability of SOM230 to

abrogate the stimulation of survivin expression induced by CAF-CM

was abolished upon 4E-BP1 knock-down, indicating that this mecha-

nism is dependent on the SOM230 inhibition of protein synthesis in

CAFs (Supplementary Fig S10C). Decreasing survivin expression

using an antisense oligonucleotide (Supplementary Fig S10D) partially

reversed CAF-CM-induced chemoprotection in gemcitabine-treated

pancreatic cancer cells (Supplementary Fig S10E–F), demonstrating

that CAF-CM-induced expression of survivin represents one effector

of CAF-promoted chemoresistance. Together, these results demon-

strate that CAF-CM provides a de novo resistance of pancreatic

cancer cells to chemotherapy, at least partially through diminished

cancer cell sensitivity to the drug, which can be reversed upon CAF

treatment with SOM230.

IL-6 is a SOM230-druggable soluble factor, critical for the
chemoprotective features of CAF secretions

Because protein synthesis is critical for CAF chemoprotection, we

aimed to identify the chemoprotective factor(s) that are synthesized

and secreted by CAFs and downregulated upon SOM230 treatment.

We blotted a cytokine/chemokine antibody array membrane with

the secretions from CAFs which had been previously treated with or

without SOM230. Globally, among the 80 factors whose antibodies

were present on the array, 60 were detectable in the CAF secretome

(Supplementary Table S3). The expressions of 26 of these were

significantly downregulated in CAF-CM upon CAF treatment with

SOM230 (Supplementary Table S3, highlighted in grey). The

PaSC secretome was found to be less rich than that of CAFs

(Supplementary Fig S11A), which was consistent with results in

Supplementary Fig S1D. Interleukin-6 (IL-6) was found to be the

most abundant factor in the CAF secretome (Fig 6A, red square), as

confirmed by ELISA on either CAF extracts (intracellular proteins)

or CAF-CM (secreted proteins) which quantified about 1 ng/ml of

IL-6 produced per 106 CAFs (Fig 6B). Comparatively, PaSCs and

pancreatic cancer Panc-1 and BxPC-3 cells expressed and secreted

marginal amounts of IL-6 (< 0.1 ng/ml for 106 cells) (Supplemen-

tary Fig S11B). Importantly, treatment with SOM230 abrogated IL-6

production by CAFs (Fig 6B–C), whereas no effect was observed on

IL-6 mRNA levels (Supplementary Fig S11C), suggesting an effect at

the translational level. Consistently, knock-down of the translation

inhibitor 4E-BP1 rendered CAFs resistant to the inhibitory effect of

SOM230 upon intracellular expression and secretion of IL-6

(Fig 6C). Similarly, two other soluble factors secreted by CAFs, but

less abundantly by PaSCs, namely MCP-1 and Groa, presented a

decreased protein expression in CM upon CAF treatment with

SOM230 whereas expression of their mRNA was not affected

(Supplementary Fig S11D–G).

The importance and functionality of CAF-secreted IL-6 on pancre-

atic cancer cell response to gemcitabine was evaluated. The IL-6

receptor was equally expressed in CAFs, PaSCs and pancreatic

cancer cells (Supplementary Fig S11H). Blocking IL-6 activity in

CAF-CM using an IL-6 neutralizing antibody significantly reversed

the CAF-protective effects on cytotoxicity and apoptosis triggered by

either gemcitabine (Fig 6D–E), 5FU (Supplementary Fig S11I) or

oxaliplatin (Supplementary Fig S11J). Conversely, treatment of cancer

cells with 1 ng of recombinant IL-6 mimicked CAF chemoprotection,

although less efficiently than whole CAF-CM, since a residual frac-

tion of PARP remained cleaved (Fig 6F). Consistently, neutralizing

IL-6 activity decreased CAF-CM-induced survivin expression in

pancreatic cancer cells, whereas treatment of cancer cells with

recombinant IL-6 increased it, mimicking CAF-CM effects (Fig 6G–H).

Finally, we observed that activation of the mTORC1 pathway in

CAFs, indicated by Akt and S6K phosphorylation, appeared to be

partially dependent on the autocrine action of secreted IL-6 (Fig 6I)

and was consistent with the inhibition of this pathway by a JAK2

inhibitor (Fig 4G), therefore highlighting a positive feedback of IL-6

on its own synthesis. Taken together, these results demonstrate

the important role of CAF-secreted IL-6 in pancreatic cancer cell

resistance to chemotherapies. They also identify a novel translation-

dependent feed-forward loop sustaining IL-6 synthesis and secretion

in CAFs, which is efficiently druggable by SOM230.

IL-6 is a cytokine abundantly secreted by pancreatic lesions
during tumorigenesis, in correlation with the abundance of CAFs

We then assessed the status of IL-6 in pancreatic tumours in correla-

tion with the presence of a-SMA-expressing CAFs. To monitor IL-6

expression in a dynamic model of spontaneous pancreatic tumori-

genesis, we first used the mouse knock-in model where the mutated

Kras was specifically expressed in the exocrine pancreas (Pdx1-Cre;

KrasG12D/+, named KC) and recapitulated human pancreatic tumori-

genesis, including the appearance of precancerous lesions (Hingorani

et al, 2003). Consistently, the plasmatic IL-6 concentration was

significantly increased in KC mice from 6 months of age (Supple-

mentary Fig S12A), where a significant number of precancerous

lesions were observed, which further increased at 7 months. This

increase correlated with the presence of CAFs expressing a-SMA

around precancerous acinar-to-ductal metaplasia and pancreatic

intraepithelial neoplasia grade-1 (PanIN1) lesions (Supplementary

Fig S12B). In mouse-xenografted experiments using cancer cells and
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CAF (Fig 7A–B, and Supplementary Fig S12C–E), or patient-derived

tumours (Fig 7B), IL-6 was co-expressed in a-SMA-positive cells.

Immunofluorescence analyses of human PDAC sections also showed

IL-6 staining in 78% � 10 of a-SMA-positive fibroblast-like cells

(quantified in n = 15 PDACs) (Fig 7C, Supplementary Table S2D).

IL-6 expression was almost undetectable in tumours obtained from

mice treated with gemcitabine + SOM230 bi-therapy, in correlation

with the reduction in the a-SMA staining (Fig 7A–B, Supplementary

S12C–G). Importantly, plasmatic human IL-6 concentrations dramat-

ically decreased upon mouse treatment with gemcitabine+ SOM230

bi-therapy in both orthotopic xenografted models (cancer cell and

CAF, Fig 7D, and patient-derived tumours, Fig 7E), whereas mouse

IL-6 plasmatic concentrations were comparatively very low and not

affected (not shown). SOM230 alone also efficiently decreased

human IL-6 plasmatic concentrations in the mouse models (Fig 7D–E).

These data confirm that IL-6 is over-expressed and secreted by

human intra-tumour CAFs during the process of pancreatic carcino-

genesis, and that IL-6 secretion by CAFs is dramatically reduced by

SOM230, thus providing a mechanism for SOM230 re-sensitization

of pancreatic cancer cells towards gemcitabine cytotoxicity in vivo.

Discussion

Our data demonstrate that strategies aimed at targeting protein

synthesis through inhibition of the mTORC1 pathway in CAFs

abolish the chemoprotective effect provided by CAF secretome.

Synthesis of both insoluble (e.g. collagen I) and soluble (e.g. IL-6)

proteins secreted by CAFs is turned off upon inhibition of mRNA

translation, providing a novel strategy to prevent CAF-mediated

drug resistance in cancer cells. Interestingly, pharmacotherapy using

the multi-receptor somatostatin analogue SOM230 (Pasireotide�

Novartis) is introduced here as a promising approach to inhibit

protein synthesis specifically in CAFs that express the somatostatin

receptor subtype 1, in contrast to their inactive PaSC counterparts

(Fig 8).

Three different xenografting procedures, that is orthotopic

(intrapancreatic) or subcutaneous co-xenografting of human

pancreatic cancer cells and human CAF primary cell cultures, and

subcutaneous xenografting of human pancreatic tumours (PDX,

patient-derived tumour xenografting), were undertaken in immuno-

deficient mice. These three strategies reproducibly demonstrated

that combining the SOM230 treatment with the chemotherapeutic

drug gemcitabine provided a therapeutic benefit over each single

treatment. Through its indirect action on CAFs, SOM230 enabled the

re-sensitization of chemoresistant pancreatic cancer cells to gemcita-

bine cytotoxicity. In these three models, our results demonstrate

that the fibrotic stroma, and subsequent pancreatic cancer cell

chemoprotection, provided by the presence of CAFs, mimicked that

which normally occurs in human tumours, in contrast to xenografted

models which only have pancreatic cancer cells (Perez-Mancera

et al, 2012). However, the therapeutic benefit provided by our drug

association will have to be validated on immune-competent model(s)

of PDAC, especially as CAFs also impact on immune cell function

(Mace et al, 2013). Nonetheless, our results strongly support protein

synthesis as a novel therapeutic target in human CAFs.

Somatostatin is the natural neuropeptide produced in the

pancreas by the d islet cells. We have previously reported that

somatostatin inhibits the PI3K/mTOR pathway and thereby protein

translation at two levels: firstly, it directly inhibits PI3K activity

(Bousquet et al, 2006; Najib et al, 2012), and secondly, it upregu-

lates the expression of the hypophosphorylated form of the

translation inhibitor 4E-BP1 (Azar et al, 2008; Laval et al, 2014).

Somatostatin analogues (e.g. octreotide) have been FDA-approved

and safely used for decades in the diagnosis (octreoscan) and treat-

ment of secretory syndrome and growth of neuroendocrine tumours

including pancreatic neuroendocrine tumours that highly express

one or several of the five G protein-coupled somatostatin receptors

(sst1, 2, 3 & 5) (Bousquet et al, 2012; Chalabi et al, 2014). However,

octreotide, which chiefly targets sst2, has shown no clinical benefit

for PDAC patients, which is probably explained by the absence of

expression of sst2 in pancreatic cancer cells (Friess et al, 1993;

Buscail et al, 1996; Laklai et al, 2009), or in CAFs, as demonstrated

here (Supplementary Fig S5). Conversely, the new generation of

somatostatin analogues including SOM230 which also targets the

sst1 receptor subtype is shown here to be a very promising drug for

the inhibition of CAF secretory activity, thereby re-sensitizing

pancreatic cancer cells to chemotherapeutic drugs by abolishing

CAF-mediated drug resistance. SOM230 is an FDA-approved drug (in

2012, for the treatment of Cushing’s pituitary tumours) that, despite

inducing hyperglycaemia, does not generate any toxicity (Schmid,

2008; Chan et al, 2012; Henry et al, 2013), unlike translation mTOR

inhibitors such as RAD001 (Everolimus� Novartis). SOM230 has a

high affinity (nanomolar ranges) for all somatostatin receptors,

except sst4 (Schmid, 2008). However, the SOM230 inhibitory effect

in CAFs was shown to be specifically mediated through sst1, as

◀ Figure 5. SOM230 increases in vivo sensitivity to gemcitabine of tumour xenograft (MIA PaCa-2-Luc cells and CAFs or human PDAC resection).

A–C MIA PaCa-2-GLuc cells were injected with or without CAFs into the pancreas of nude mice. Mice were treated with each indicated treatment (SOM230-LAR at day
7 and gemcitabine at days 7, 10, 14 and 17), and the plasmatic luciferase activity was measured (mean � SD) at days 7, 14 and 21 (n = 5) (P = 0.003 for
gemcitabine + SOM230LAR versus untreated) (A). Tumours were excised, photographed (scale bars are 1 cm) (B), weighted (P = 0.0008) (C) and paraffin-embedded
for immunohistofluorescence analyses using an anti-cleaved caspase-3 antibody (E).

D Human tumours were subcutaneously xenografted in nude mice and tumour volumes (mean � SD) measured (at day 37, P = 0.0009 for gemcitabine +
SOM230LAR versus untreated and P = 0.021 for gemcitabine + SOM230LAR versus gemcitabine). Mice were treated with the indicated treatments (SOM230-LAR at
days 3 and 31, and gemcitabine at day 3 and twice a week thereafter).

E, F Tumours excised from mice as in (A-C) were paraffin-embedded for immunohistofluorescence analyses using an anti-cleaved caspase-3 antibody (scale
bar = 100 lm) (E). Cleaved caspase-3 quantification was performed by counting the mean number of positive cells per field in five independent tumours
(mean � SD) (F) (*P = 0.036, **P = 0.009).

G, H Tumours excised from mice as in (D) were paraffin-embedded for immunohistofluorescence analyses using an anti-cleaved caspase-3 antibody (scale
bar = 100 lm) (G). Cleaved caspase-3 quantification was performed by counting the mean number of positive cells per field in five independent tumours
(mean � SD) (H) (*P = 0.027).

Data information: * treated versus untreated xenograft. # SOM230-LAR + gemcitabine-treated versus gemcitabine-treated xenograft. *P < 0.05; **P < 0.01; ***P < 0.001.
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demonstrated through sst1 expression knock-down (RNA interfer-

ence) studies. The mechanisms underlying the high expression of

sst1, and elevated PI3K/mTORC1 pathway activation in CAFs, partic-

ularly when compared to inactivated a-SMA-negative PaSCs, are

currently under investigation. Importantly, CAF treatment with

SOM230 does not affect sst1 expression levels, which is a prerequi-

site for the prospective use of this drug for the long-term treatment

of PDAC patients. This result however indicates that SOM230 does

not inhibit the translation of all mRNAs in CAFs.

Nothing is known about protein synthesis and its regulation in

CAFs. Initiation of mRNA translation, the rate-limiting step of

protein synthesis, is tightly regulated by signalling pathways that

are involved in cancer development and progression, including the

PI3K/mTORC1 and eIF2a pathways (Lasfargues et al, 2012;

Martineau et al, 2013). mRNA translation is upregulated in cancer

cells where increased cell division and growth require elevated

protein synthesis coupled with more ribosomes. Half of human

PDACs present pancreatic cancer cells which have lost expression

of the negative regulator of translation 4E-BP1, rendering them

insensitive to mTOR inhibitors (Martineau et al, 2014). Therefore,

CAFs represent an additional promising target for therapeutic inhi-

bition of protein synthesis. A significant proportion of CAFs in

PDACs present with an activated mTOR pathway (detection of

phospho-4E-BP1 and phospho-S6) suggesting a high protein

synthesis rate. The translation initiation machinery, capable of

mRNA unwinding, is necessary for the specific translation of a

subset of mRNAs that have highly structured 50 untranslated

regions (50UTRs). Those mRNAs encode proteins involved in cell

cycle progression, angiogenesis, cell growth and survival func-

tions. Among the soluble proteins that we found to be highly

secreted by CAFs, IL-6 was identified as being a mediator of a

significant proportion of CAF chemoprotective features in pancre-

atic cancer cells. Consistently, IL-6 emerges as a potential therapeu-

tic target in PDACs (Lesina et al, 2014) and IL-6 serum

concentrations in patients with advanced PDAC can predict the

efficacy of gemcitabine treatment (Mitsunaga et al, 2013). Our

findings, which demonstrate that IL-6 expression is regulated

through increased protein translation in CAFs, provide an interest-

ing approach to target the high production of this cytokine in

PDAC. Consistently, high IL-6 synthesis by CAFs, which is also

measurable in the plasma of our tumour-xenografted mouse

models, is abrogated upon mouse treatment with SOM230, in

correlation with enhanced tumour sensitivity to gemcitabine.

Therapeutic strategies aimed at symptomatically targeting the

PDAC pro-tumoural fibrotic scaffold using non-selective enzymes

that degrade it (Provenzano et al, 2012; Jacobetz et al, 2013), CD-

40-educated macrophages that alter tumour stroma (Beatty et al,

2011), or nanoparticle albumin-bound chemotherapy (Von Hoff

et al, 2011), showed promising results in pre-clinical models

because they led to better chemotherapy delivery and uptake

through stromal depletion and enhanced vascularization

(Heinemann et al, 2014). Several clinical trials in which various

forms of antifibrotic therapies are applied concomitantly with

gemcitabine are now recruiting patients. Caution has however to be

taken regarding these non-selective antifibrotic therapies since

breaking down the stromal wall may increase dissemination of

cancer cells (Erkan, 2013). Other options to target CAFs in PDAC

consist of treatments which reduce CAF proliferation, including

hedgehog pathway inhibitors, retinoic acid or pirfenidone which

reduce stroma abundance in PDAC models (Olive et al, 2009;

Froeling et al, 2011; Kozono et al, 2013), or vitamin D receptor

activation which reprogrammes CAFs to a quiescent phenotype

(Sherman et al, 2014). Although very promising in initial preclinical

studies (Olive et al, 2009), targeting the proliferation of PDAC-

associated fibroblasts using hedgehog pathway inhibitors has failed

in phase II trials (Amakye et al, 2013). Shh genetic deletion, or

chronic treatment with a hedgehog inhibitor, in mice presenting

with an intra-pancreatic mutation of Kras and p53, accelerated

pancreatic tumour progression and reduced survival, with tumours

presenting a poorly differentiated histology and increased vascular-

ity (Rhim et al, 2014). Recent findings report that depending on the

dosage of hedgehog signalling in the tumour (high, low/ absent or

only decreased by inhibitors), tumour growth is accelerated,

arrested or enhanced, respectively, through increased angiogenesis,

probably explaining the unexpected non-efficacy of hedgehog inhibi-

tors in patients (Mathew et al, 2014).

SOM230 does not have any direct inhibitory effect on pancre-

atic cancer cell features in vitro (proliferation, migration or inva-

sion) (data not shown). No expression of sst1 was observed in

any of the five pancreatic cancer cell lines (Panc-1, BxPC-3,

Capan-1, MIA PaCa-2, CFPAC-1), or in pancreatic cancer cells

from forty-two human PDACs, as assessed by Western blot or

◀ Figure 6. Identification of proteins differentially secreted by CAFs upon SOM230 treatment and involved in CAF-CM-induced chemoresistance on pancreatic
cancer cells.

A Membrane antibody array assay using CM from SOM230-treated or not CAFs (representative of n = 3). Controls are circled in blue dashed line and IL-6 in red
square.

B, C Anti-IL-6 ELISA assay (mean � SD) using CM or protein extracts from SOM230-treated or not CAF (from left to right: §§§P = 0.0002, §§§P = 0.0002) (B), or CM from
siCTR- or si4E-BP1-transfected CAFs treated or not with SOM230 (from left to right: ***P = 0.0003, $$P = 0.004) (C) (n = 3).

D Panc-1 cell viability was assessed by MTT. Results (mean � SD) are presented for each treatment as the percentage of the respective untreated cells (= 100%)
(n = 3; from left to right: **P = 0.004, ##P = 0.001, §P = 0.023, §P = 0.019).

E, F Immunoblotting using an anti-cleaved caspase-3, anti-PARP or anti-GAPDH (loading control) antibody of protein extracts from Panc-1 cells incubated with
CAF-CM pre-incubated or not with an anti-IL-6 neutralizing antibody (E), or with human recombinant IL-6 (representative of n = 3) (F).

G, H Immunoblotting using an anti-survivin or anti-GAPDH (loading control) antibody of protein extracts from Panc-1 cells stimulated or not with CAF-CM
pre-incubated or not with anti-IL-6 neutralizing antibody (G), or with human recombinant IL-6 (representative of n = 3) (H).

I Immunoblotting using an anti-P-Akt, anti-p-S6 or anti-b-actin (loading control) antibody of protein extracts from SOM230-treated or SOM230-untreated CAF
incubated or not with IL-6 neutralizing antibody (representative of n = 3).

Data information: * gemcitabine-treated versus gemcitabine-untreated cells; # CM-incubated versus CM-non-incubated cells; § effect of treatment (SOM230 or anti-IL-6
neutralizing antibody, or recombinant IL-6) versus untreated cells; $ si4E-BP1-transfected versus siCTR-transfected cells.
Source data are available online for this figure.
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Figure 7. IL-6 concentration correlated with a-SMA-expressing CAFs abundance in human and mouse pancreatic tumours and plasma.

A–C Immunohistofluorescence using an anti-a-SMA or anti-IL-6 antibody in paraffin-embedded sections from MIA PaCa-2-Gluc and CAF cells orthotopic co-xenografted
tumours from Fig 5A (A) or from human tumour subcutaneously xenografted from Fig 5D (B) in nude mice treated or not with gemcitabine + SOM230
(representative of five different tumours). Representative co-localization of a-SMA with IL-6 in human PDAC samples (C) (n = 15). Scale bar = 100 lm.

D, E Plasma was collected from MIA PaCa-2GLuc and CAFs (*P = 0.034, **P = 0.007) (D), or human pancreatic tumour (*P = 0.028, **P = 0.004) (E), xenografts in nude
mice and human IL-6 plasmatic concentrations (mean � SD) were quantified by ELISA (n = 5 mice / group). * treated versus untreated mice.
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immunofluorescence analyses, respectively, using an anti-sst1

antibody, the specificity of which had been validated here. In

orthotopic co-xenograft cancer cell +CAF and PDX (patient-derived

tumour sub-cutaneous xenograft) experiments, SOM230 treatment

alone diminished CAF activation but was not able to affect cancer

cell proliferation or apoptosis. In PDX experiments, SOM230

significantly decreased tumour progression, probably due to a

reduction in the rate of collagen deposition by CAFs (Masson’s

trichrome staining). Therefore, our results show that the inhibi-

tory effect of SOM230 on CAF secretions is insufficient to affect

tumour growth, but is sufficient to provide potent chemosensitiza-

tion, bypassing pancreatic cancer cell resistance to gemcitabine.

Our hypothesis for these differences is that pancreatic cancer cells

may be able to adapt in vivo to the decrease in CAF-derived

growth signals induced by SOM230 treatment, but not to the

absence of CAF-derived chemoprotective factors. Therefore, these

results emphasize the role of CAFs as critical chemoprotective cell

partners to pancreatic cancer cells.

A recent paper has unexpectedly demonstrated, in a PDAC trans-

genic mouse model, that depletion of a-SMA-positive and proliferat-

ing cells accelerates cancer progression, instead of stopping it, by

inducing immunosuppression (Ozdemir et al, 2014). However, the

study method employed reportedly targeted all a-SMA-positive cells,

including the smooth muscle cells lining vessels and whose function

during tumour progression may have been impacted by this strat-

egy. Additionally, only proliferating a-SMA-positive cells were

targeted, which probably represent only a sub-population of CAFs,

and not necessarily the sub-population that exhibits the highest rate

of secretion. Our observations rather show that most human CAFs

(present in human PDACs) proliferate slowly in vitro and in vivo

(Supplementary Fig S1B–C). Whether there is a difference of prolif-

eration between human and mouse CAFs present in human pancre-

atic tumours and in PDAC mouse models, respectively, will have to

be explored.

Our results should pave the way for the development of novel

drugs that specifically target protein synthesis, not only in cancer

cells but also in CAFs. Rational clinical trials using these inhibitors

should be designed with the aim of boosting the cytotoxic action of

chemotherapy in PDAC. Such treatments would be of major benefit

to large groups of both surgical and non-surgical PDAC patients,

since part of the activated stroma can remain after tumour removal

and may be involved in tumour recurrence (Erkan et al, 2012b).

Results from phase II trials using mTOR inhibitors in advanced

PDAC patients have been disappointing (Wolpin et al, 2009; Javle

et al, 2010). However, inhibition of mTOR induces a positive feed-

back loop on PI3K and an associated PI3K inhibitor has been used

to improve therapy efficacy (Javle et al, 2010). Our results indicate

that CAFs can be efficiently targeted with inhibitors that target the

mTOR pathway, including SOM230 pharmacotherapy which

presents a safer toxicity profile than mTOR inhibitors. However, to

kill cancer cells, a chemotherapy has to be associated with inhibitors

of protein synthesis in CAFs. These novel drug associations that

+ SOM230
BA

Somatosta�n
receptor subtype 1

mTOR

Protein
synthesis

4E-BP1

Somatosta�n
receptor subtype 1

CAF CAF

mTOR

Protein
synthesis

4E-BP1

synthesis

IL-6+++

CAF

CANCER

CAF

CANCER

synthesis

IL-6

Chemoresistance

CANCER
CELL

Chemosensi�vity

CANCER
CELL

↑ drug sensi vity↓ drug sensi vity

Figure 8. Model.

A Through the synthesis/secretion of soluble chemoprotective factors including IL-6, CAFs induce pancreatic cancer cell chemoresistance. High protein synthesis rate in
CAFs is dependent on the robust intrinsic activation of the mTOR pathway resulting in inhibition of the protein translation inhibitor 4E-BP1. Secreted IL-6 participates
in an autocrine feed-forward loop in the intrinsic activation of mTOR and subsequent high protein synthesis.

B CAFs express the somatostatin receptor sst1. Upon activation with the novel SOM230 somatostatin analogue (Pasireotide® Novartis) presenting a high affinity for
sst1, the mTOR pathway is inhibited, resulting in reduced synthesis/secretion of chemoprotective factors including IL-6 through inhibition of mRNA translation.
As consequences, the autocrine feed-forward IL-6/mTOR/protein synthesis/IL-6 loop is abrogated, and pancreatic cancer cells are re-sensitized to the apoptotic action
of chemotherapies.
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target the heterogeneous pancreatic tumour, including SOM230-

LAR, or novel protein synthesis inhibitors, together with a chemo-

therapeutic drug should provide promising therapeutic benefits for

PDAC patients.

Materials and Methods

Pancreatic ductal adenocarcinoma samples

Human normal (from healthy donors) and tumour (from patients

with surgery-resected pancreatic cancer) paraffin-embedded

samples were from the Pathology Department of Toulouse and

Limoges Hospitals, France. This study was approved by the ethic

committee of the Institutions. Patients’ samples were obtained after

getting informed consent in accordance with the Declaration of

Helsinki and stored at the ‘CRB cancer des Hôpitaux de Toulouse’

collection. According to the French law, CRB cancer collection has

been declared to the ministry of higher education and research

(DC 2009-989; DC-2011-1388) and obtained a transfer agreement

(AC-2008-820; AC-2011-130) after approbation by ethical commit-

tees. Clinical and biological annotations of the samples have been

declared to the CNIL (Comité National Informatique et Libertés).

Human cancer-associated fibroblast isolation and cell culture

CAFs were isolated from human pancreatic tumour tissues using the

outgrowth method described by Bachem et al (Bachem et al, 1998).

Commercial human primary cultures of PaSCs are isolated from

human pancreas (reference 3830, lot # 10295 and lot # 10473,

ScienCell Research Laboratories). CAFS and PaSC were grown in

Dulbecco’s modified Eagle’s medium F12 (DMEM/F12 Lonza)

containing 10% foetal calf de-complemented serum (FCS, Life

Technologies).

CAF conditioned media

CAF conditioned media were made from the culture of 106 CAFs in

5 ml of DMEM/F12 without FCS, and treated or not with 10�7 M

SOM230. Forty-eight hours later, conditioned media were collected,

centrifuged (1,000 g, 5 min) and filtered (0.2 lm) prior to incuba-

tion with cancer cells. When indicated, conditioned media from

untreated CAFs were pre-treated for 30 min with 1 ng/ml of human

IL-6 neutralizing IgA monoclonal antibody (Invivogen) prior to

incubation with cancer cells.

Membrane antibody array

Soluble factors present in PaSC and CAF conditioned media were

identified and quantitatively compared (SOM230-treated versus

SOM230-untreated CAFs) using Human Cytokine Antibody Array 5

(AAH-CYT-5-8, RayBiotech). This antibody array matrix can simul-

taneously detect 80 cytokines, chemokines and growth factors.

Briefly, CM were collected, filtered, volume-normalized according to

cells number and incubated with the antibody arrays overnight at

4°C. Membranes were processed according to the manufacturer’s

instructions. The spot density was quantified by using a ChemiDocTM

XRS System with Image LabTM Software (Bio-Rad).

Tumour growth in nude mice

Pancreatic cancer cells and CAF co-xenografting

Pancreatic cancer cells and CAFs were trypsinized, washed and

resuspended in sterile PBS. A 1:3 mix of pancreatic cancer cells (106)

and CAFs (3 × 106) were subcutaneously (Panc-1 cells) or orthotop-

ically (intra-pancreatic) (MIA PaCa-2-GLuc cells) injected in 100 or

50 ll PBS, respectively, of 4-week-old female nude mice (NMRI-nu/

nu, NMRI-Foxn1nu Janvier) (Sicard et al, 2013). Mice were anesthe-

tized by inhalation of isoflurane. Treatments started 1 week after graft-

ing when mice have been randomized in the four group treatments,

with similar mean tumour volumes per group (for subcutaneous

grafting experiment, 33–71 mm3) or similar mean plasmatic luciferase

activity per group (for orthotopic grafting experiment, 181- to 196-fold

increase as compared to activity measured at grafting day 0).

Patient-derived tumour xenografting

The tumour xenografts are derived from a surgical resection of a

pancreatic tumour (moderately differentiated, stage IIA). Following

excision at surgery, tumour pieces are subcutaneously implanted

into nude mice. Tumour fragments are obtained from xenografts in

serial passage in 4-week-old female nude mice (NMRI-nu/nu mice,

NMRI-Foxn1nu) (n = 7, until establishment of a stable growth

pattern). After removal from donor mice, tumours are cut into frag-

ments (3–4 mm edge length) and placed in PBS. Recipient animals

are anesthetized by inhalation of isoflurane and receive tumour

The paper explained

Problem
While the cancer-associated fibroblasts (CAFs) secretome is known to
contribute to tumour chemoresistance, its therapeutical targeting for
chemosensitization remains elusive. This study addresses the hypothe-
sis that a pharmacotherapy aimed at inhibiting protein synthesis/
secretion can reverse chemoprotection provided by CAFs.

Results
We developed in vitro and in vivo co-culture models where CAFs were
isolated from human pancreatic ductal adenocarcinoma (PDAC)
resected tumours and CAF secretome provided complete chemo-
protection on pancreatic cancer cells. CAFs displayed elevated mTOR
pathway activity and high protein synthesis rates, both in situ in
human PDACs and ex vivo in primary cultures. The mTOR pathway
regulates the specific translation of a subset of mRNAs that mainly
encode in tumours pro-oncogenic proteins. Chemoprotection induced
by CAF secretome dependently on the upregulation in cancer cells of
the anti-apoptotic protein survivin was reversed upon mTOR inhibi-
tion in CAFs. This can be achieved using the somatostatin analogue
SOM230, FDA-approved for the treatment of endocrine tumours,
which activates the G protein-coupled somatostatin receptor sst1
selectively expressed in CAFs, but not in inactivated pancreatic stellate
or cancer cells. SOM230 exhibited synergistic anti-tumour growth in
combination with the chemotherapy gemcitabine in three different
xenografting procedures in immunodeficient mice, including PDX
(patient-derived xenograft).

Impact
Pancreatic cancer adenocarcinoma is a dismal disease resistant to
chemotherapies. Our study raises the intriguing possibility that novel drug
associations combining current chemotherapies with inhibitors of protein
synthesis may be effective in combating tumour chemoresistance.
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implants subcutaneously in the flank. Forty-one days following

tumour implantation, animals have then been randomized (= day 0)

into experimental groups with equivalent mean group tumour

volumes (100–120 mm3).

Treatments

Mice have been treated s.c. with SOM-LAR (80 mg/kg) once every

3 weeks and/or i.p. with gemcitabine (100 mg/kg, twice per week).

Tumour volumes of subcutaneous tumours were calculated as

0.523 × l2 × L.

All experiments were done in accordance with the principles and

guidelines established by INSERM Anexplo UMS006 and were

approved by the institutional and national animal care and use

committees.

Statistical analyses

Statistical analyses were performed by comparing two by two inde-

pendent conditions (with homogeneous variances) using an

unpaired parametric t-test. All values are mean � SD of indepen-

dent n experiments (as indicated). Differences were considered

statistically significant when P < 0.05 (*P < 0.05; **P < 0.01;

***P < 0.001).

For more information
Author’s website: http://www.crct-inserm.fr

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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