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Abstract: This paper is devoted to the study of the transmission properties
of Slanted Annular Aperture Arrays made in perfectly conducting metal.
More precisely, we consider the transmission based on the excitation of
the cutoff-less guided mode, namely the T EM mode. We numerically
and analytically demonstrate some intrinsic properties of the structure
showing a transmission coefficient of at least 50% of an unpolarized
incident beam independently of the illumination configuration (angle and
plane of incidence). The central symmetry exhibited by the structure is
analytically exploited to demonstrate the existence of a polarization state
for which all the incident energy is transmitted through the sub-wavelength
apertures when the eigenmode is excited, whatever are the illumination
and the geometrical parameters. For this state of polarization, the laminar
flow of the energy through the structure can exhibit giant deviation over
very small distances. An example of energy flow deviation of 220o per
wavelength is presented for illustration. The results presented in this paper
could be considered as an important contribution to the understanding of
the enhanced transmission phenomenon based on the excitation of guided
modes.

© 2015 Optical Society of America

OCIS codes: (310.6628) Subwavelength structures, nanostructures; (230.7370) Waveguides;
(230.0230) Optical devices; (050.1940) Diffraction; (160.3918) Metamaterials.
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1. Introduction

The enhanced light transmission (ET) phenomenon through sub-wavelength apertures in metal
plates have already attracted researchers’ attention [1, 2]. This is mainly due to the observation
made by T. W. Ebbesen’s team of an extraordinary optical transmission (EOT) which inevitably
revolutionized the field of nano-optics and opened a wide range of applications from spectral
filtering to nano-antennas via single molecule spectroscopy [3]. Plasmonics has taken full ad-
vantage of this boom because the high transmission was associated with the excitation of a
surface plasmon resonance of the metallic layer that supports the engraved sub-wavelength
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apertures [4, 5]. Nonetheless, enhanced transmission could be obtained through a simple phe-
nomenon of light guiding in even smaller apertures without the need of plasmons [6–8]. In fact,
some metallic waveguide geometries (section shape) allow the existence of a guided mode with
a relatively large cutoff wavelength compared to the waveguide transverse dimensions. This
is specially the case of waveguides having a multi-connected conductor contours such as the
coaxial waveguide (bi-connected) [9–11]. Indeed, the fundamental mode of such waveguide
is a Transverse ElectroMagnetic (TEM) mode that has no cutoff [12]. Enhanced transmission
through annular aperture arrays (AAA) due to the excitation of this peculiar mode was already
theoretically studied [13–15] and recently experimentally demonstrated [16]. However, very
difficult experimental constraints (especially the implementation of a large angle of incidence)
must be met in order to obtain efficient excitation of the T EM mode [17]. More than ten years
ago, efficient enhanced transmission (up to 93% in the visible range) through these AAAs was
obtained using the excitation of the second guided mode [18,19], the T E11 mode that exhibits a
large wavelength cutoff compared to the waveguide diameter. The properties of the EOT based
on the excitation of this mode were studied by several groups. For example, it was clearly
demonstrated that the resulting ET is angle and polarization independent [20] since the diffrac-
tion anomalies (Wood and Rayleigh) are spectrally far from the transmission peak position. In
addition, due to the small metal thickness, the T E11 mode is mainly excited at its cutoff, mean-
ing that it is associated to a very low group velocity and a quasi-infinite phase velocity [21].
All these attributes provide quite interesting properties for applications in various fields as the
protection of radars (radomes) [22], photovoltaic, non-linear enhancement [23], optical trap-
ping [24] or also in the design of metamaterials with giant artificial birefringence [25].
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Fig. 1. (a) 3D view of the Slanted Annular Aperture Array (SAAA) structure under con-
sideration. (b) Schema showing the different geometrical parameters used to assign the
incident wave-vector position (in the plane formed by the Oz axis at an angle φ from the
Ox axis) and direction (incidence angle θ counted from the Oz axis). The aperture axis is
tilted by an angle α from the vertical direction (Oz) in a plane also located at an angle β
from the Ox axis). The horizontal section of on aperture has then outer (inner) ellipses with
minor half axis Ro (Ri) and major Ro/cosα (Ri/cosα).

2. The SAAA structure

Recently, in order to bypass the experimental constraints associated with the excitation of the
T EM mode, a slanted annular aperture array (SAAA) structure (see Fig. 1) was proposed,
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fabricated and characterized [16]. Indeed, the T EM mode is then excited at normal incidence
and its spectral position is red-shifted compared to the conventional AAA structure. In fact, due
to the inclined path through the metal film, the effective thickness of the cavities is larger and
the phase matching condition can be fulfilled for larger values of the wavelength. Unfortunately,
the T EM-based transmission in the visible range was weak due to metal losses and to the fact
that this T EM-like mode is spatially extended in the metal more than the T E11 mode. Thus,
in this paper, we will address theoretical and numerical simulations (through homemade 3D-
Finite Difference Time Domain algorithm) only in case of microwave and THz domain where
metals can be considered as perfectly electric conductors leading to efficient transmission as
shown in Fig. 2. In this figure, a comparison between the transmission of an AAA and a SAAA
structures (see Fig. 2(a)) having the same film thickness (h) is presented. The AAA structure is
illuminated at oblique incidence with an angle of incidence equals to the tilt angle (θ =α) of the
SAAA structure while this later is illuminated at normal incidence. The incident polarization
is TM (magnetic field perpendicular to the plane of incidence); As shown in Fig. 2(b) the
T EM-based transmission peak appears and reaches 100% for both structures. Nevertheless,
its spectral position is significantly redshifted when the apertures are tilted. Indeed, since the
Rayleigh anomaly is far from the spectral position λT EM of the T EM-based transmission peak
(structure period p < π(Ri +Ro)), λT EM can be given by a phase matching relation:
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Fig. 2. Calculated transmission spectra for two different configurations (a) having the same
metal thickness h = 2p/3 where p is the period along Ox and Oy directions. (b) The red
curve represents the transmission through the SAAA structure at normal incidence while
the blue one corresponds to the transmission through the AAA structure. For both struc-
tures, we consider a TM polarized incident plane wave with φ = β = 0o (see Fig. 1) but
θ = 0o and α = 30o for the SAAA structure and θ = 30o in the case of the AAA structure.
For the two configurations, we fixed the radii values to Ro = p/3 and Ri = p/6.

λT EM =
4πne f f he f f

(2mπ −φr)
with {he f f = h for AAA} and {he f f = h/cos(α) for SAAA} (1)

where m is a non-zero positive integer, ne f f is the real part of the effective index of the T EM
mode (ne f f = 1 if perfect conductor) and φr is a phase change due to the mode reflection (and
diffraction) at the input or the output side. α is the angle of the aperture tilt counted from the
normal to the metal interface. The position of the T EM peak can then be tuned through the
tilt angle for a fixed value of the thickness. Nevertheless, this dependence is not completely
explicit because the phase term (φr) can also depend on α . In order to gain more insight, we
have studied the transmission response as a function of α at a fixed value of the thickness
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h = 2p/3 and in the case of normal incidence. In both cases, the radii of the annular aperture
are fixed to Ro = p/3 and Ri = p/6. The results are plotted in Fig. 3(a) for α varying from
5o to 45o. As expected from Eq. (1), the T EM peak position shifts to the red region of the
spectrum when α increases (1/cosα increases). Figure 3(b) depicts the spectral positions of
the T EM peak as a function of 1/cosα (solid blue curve). An almost linear behavior is obtained
meaning that the phase φr is quite constant when α varies. The slight discrepancy appearing
at small values of α between the numerical calculation and that obtained from Eq. (1) when
considering φr = 1.9 rad (dashed red line) is attributed to the coupling between the T EM and
the T E11 modes. Thus, the light is totally transmitted through the structure independently of
the value of α but at different wavelengths.
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Fig. 3. (a) Transmission spectra in color level versus the tilt angle α of a SAAA with metal
thickness h = 2p/3 (p is the period of the grating along the Ox and Oy directions), the inner
and outer radii of the coaxial cavities are Ri = p/6 and Ro = p/3 respectively. The structure
is illuminated by a TM polarized plane wave at normal incidence with φ = β = 0o. (b) The
solid blue curve is the spectral position of the T EM-based transmission peak function of
1/cos(α). The dashed red curve corresponds to the asymptotic linear behavior when we
consider φr constant.

On the other hand, Eq. (1) does not show any explicit relation between λT EM and the angle
of incidence θ . Nonetheless, one can intuitively suspect a relation between this angle and the
phase term φr. Numerical simulations presented in Fig. 4(a), corresponding to a tilt angle α =
35o and an angle of incidence that varies from −45o to 45o, show that the spectral position
and the maximum value (100%) of the T EM-based transmission peak is independent of the
angle of incidence. Only the quality factor (peak sharpness) is affected and it is maximum at
normal incidence. In addition, for the sub-wavelength regime, there is a perfect symmetry of the
transmission variations with respect to the normal incidence (T (−θ) = T (θ)), as shown in Fig.
4(b), where two spectra corresponding to θ =±40o are plotted. This property is a consequence
of the energy balance and the reciprocity theorem as analytically demonstrated in the appendix
(see paragraphs 1 and 3) from the study of the transmission scattering matrix [26, 27]. The
symmetry of the spectra with respect to the angle of incidence can be understood intuitively by
the fact that the apertures are sub-wavelength details of the structure, and therefore cannot be
detected in the far-field. On the contrary, for λ < λRayleigh the transmission spectra do not exhibit
any symmetry. In this spectral range, propagating diffracted orders exist and their efficiencies
depend on the tilt angle. Consequently, the diffracted zero order transmission changes with
respect to the energy carried by these homogeneous orders. The obtained symmetry breaking,
due to energy loss in the propagated diffraction orders, is clearly illustrated in Fig. 4(b) where
the diffracted zero order is more efficient when the angle between the incident light and the
aperture axis (tilt direction) is small (blue curve of Fig. 4(b)) compared to the opposite incident
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angle case (red curve of Fig. 4(b)). Let us notice that the property of symmetry with respect to
the angle of incidence is valid for any resonance of the transmission as illustrated in the same
Fig. 4(a) where the two T E11-based transmission peaks exhibit the same symmetry properties
with respect to the normal incident axis (θ = 0o) and also reach 100% independently of the
angle of incidence. Nevertheless, for large values of θ (20o), the Rayleigh anomaly approaches
the T E11-based transmission peaks and a coupling between the two resonances occur resulting
in a modification of the transmission properties.
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Fig. 4. (a) Calculated transmission spectra in color level versus the angle of incidence.
Inset of (a) presents the illumination direction with respect to the tilt angle. Two Rayleigh
anomalies can be seen in the figure and are indicated by the value of the (m, l) corresponding
to diffracted order (m along x and l along y axis). (b) two cross-sections made on (a) and
illustrating the transmission spectra for two angles of incidence θ = 40o in solid blue line
and θ =−40o in dashed red line. Note that the up- and down-arrows indicate the position
of T EM-based transmission peak and the Rayleigh anomaly respectively whereas the value
of the tilt angle is fixed to α = 35o. The inset of (b) shows the residual numerical signal
(Δ= |T (θ = 40o)−T (θ =−40o)|) corresponding to the difference between the two spectra
only in the sub−λ range.

3. Transmission properties

As already mentioned, an important information from these spectra is that, for the SAAA struc-
ture, which exhibits a central symmetry (see Appendix), the transmission reaches 100% at the
wavelength resonance whatever the angle of incidence for a fixed value of the tilt angle. This
property is replaced with another surprising property when one considers planes of incidence
that are not along a direction of periodicity of the structure, as shown in Fig. 5, where different
illumination configurations are considered by varying both the angle of incidence θ and the
azimuthal one φ assuming β = 0o. For each couple (θ ,φ ), the two polarization states (TE, TM)
are studied and we found that the sum of the transmission at the T EM-based peak is equal to
100% whatever the couple (θ ,φ ) is. In Figs. 5(a,b) and 5(e,f), we also observe the disconti-
nuities corresponding to Rayleigh anomalies indicated by the indexes ((0,-1) and (-1,0)). The
fact that for the structure under study, the sum of the transmittivities for TE and TM incident
polarizations is equal to 100% at resonance whatever the angle of incidence, can be explained
by analyzing the eigenvectors and eigenvalues of the T ∗

1 T1 matrix, where T1 is the scattering
matrix of the structure and T ∗

1 is the conjugate transpose of T1. The details are presented in the
Appendix, which extends the demonstrations made in [26] and [27]. To sum-up, the two eigen-
values of the T ∗

1 T1 matrix are real and positive and they are the limits of the range of variation
of the transmittivity when the polarization of the incident plane wave takes all possible states,
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Fig. 5. (Top) Transmission spectra for different angles of incidence in both TE (a) and TM
(b) polarizations obtained for an arbitrary azimuthal angle φ = 30o. (c) Cross-sections made
over (a) and (b) at θ = 37.5o. (d) Transmission efficiencies at λT EM of the two polarization
states (TM in dashed red line and TE in solid blue line) and their sum (green horizontal
line) as a function of the angle of incidence θ . (Bottom) Transmission spectra for different
azimuthal angles φ values in both TM (e) and TE (f) polarizations for an angle of incidence
of θ = 30o. (g) Cross-sections made over (e) and (f) at φ = 37.5o. (h) Transmission effi-
ciencies at λT EM of the two polarization states (TM in dashed red line and TE in solid blue
line) and their sum (green horizontal line) as a function of the azimuthal angle φ .
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even non linear polarization states (see the Appendix, first paragraph). The only necessary as-
sumption is that the only propagative diffraction order is the zero order. The two eigenvectors,
which are orthogonal to each other, correspond to the polarizations of the incident wave that
allow to obtain these limits of transmittivity. Hence, it appears that it is better to work with the
eigenvalues and eigenvectors of the T ∗

1 T1 matrix rather than with the transmittivities for TE and
TM incident polarizations, especially for structures leading to polarization conversion.

Furthermore, if the structure has a symmetry center (see Fig. 6), it is possible to show (see
the Appendix, paragraph 2-4) that one eigenvalue of the T ∗

1 T1 matrix reaches 100% when one
eigenmode is excited, provided that the materials are lossless. Note that if the structure is sym-
metrical with respect to an axis normal to the plane containing the directions of periodicity of
the structure, the same property occurs for the reflectivity, while if the structure is symmetrical
with respect to a plane containing the directions of periodicity, both reflectivity and transmittiv-
ity reaches 100% for neighbouring wavelengths around resonance, as shown in [26] and [27].

������� D�����

D������������

+C

(a)

�� ����� -´D� ����-´

D� ����-´

+C

�� ����� -´

(b)

Fig. 6. General scheme of a structure exhibiting a central symmetry in (a) and the reciprocal
configuration in (b).

Coming back to the SAAA structure presenting a center of symmetry, we can say that there
exists a polarization state (Pmax) for which the transmission reaches 100%. Moreover, in our
case, as we consider small apertures in a metallic plate, the orthogonal Pmin polarization state
leads to a negligible transmission, or eventually to a residual transmission due, for example,
to the presence of another resonance at a different wavelength. The Pmax polarization is clearly
the TM polarization when β = φ = 0 (see Fig. 7), meaning a plane of incidence parallel to the
aperture axis. In the general case of arbitrary incident polarization, because of the fact that the
Pmax and Pmin polarization are orthogonal to each other, the sum of the transmittivities for TE
and TM polarizations is equal to the sum of the eigenvalues of the T ∗

1 T1 matrix, hence is close
to 100%. This property is numerically verified through the results presented in Fig. 5 where
different illumination configurations are considered by varying both the angle of incidence θ
and the azimuthal one φ assuming β = 0o. For each couple (θ ,φ ), the two polarization states
(TE, TM) are studied and we found that the sum of the transmission at the T EM-based peak is
equal to 100% whatever the couple (θ ,φ ) is.

Let us now consider an arbitrary configuration where φ and β are simultaneously nonzero
and different from each other. Consequently, we have fixed the geometrical and illumination
parameters to : Ri = p/6,Ro = p/3,h = 2p/3,α = 30o,φ = 65o,β = 25o and θ =−35o. Figure
7(a) presents the numerical transmission spectra where the dashed red line and the solid blue
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Fig. 7. Transmission spectra of an arbitrary SAAA structure where β = 25o,Ro = p/3,Ri =
p/6,h = 2p/3 illuminated by a linearly polarized plane wave with φ = 65o and θ =−35o.
(a) The solid blue line corresponds to the case of a TM polarization while the dashed
red one fits the case of a TE polarization. The dotted black line presents the transmission
of an unpolarized incident beam. (b) Transmission spectra for the two polarization states
(Pmax,Pmin that correspond to the two eigenvalues of the matrix T ∗

1 T1). Note that the polar-
ization states Pmax and Pmin vary with the wavelength. The dotted black line is the same as
in (a) because it equals to (Pmax +Pmin)/2 = (T E +T M)/2.

one correspond to the TE and TM polarization states respectively. Once again, the sum of
the transmission at λT EM is equal to 1. The two eigenvalues of the T ∗

1 T1 matrix are plotted
in Fig. 7(b) where the solid green line corresponds to the polarization state Pmax while the
dashed magenta one represents the Pmin state. As expected, perfect transmission is obtained at
λT EM for the Pmax polarization while an almost zero transmission (2.6% only) occurs for the
orthogonal polarization Pmin. Note that, for the Pmax polarization, other transmission maxima
(up to 100%) arise corresponding to additional transmission resonances (especially due to the
excitation of the T E11 guided mode at two different wavelength values corresponding to Fabry-
Perot harmonics). It is important to note that the eigenvectors corresponding to the eigenvalues
plotted in Fig. 7(b) generally vary with the wavelength, hence, the polarization state allowing
a 100% transmittivity may not be the same when the T EM and the T E11 modes are excited.
From this study, it appears that when one eigenmode is excited, the transmission efficiency
of an unpolarized incident beam at the resonance wavelength is, at least, equal to 50%. This is
confirmed by the plot of the transmittivity for an unpolarized wave in Fig. 7 Another conclusion
is that a necessary condition to obtain a polarization independent transmittivity at resonance is
to excite two eigenmodes.

4. Giant energy deviation

Finally, let us emphasize that in the sub-wavelength regime, at λT EM and for the polarization
state Pmax, the incident energy is totally routed through the apertures for every value of the tilt
angle. As an example, we consider a SAAA structure with α = 35o illuminated by a plane wave
propagating at θ =±75o. The calculated transmission spectra for the Pmax polarization state are
presented in Fig. 8(a). A T EM-based transmission peak occurs at λT EM = 2.3p whatever the
sign of θ . In order to visualize the energy propagation in the vicinity of the SAAA, the energy
flow (Poynting vector) is also calculated and presented in a vertical plane containing the axis of
the apertures. One can clearly see in Figs. 8(b) and 8(c) the giant bending of light that occurs
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over a distance as small as λ/5 (see the direction change of the white arrows at the bottom of
the structure). In the vicinity of the structure, the light energy follows a serpentine path with
laminar flow (total transmission) through the nano-structured metallic film after suffering a total
deviation of 220o over a distance smaller than the wavelength.
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Fig. 8. Transmission spectra for an angle of incidence θ = 75o in (a) and θ = −75o in
(b) for the same SAAA structure of Fig. 2. (c) Square root of the electric field amplitude
distributions (in color map) around the nano-structured metallic film in a vertical plane
containing the aperture axis for an illumination at θ = 75o. White arrows correspond the
the tangential Poynting vector. (d) Same as (c) for θ =−75o.

5. Conclusion

In summary, we have studied the fundamental aspect of the enhanced transmission mechanism
through the SAAA structure on the basis of both numerical and analytical calculations. As an
additional result, we presented some properties of this structure that demonstrate a high po-
tential for applications in various fields such as spectral filtering regardless of the illumination
direction. The next step should address the potential enhancement of the transmission of unpo-
larized beams (more than 50%) by spectrally approaching two different resonances (here the
T EM and the T E11 ones) without causing destructive coupling through a degeneracy breaking.
This may require an acurate optimization of the parameters of the structure or more complex
structures, as it was done in the case of all dielectric sub-wavelength periodic structures pre-
senting a resonance peak due to the excitation of a leaky guided mode (guided mode resonance
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grating) [28, 29] . Nevertheless, the case of larger transmission of about 70% can be found in
Fig. 7(b) and corresponds to a transmission based on the excitation of the T E11 mode (see peak
δ in Fig. 7). The discussion of this result is very simple but it is out of the paper scope. The
giant deviation of the energy flux over small distance presented in Figs. 8(c) and (d), brings
a supplementary and comprehensive physical insight about the guided mode-based enhanced
transmission paradigm without the need to resort to surface plasmons or other surface waves.

Appendix

We consider a periodic structure composed of lossless materials which presents only one propa-
gating diffraction order (the zero order). From the study of the scattering matrix of the structure,
we will derive some properties of its transmittivity. This appendix is an extension of the works
published in [27] and [26], and similar properties could be derived for the reflectivity.

In the following, we will first show that the eigenvalues of the transmittivity matrix for the
energy, denoted T∗

1T1 hereafter, are the limits of the variation of the transmittivity when the
incident polarization takes all possible states, and that they are obtained for orthogonal polar-
izations (given by the eigenvectors). Thus, these eigenvalues are the key variables to understand
the behavior of a sub-wavelength grating with respect to the incident polarization. This is true
especially in the case where the eigenvectors are not simply the s and p vectors, which occurs
in conical incidence or when particular eigenmodes are excited.

Second, using only the reciprocity theorem and the energy balance, and with no hypothesis
on the symmetry of the structure, we will show that the eigenvalues of T∗

1T1 are unchanged
when the angle of incidence is changed in its opposite, hence generalizing a property that is
well know for gratings illuminated in classical incidence (plane of incidence perpendicular to
the grating grooves). This is a new result that was not published in [26].

Third, we consider structures having a central symmetry (examples are shown in Figs. 1 and
6). This kind of symmetry was discussed in [27] which focused on gratings illuminated under
classical incidence (plane of incidence containing a direction of periodicity) for which there is
no polarization conversion, but it was not discussed in [26]. We show that when one mode is
excited, one eigenvalue of T∗

1T1 reaches 100% at resonance. This means that the transmittivity
is equal to 100% at the resonance wavelength when the incident polarization corresponds to
that of the eigenvector associated with this eigenvalue, while the transmittivity is equal to the
transmittivity of the structure out of resonance for the orthogonal polarization.

.1. From the scattering matrix to the transmittivity

We start from the scattering matrix S(κ,λ ) relating the incoming field (from the substrate and
the superstrate), with wavelength λ and wave-vector with in-plane component κ (lying in the
xy-plane in Fig. 6), to the field diffracted by the structure in the zero order of diffraction. The
reader can refer to [26] (sections 2 and 3) for a full definition of the scattering matrix and of
the s and p vectors associated to each incident and diffracted field (in the superstrate and the
substrate). This 4x4 matrix is composed with 4 blocks:

S(κ,λ ) =
(

R1(κ,λ ) T2(κ,λ )
T1(κ,λ ) R2(κ,λ )

)
. (2)

The reflection and transmission matrices Rj and Tj, where the subscript j = 1 (resp. j = 2) is
used when the incident field comes from the superstrate (resp. substrate), are 2x2 matrix. They
contain the reflection and transmission conversion coefficients of a s or p polarized field to a s
or p polarized field. For example, T1 writes as
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T1 =

(
tss
1 tsp

1
t ps
1 t pp

1

)
. (3)

From the definition of the scattering matrix it follows that the energy τ transmitted in the
substrate when the incident field comes from the superstrate only can be written as:

τ = l
T ∗

1 T1
a

∣∣∣〈I1|VT∗
1T1

a

〉∣∣∣2 + l
T ∗

1 T1
b

∣∣∣〈I1|VT∗
1T1

b

〉∣∣∣2 , (4)

where l
T ∗

1 T1
a and l

T ∗
1 T1

b , are the eigenvalues and V
T∗

1T1
a and V

T∗
1T1

b the eigenvectors of the matrix
T∗

1T1, and I1 is a two-elements vector containing the s and p components of the amplitude of
the incident field vector.

It is important to note that T∗
1T1 is a hermitian matrix, thus its eigenvectors are orthogonal

(in the sense of hermitian scalar product) to each other and its eigenvalues are real and positive.

Hence, from Eq. (4), it follows that l
T ∗

1 T1
a and l

T ∗
1 T1

b are the limits of the variation of the transmit-
tivity when the incident field takes all possible states of polarization (even non linear). These
limits are obtained for two orthogonal polarizations. Moreover, for any two incident orthogonal
polarizations, the sum of the transmittivity is equal to the sum of the eigenvalues.

.2. Properties of the scattering matrix

Several properties of the scattering matrix can be deduced from the energy balance and the
reciprocity theorem. Again, the demonstration is given in [26] (section 3 and 5), and only the
results will be reported here. Note that in the following, we will need to consider the scattering
matrix for complex wavelengths. Hence, we use an expression of the energy balance suitable
for a complex variable λ with complex conjugate λ :

R1
∗(κ,λ )R1(κ,λ ) + T1

∗(κ,λ )T1(κ,λ ) = 1 (5)

R2
∗(κ,λ )R2(κ,λ ) + T2

∗(κ,λ )T2(κ,λ ) = 1 (6)

R1
∗(κ,λ )T2(κ,λ ) + T1

∗(κ,λ )R2(κ,λ ) = 0 (7)

T2
∗(κ ,λ )R1(κ,λ ) + R2

∗(κ,λ )T1(κ,λ ) = 0 (8)

where 1 stands for the unit diagonal matrix of size 2x2.
The reciprocity theorem entails that S(−κ,λ ) = t(S(κ,λ )) (where t(S) is the transpose of

S) which can be written as:
R1(−κ,λ ) = t(R1(κ,λ )) (9)

R2(−κ,λ ) = t(R2(κ,λ )) (10)

T2(−κ,λ ) = t(T1(κ,λ )). (11)

Now, we shall demonstrate a property related to the symmetry of the structure with respect to
a symmetry center C. We consider two configurations, as depicted in Fig. 6. In the first config-
uration Fig. 6(a) I1(κ,λ ) and I2(κ,λ ) are two elements vectors containing the amplitudes, in s
and p polarizations, of the incident field coming from the superstrate and the substrate respec-
tively, and D1(κ,λ ), D2(κ,λ ) stand for the diffracted field. In the second configuration Fig.
6(b), the structure is illuminated with I′1(−κ,λ ) and I′2(−κ,λ ) in such a way that I′2(−κ,λ )
is the symmetric of I1(κ,λ ) with respect to the center of symmetry C, and I′1(−κ,λ )) is the
symmetric of I2(κ,λ ):

I′1(−κ,λ ) = I2(κ,λ )
I′2(−κ,λ ) = I1(κ,λ ).

(12)
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Because the structure is symmetric with respect to C, the two configurations are physically
equivalent, and we can say that the same equality is verified for the diffracted field:

D′
1(−κ,λ ) = D2(κ,λ )

D′
2(−κ,λ ) = D1(κ ,λ ).

(13)

From the definition of the scattering matrix, we write:
(

D′
1(−κ,λ )

D′
2(−κ,λ )

)
=

(
R1(−κ,λ ) T2(−κ,λ )
T1(−κ,λ ) R2(−κ,λ )

)(
I′1(−κ,λ )
I′2(−κ,λ )

)
, (14)

and, on the other hand:(
D1(κ,λ )
D2(κ,λ )

)
=

(
R1(κ,λ ) T2(κ ,λ )
T1(κ,λ ) R2(κ,λ )

)(
I1(κ,λ )
I2(κ,λ )

)
. (15)

From Eqs. (14) and (15) using Eqs. (12) and (13), we deduce that

R1(−κ,λ ) = R2(κ ,λ )
T1(−κ,λ ) = T2(κ,λ ).

(16)

Finally, using the reciprocity theorem Eqs. (9)–(11), it follows that

R1(κ,λ ) = t(R2(κ,λ ))
T1(κ,λ ) = t(T1(κ,λ ))
T2(κ,λ ) = t(T2(κ,λ )).

(17)

.3. Properties of the eigenvalues

Let us now consider the energy transfer transmission and reflection matrices Tj
∗Tj and Rj

∗Rj,
with j = 1 or 2. We shall demonstrate that their egienvalues are unchanged when the polar angle

is changed in its opposite. The two eigenvalues for each of the matrices are denoted as l
T ∗

j Tj

k

and l
R∗

j R j

k (with k = a or b), and V
T∗

j Tj

k and V
R∗

j Rj

k stand for the associated eigenvectors.
The first property comes from the energy balance. Multiplying Eq.(5) (resp. Eq.(6)) , with

V
T∗

1T1
k (resp. V

T∗
2T2

k ), it is easy to show that

l
R∗

1R1
k = 1− l

T ∗
1 T1

k , and V
R∗

1R1
k = V

T∗
1T1

k ,

(resp. l
R∗

2R2
k = 1− l

T ∗
2 T2

k , and V
R∗

2R2
k = V

T∗
2T2

k ).
(18)

The second property comes from the reciprocity theorem. Considering a given
real κ , and from the definition of the eigenvalue of T1

∗(κ,λ )T1(κ,λ ), we have

T1
∗(κ,λ )T1(κ,λ )V

T∗
1T1

k (κ,λ ) = l
T ∗

1 T1
k (κ,λ )VT∗

1T1
k (κ,λ ). Using the relation between T1(κ,λ )

and T2(−κ,λ ) coming from the reciprocity theorem (Eq. (9)), we obtain

T2(−κ,λ )t(T2(−κ,λ ))VT∗
1T1

k (κ,λ )

= l
T ∗

1 T1
k (κ ,λ )VT∗

1T1
k (κ,λ ).

(19)

Taking the complex conjugate and multiplying the two sides of Eq. (19) with T2
∗(−κ,λ ),

we obtain that

T2
∗(−κ,λ )T2(−κ,λ )[T2

∗(−κ,λ )VT∗
1T1

k (κ,λ )]

= l
T ∗

1 T1
k (κ,λ )[T2

∗(−κ,λ )VT∗
1T1

k (κ,λ ).
(20)
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This means that

l
T ∗

2 T2
k (−κ,λ ) = l

T ∗
1 T1

k (κ,λ ) and V
T∗

2T2
k (−κ,λ )

= T2
∗(−κ,λ )VT∗

1T1
k (κ,λ ).

(21)

A similar demonstration using the definition of the eigenvalues of Rj
∗(κ,λ )Rj(κ ,λ ) (for j = 1

or 2) and the Eqs. (10) and (11) leads to

l
R∗

j R j

k (−κ,λ ) = l
R∗

j R j

k (κ,λ ) and V
R∗

j Rj

k (−κ,λ )

= Rj
∗(−κ,λ )V

R∗
j Rj

k (κ,λ ),
(22)

for k = a and b (the two eigenvalues), and j = 1 or 2 (the two reflectivity matrices).
Finally, applying both the energy balance and the reciprocity theorem, we obtain the follow-

ing relation for the eigenvalues (k = a or b):

l
T ∗

1 T1
k (κ,λ ) = l

T ∗
2 T2

k (κ,λ ) = l
T ∗

1 T1
k (−κ,λ ) = l

T ∗
2 T2

k (−κ,λ ), (23)

l
R∗

1R1
k (κ,λ ) = l

R∗
2R2

k (κ,λ ) = l
R∗

1R1
k (−κ,λ ) = l

R∗
2R2

k (−κ,λ ). (24)

In other words, the energy balance and the reciprocity theorem entail that the two reflec-
tivity (resp. transmittivity) matrices for the energy have the same eigenvalues, and that these
eigenvalues are symmetrical with respect to the polar angle of incidence. This last property is
the vectorial analog of the property which is well known for 1D blazed gratings illuminated
in classical incidence (plane of incidence perpendicular to the grating grooves). Note that the
eigenvectors of the reflectivity (resp. transmittivity) matrices for the energy do change when the
polar angle is changed in its opposite, which means that in case of polarization conversion, the
reflected and transmitted energy are not symmetric with respect to the polar angle of incidence
for any state of polarization.

.4. Resonant behavior of the eigenvalues

In this paragraph, we shall demonstrate that one eigenvalue of the energy transmittivity matrix
T1

∗T1 reaches 100% if the structure has a central symmetry. From now, we consider a con-
figuration for a given real κ where only one eigenmode of the structure can be excited. This
means that the equation det(S−1(κ ,λ )) = 0 has one complex solution λ = λp(κ) where λp(κ)
stands for the dispersion relation of the eigenmode. We introduce the eigenvalues lR1

a (κ,λ ) and
lR1
b (κ,λ ) and eigenvectors VR1

a (κ,λ ) and VR1
b (κ,λ ) of the matrix R1. We suppose that only

one of the two eigenvalues of R1 shows a resonant behavior, the other remaining a slowly vary-
ing function. We have checked numerically the validity of this hypothesis for the configuration
under study. Following the arguments given in [26] (end of section 4), for λ in the vicinity of
λp(κ) we write the resonant eigenvalue, say lR1

a , as

lR1
a (κ,λ ) = u(κ,λ )

λ −λ R1
z (κ)

λ −λp(κ)
, (25)

where u(κ,λ ) is a function with neither roots nor poles, and λ R1
z (κ) a complex number. The

unicity of the root of lR1
a (κ,λ ), which is due to the fact that only one mode is excited, is an

important property that will be used at the end of the proof.
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When λ = λ R1
z (κ), we obtain that R1(κ,λ R1

z )VR1
a (κ,λ R1

z ) = 0. Introducing this in Eq. (5),
where the two sides have been multiplied with VR1

a (κ,λ R1
z ), we obtain

T1
∗(κ,λ R1

z )T1(κ,λ R1
z )VR1

a (κ,λ R1
z ) = VR1

a (κ,λ R1
z ) (26)

which is nothing but the eigenvector equation for T1
∗T1. This means that for λ = λ R1

z (κ), one

eigenvalue of T1
∗T1, say l

T ∗
1 T1

a (κ,λ R1
z ) is equal to unity. Its eigenvector is V

T∗
1T1

a (κ,λ R1
z ) =

VR1
a (κ,λ R1

z ). In other words, and not surprisingly, for λ = λ R1
z (κ), the maximum of transmit-

tivity is obtained when the incident configuration leads to a zero reflected field.
We shall now prove that the symmetry of the structure with respect to a symmetry center

entails the fact that λ R1
z (κ) is real, meaning that the transmittivity can reach 100% for a real

wavelength value. Multiplying the two sides of Eq. (8) with VR1
a (κ,λ R1

z ) and taking λ = λ R1
z (κ)

leads to
R2

∗(κ,λ R1
z )T1(κ,λ R1

z )Va(κ,λ R1
z ) = 0. (27)

Using Eq. (17), we obtain

R1(κ,λ R1
z )T1(κ,λ R1

z )Va(κ,λ R1
z ) = 0. (28)

As T1(κ,λ R1
z )Va(κ,λ R1

z ) can not be null (otherwise from Eq. (26), Va(κ,λ R1
z ) would be null),

we deduce that T1(κ,λ R1
z )Va(κ,λ R1

z ) is the eigenvector of R1 associated with an eigenvalue

which is null for λ = λ R1
z . As lR1

a (κ,λ ) has only one root and lR1
b (κ,λ ) has no root, we conclude

that λ R1
z (κ) is real. Hence, we have shown that there exists one real wavelength for which one

eigenvalue of the matrix T1
∗T1 is equal to 100%.
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de calcul de Franche-Comté”.
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