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Abstract
Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A de-

fect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes

in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN) stands out

as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster bio-

genesis, and in humans, this is associated with Friedreich’s ataxia, a neurodegenerative

disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, de-

spite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular

basis of the differing importance in the contribution of FXN remains enigmatic. Here, we

have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viabili-
ty strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile resi-

due, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes.

We found that in the double mutant IscUIM ΔcyaY, the ISC pathway was completely abol-

ished, becoming equivalent to the ΔiscU deletion strain and recapitulating the drastic phe-

notype caused by FXN deletion in eukaryotes. Biochemical analyses of the “eukaryotic-like”

IscUIM scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally,

bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of

FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary sce-

nario in which the current mitochondrial Isu proteins originated from the IscUIM version pres-

ent in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S

cluster biogenesis system, in bacteria, was accompanied by diminished contribution of

CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the

amino acid present at the 108th position of the scaffold.

Author Summary

Iron sulfur (Fe-S) clusters are ubiquitous cofactors found in proteins which function in
very diverse pathways ranging from respiration to DNA repair. The mitochondrial Fe-S
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biogenesis machinery ISC was inherited from the bacterial ancestor of mitochondria. In
both prokaryotes and eukaryotes, deficiency of core ISC components is associated with
drastic decrease in Fe-S proteins activities and causes severe phenotypes. In this context,
the case of frataxin, an ISC associated component, is surprising since the lack of frataxin in
prokaryotes leads to very mild phenotypes in comparison to eukaryotes. Here, we showed
that in an E. coli strain, a single mutation in a key component of the Fe-S cluster biogenesis
pathway, namely the scaffold protein, was sufficient to impose a strict frataxin dependen-
cy. Remarkably, this mutation substituted an Ile residue that is conserved in prokaryotic
scaffolds, for one Met residue that is conserved in eukaryotic scaffolds. These results pro-
vide a lead towards understanding the differences between otherwise highly related pro-
karyotic and eukaryotic ISC Fe-S cluster biogenesis machineries, and provide a new entry
point into deciphering the molecular role of frataxin.

Introduction
Fe-S bound proteins are ubiquitous and involved in a wide variety of cellular processes such as
respiration, regulation of gene expression and central metabolism [1,2]. Maturation of Fe-S
proteins is an essential cellular process for both eukaryotic and prokaryotic organisms. The mi-
tochondrial ISC Fe-S biogenesis machinery has been proposed to be inherited from a bacterial
ancestor, and they function in a similar way by utilizing two major steps: (i) an assembly step
in which the cluster forms transiently on a scaffold protein, and (ii) a delivery step in which the
cluster is transferred to apotargets via dedicated carriers [3–5]. The ISC scaffold (Isu for eu-
karyotes / IscU for prokaryotes) contains three conserved cysteine residues that are essential
for Fe-S cluster binding and a conserved motif that is specifically recognized by DnaKJ related
chaperones/co-chaperones to facilitate cluster release [6–10]. Sulfur is produced from L-cyste-
ine by the cysteine desulfurase, (Nfs1 for eukaryotes / IscS for prokaryotes) a pyridoxal-5’-
phosphate (PLP)-dependent enzyme [11–15]. The sulfur is bound in the form of a persulfide to
an active-site cysteine residue of the cysteine desulfurase and is subsequently transferred to the
scaffold [15–18]. Frataxin (FXN in human, Yfh1 in yeast and CyaY in bacteria) is a protein
present in mammals, plants and bacteria [19]. FXN interacts with the cysteine desulfurase/scaf-
fold complex [20–26]. In both prokaryotes and eukaryotes, deficiency of core ISC components
including the ISC scaffold or cysteine desulfurase is associated with severely defective Fe-S clus-
ter biogenesis that translates into drastic phenotypes [12–14,26–29]. In contrast, the conse-
quences resulting from deficiency in FXN differ in eukaryotes or prokaryotes. In yeast,
deficiency in frataxin (Yfh1) results in defective growth, mitochondrial iron accumulation, de-
creased heme synthesis, loss of Fe-S cluster protein activity and hypersensitivity to oxidants
[30–34]. In humans, altered levels of FXN lead to a drastic decrease in Fe-S protein activities
and cause the neurodegenerative disease Friedreich’s ataxia [35–39]. We and others recently es-
tablished the participation of E. coli frataxin (CyaY) in ISC-assisted biogenesis of Fe-S clusters.
Accordingly, ΔcyaYmutants exhibit pleiotropic but mild phenotypes [40–44]. Both the physio-
logical advantage and the molecular reasons underlying this apparent loss in importance of
CyaY in prokaryotes remain obscure.

Recently, in their analysis in Saccharomyces cerevisiae, the Dancis lab reported that a point
mutation in the scaffold protein Isu1 could bypass a Yfh1 deletion [45]. This demonstrated
that a single mutation could make survival of a eukaryote independent of FXN. In the present
study, we investigated whether the reverse was true, i.e. could E. coli be turned into a CyaY
(FXN)-dependent organism. This proved to be possible and required a single amino acid
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change in the IscU scaffold as well. Genetic, physiological, biochemical, bioinformatic and phy-
logenomic approaches were carried out to characterize this E. coli variant. The results of these
studies led us to propose an evolutionary scenario according to which frataxin is an ISC-
associated factor that appeared in Proteobacteria. It was then acquired by eukaryotes via endo-
symbiotic mitochondrial event where it became essential. Meanwhile its importance dimin-
ished in bacteria possibly because these later contained other Fe-S cluster biogenesis systems,
such as SUF in many instances.

Results

CyaY is essential in a “eukaryotized” E. coli
The studies by the Dancis group revealed that the contribution of frataxin to Fe-S cluster bio-
genesis might depend on the identity of the residue present at position 108 in IscU [45]. To test
this hypothesis, we exchanged the 108th ATT Ile codon with an ATGMet codon in the iscU se-
quence, and the cognate iscUI108M allele was introduced into the E. coli chromosome, giving
rise to the BR755 (iscUIM) strain. Moreover, in order to make this strain more eukaryotic-like,
we deleted the suf operon encoding the second E. coli Fe-S cluster biogenesis system, giving rise
to the BR763 (iscUIM Δsuf) strain. Growth of the BR763 strain in LB or in minimal M9 medium
was similar to the reference strain DV901 (Fig 1A and 1B). In contrast, introduction of the
cyaY deletion in the iscUIM Δsuf strain had a drastic negative impact on growth in glucose M9
minimal medium (Fig 1B). To test whether the growth defect of the iscUIM Δsuf ΔcyaY strain in
minimal medium was related to defects in Fe-S proteins, we tested whether it was auxotrophic
for the amino acids Ile, Leu, and Val whose synthesis depends on Fe-S enzymes. Addition of all
of the 20 amino acids restored growth, whereas omitting Ile, Leu, and Val failed to rescue
growth (Fig 1C). However, adding only Ile, Leu, and Val failed to restore growth showing that
Ile, Leu, and Val were necessary but not sufficient. Adding Cys and Met in addition to Ile, Leu,
and Val, did not rescue growth of the iscUIM Δsuf ΔcyaY indicating that other processes must
also be impaired in this strain. Addition of vitamins improved marginally growth of the iscUIM

Δsuf ΔcyaY strain (S1 Fig). In rich medium, the growth defect of the iscUIM Δsuf ΔcyaY strain
indicated that, in addition to nutritional requirements, this strain was also impaired in other
processes (Fig 1A).

A second assay measuring killing efficiency by aminoglycosides (gentamicin, Gm, and kana-
mycin, Kan) was used. This assay is an indirect read-out of ISC-mediated Fe-S cluster biogene-
sis efficiency but is independent of SUF functioning. Indeed, uptake of aminoglycosides is
dependent upon proton motive force (p.m.f) at the cytoplasmic membrane, which depends
upon the activity of Nuo (also called Complex I), a multi-protein complex containing 9 Fe-S
clusters, whose maturation depends predominantly on the ISC system and only marginally on
the SUF system [46]. The iscUIM strain was found to exhibit wild-type sensitivity to Gm and
Kan, whereas the ΔcyaY derivative iscUIM ΔcyaY showed enhanced resistance, again suggesting
that ISC dependent Fe-S cluster biogenesis was compromised in the absence of CyaY in this
background (Fig 2). As a matter of fact, the iscUIM ΔcyaY strain exhibited a level of resistance
similar to that of a ΔiscU strain, illustrating the important contribution of CyaY in a back-
ground using a eukaryotic-like IscUIM scaffold. In contrast, the wt strain remained sensitive to
Gm and Kan whether or not CyaY was present (Fig 2).

Because frataxin deficiency, in yeast, led to hypersensitivity to oxidants, we also tested the
importance of CyaY in the “eukaryotized” background. Fig 3 shows that introduction of the
cyaY deletion in the iscUIM Δsuf strain led to hypersensitivity to hydrogen peroxide and to
paraquat, a superoxide generator.

Single Mutation in the ISC Scaffold Imposed Frataxin Dependency
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Fig 1. The iscUIM Δsuf ΔcyaY strain exhibits growth defect.Growth of wt (DV901), iscUIM Δsuf (BR763)
and iscUIM Δsuf ΔcyaY (BR767) strains in LB (A). The wt (DV901), iscUIM Δsuf (BR763) and iscUIM Δsuf
ΔcyaY (BR767) strains were grown overnight in glucose M9 minimal medium supplemented with all 20 amino
acids. Cultures were then diluted into fresh glucose M9 minimal medium (B). Strains iscUIM Δsuf (BR763)
and iscUIM Δsuf ΔcyaY (BR767) were grown overnight in glucose M9minimal medium supplemented with all
20 amino acids. Cultures were then diluted into a fresh glucose M9minimal medium supplemented with all
amino acids or with all except Ile, Leu and Val (C). Growth was monitored at 600 nm. The experiment was
repeated at least three times. One representative experiment is shown.

doi:10.1371/journal.pgen.1005134.g001
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Fig 2. The iscUIM ΔcyaY strain is resistant to aminoglycosides. Survival of wt (DV901), iscUIM (BR755)
and their ΔcyaY derivatives (DV925 and BR756) without antibiotic (A) and after (B) Gentamicin (Gm) (5 μg/
mL) and Kanamycin (Kan) (10 μg/mL) (C) treatment. Survival, measured by colony-forming units (CFU) per
mL, was normalized relative to time zero at which the antibiotic was added (midexponential phase cells; ~5
×107 CFU/mL) and was plotted as log10 of % survival. Error bars represent the standard error from three
independent experiments.

doi:10.1371/journal.pgen.1005134.g002
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Altogether, these results indicate that an E. coli lacking SUF can be turned into a frataxin-
dependent organism simply by changing a single residue in the IscU scaffold.

The iscUIM-associated defects are due to decreased Fe-S biogenesis
In order to ascertain that the drastic defects observed in the iscUIM ΔcyaY strain were directly
due to a dysfunction of Fe-S cluster biogenesis, we tested the activity of several Fe-S cluster-
containing proteins. These latter were IscR, a [2Fe-2S] transcriptional regulator, Nuo and Sdh,
two multi-protein complexes containing 9 and 3 Fe-S clusters, respectively. In full agreement
with the phenotypic tests reported above, introduction of a ΔcyaYmutation in a strain synthe-
sizing the eukaryote-like IscUIM scaffold essentially recapitulated the effect of deleting the scaf-
fold-encoding gene iscU (Fig 4A, 4B and 4C). As a point of comparison, in the iscUIM strain,
the IscR, Nuo and Sdh activities were decreased by 1.5–2 fold when compared to the wt strain
(Fig 4A, 4B and 4C). Immunoblot analysis of the IscR, Nuo and IscUIM proteins ruled out that
the decreased activities were due to reduced amounts of target or scaffold proteins (Figs 4D
and S2). Altogether, these results indicate that even though it is a conservative change, a single
Ile-to-Met substitution in the IscU scaffold alters Fe-S biogenesis efficiency.

The IscUIM forms Fe-S cluster at a slower rate
In order to understand the molecular basis for the effect caused by the mutation, the IscUIM

protein was submitted to a thorough in vitro analysis. A plasmid encoding a His-tagged IscUIM

was constructed, and the tagged protein was purified in large quantities. The CD spectra of
IscUIM and IscUWT were similar, indicating that the mutation did not affect the secondary
structure of the protein (Fig 5A). Also gel filtration experiments indicated that the IscUIM

formed dimers like the IscUWT (S3 Fig).
The IscUWT was previously shown to be isolated from complexes together with IscS and

IscS-CyaY [23,24]. Therefore, we investigated whether the IscUIM had similar behavior. To this
purpose an anion exchange chromatography approach was used. Purified reconstituted
IscUWT or IscUIM was mixed anaerobically with molar stoichiometric amount of IscS and
CyaY proteins. The mixtures were loaded onto an anion exchange column (QFF), and the col-
lected fractions were analysed by SDS-PAGE. Using IscUWT, a first peak (peak 1), containing
IscU and IscS, eluted at 640 mMNaCl while a second major peak (peak 2), which eluted at 780

Fig 3. The iscUIM Δsuf ΔcyaY strain is hypersensitive to oxidative stress. The wt (DV901), iscUIM (BR755), iscUIM ΔcyaY (BR756), iscUIM Δsuf (BR763)
and iscUIM Δsuf ΔcyaY (BR767) strains were grown overnight at 37°C in LB medium. Cultures were diluted in sterile PBS, and 5 μL were directly spotted onto
LB medium plates containing either 1 mM H2O2 or 250 μM paraquat. Growth was analysed after overnight incubation at 37°C. Each spot represents a 10-fold
serial dilution.

doi:10.1371/journal.pgen.1005134.g003
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mMNaCl contained the IscS, IscU and CyaY proteins (Fig 5B left panel). The proteins recov-
ered in peak 1 and peak 2 were part of a complex, since each individual protein, IscUWT, IscS
and CyaY eluted from the column at 400, 430 and 530 mMNaCl, respectively (S4 Fig). A simi-
lar result was obtained when using IscUIM instead of IscUWT (Figs 5B right panel and S4).
Thus, these data show that the ability of IscU to associate with IscS and CyaY was not altered
by the Ile-to-Met mutation.

Lastly, we investigated whether IscUIM could assemble a [2Fe-2S] cluster. Fig 5C shows that
after anaerobic Fe-S cluster reconstitution, IscUWT and IscUIM displayed similar UV-vis.
spectra characteristic of [2Fe-2S] clusters, with absorption maxima at 320, 410 and 456 nm
(Fig 5C) [47–49]. However, the rate of Fe-S cluster formation differed between the two. Indeed
the rate of Fe-S cluster formation was slowed down by approximately 2-fold when using the
IscUIM mutant (Fig 5D). Altogether, these biochemical investigations revealed that the Ile-to-

Fig 4. Activities of Fe-S proteins in iscUIM andΔcyaY strains.Repression of the IscR-regulated gene (iscR::lacZ) (A), Nuo (B) and Sdh (C) activities in the
wt (DV901) (white bars), iscUIM (BR755) (white bars), their ΔcyaY derivatives (DV925, BR756) (black bars), and ΔiscU (BR667) (grey bars) strains. The
amount of IscR-dependent repression (fold repression) was determined by dividing the β-galactosidase activity present in the strain lacking IscR (DV915) by
the β-galactosidase activity measured for each strain. Error bars represent the standard error from three independent experiments. (D) Cell extracts of
indicated strains were subjected to immunoblot analysis using antibodies raised against IscU, IscR, NuoF and NuoC.

doi:10.1371/journal.pgen.1005134.g004
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Fig 5. Analysis of IscUIM in vitro. (A) Comparison of the CD spectra (expressed in mdeg) recorded in the
region 190–250 nm between IscUWT (filled line) and IscUIM (dotted line). (B) Purified IscS, CyaY and IscUWT

(left panel) or IscUIM (right panel) were mixed in 1:1:1 ratio (144 μM of each protein) in the presence of 4-fold
excess of Fe(SO4)2(NH4)2, 10-fold excess of L-cysteine and 5 mMDTT and incubated for 40 minutes. The
mixture was then loaded onto a QFF column equilibrated with 50 mM Tris pH 8. Proteins were eluted with 50
mM Tris pH 8 containing 1M NaCl. SDS-PAGE analyses have been performed on samples from the column
on-put (0) and the peaks 1 and 2 for each mixture. (C) Reconstitution of [2Fe-2S] IscUWT (filled line) and
IscUIM (dotted line) followed by UV-visible absorption spectroscopy. Apo-IscUWT or apo-IscUIM (144 μM)
were incubated with 5 mM DTT, 1.44 μM IscS, 2 mM L-cysteine and 0.43 mM Fe(SO4)2(NH4)2 in 50 mM Tris-
HCl pH 8. (D) Comparison of the kinetics of enzymatic Fe-S cluster formation on IscUWT (black diamonds)
and IscUIM (white squares). Experiment was carried out using 25 μM IscUWT or IscUIM, 25 μM IscS, 100 μM
Fe(SO4)2(NH4)2, 250 μM L-cysteine, 2 mM DTT. Fe-S cluster formation was followed by absorbance at 420
nm. The experiment was repeated at least three times. One representative experiment is shown.

doi:10.1371/journal.pgen.1005134.g005
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Met mutation specifically altered the efficiency of Fe-S cluster formation on IscUIM, with no
major effect on the structure of IscUIM or its capacity to interact with its partners IscS and
CyaY.

Evolution of CyaY and IscU in prokaryotes
CyaY contains a single domain of ~100 residues referred to as PF01491 in the Pfam database.
By using this domain as a query, we detected 598 homologous proteins within 2742 complete
prokaryotic genomes available in the local bank of complete genomes (2 March, 2014)
(S1 Table).

Homologs of CyaY were found in Alpha-, Beta-, Gammaproteobacteria, Acidobacteria and
Deltaproteobacteria species, and in one representative of Chlorobi phylum (Chloroherpeton
thalassium ATCC 35110) (Fig 6). These data indicate that CyaY is not widely distributed
among prokaryotes. The absence of a CyaY encoding gene in the ancestor of most bacterial
phyla suggests that a CyaY encoding gene was absent in LBCA. The phylogenetic analysis of
CyaY also showed that the representatives of Chlorobi and Acidobacteria phylum, which
emerge within the Gammaproteobacteria, have probably acquired cyaY gene by HGT (dotted
black arrows) (Figs 6 and S5). Altogether, these results suggest that the CyaY protein originated
in the bacterial domain, likely in the common ancestor of the Proteobacteria with massive loss
in Delta/Epsilonproteobacteria subdivision.

IscU homologs were retrieved using the PF01592 domain and were aligned using the multi-
ple alignment programMAFFT v7.045b (S1 Table). We imposed some additional criteria in
order for a protein to be considered as an IscU homolog: (i) the presence of the three conserved
cysteine residues that are required for the scaffold activity of IscU, (ii) the presence of the se-
quence that is recognized by the chaperone/co-chaperone system of the ISC system (LPPVK in
E. coli IscU) (iii) no other additional domain such as those that could be found in NifU, and
(iv) at least one other isc-related gene as a neighbor gene. Using these criteria, well studied U-
like proteins such as the SufU protein of Bacillus subtilis and the NifU protein of Azotobacter
vinelandii and their close homologs were eliminated. We then showed that all the prokaryotic
species that possessed CyaY also contained an IscU homolog. However, the reverse situation
was not true, since numerous prokaryotic species possessing IscU did not contain a CyaY en-
coding gene (Fig 6).

Sequence alignment of the 429 prokaryotic IscU homologs showed that amino acids at posi-
tion 108 were mostly (369/429) Ile, Leu or Val (Figs 6 and S6). A few IscU examples exhibited a
Met or Asn amino acid. Interestingly, an IscUM protein was found in 3 out of 28 species of the
Rickettsiales order (Alphaproteobacteria) (Orientia tsutsugamushi str. Boryong,
YP_001248706; Neorickettsia risticii str. Illinois, YP_003081518 and Neorickettsia sennetsu str.
Miyayama, YP_506192). An IscUM protein was also found in two Archaea species (2 out of 30
species)Methanosarcina barkeri str. Fusaro (YP_305925), andMethanosarcina acetivorans
C2A (NP_617616).

Discussion
ISC machineries from both eukaryotes and prokaryotes are considered to be homologous.
They share many components including cysteine desulfurases, scaffolds, dedicated-chaperone
proteins and A-type carriers. A defect in any of these conserved components provokes a drastic
drop in Fe-S cluster biogenesis in either eukaryotes or prokaryotes [12–14,26–29,50,51]. The
case of frataxin is different, however, as a lack of FXN in eukaryotes, humans or yeast, is
markedly more detrimental than a lack of CyaY in prokaryotes such as E. coli or Salmonella
[30–44]. A possible explanation for the difference is that variation within the Fe-S cluster

Single Mutation in the ISC Scaffold Imposed Frataxin Dependency
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assembly machineries provides different contexts, which in turn make the contribution of FXN
of greater importance than that of CyaY. In this regard, it is important to recall that the core
eukaryotic ISC system includes a component, Isd11, which interacts with Nfs1 [52–54]. A
model was recently proposed according to which the eukaryotic Nfs1 cysteine desulfurase re-
mains in an OFF state unless it interacts with FXN and Isd11 [55–58]. However, no Isd11-like
proteins are present in E. coli and this regulation of IscS activity does not apply [52,53].

Fig 6. Model for CyaY protein evolution. Schematic representation of the universal tree of life, for which complete genome sequences are available. LUCA
(Last Universal Common Ancestor), LECA (Last Eukaryotic Common Ancestor), LACA (Last Archaeal Common Ancestor) and LBCA (Last Bacterial
Common Ancestor). For each prokaryotic phylum (whose color code is the same as the one used in S5 Fig), the number of genomes encoding a CyaY and a
IscU homolog with respect to the number of complete available genomes is given. The black arrow indicates the presence of a CyaY encoding gene in the
ancestor of a given lineage. The evolutionary event at the origin of the cyaY gene in the Delta/Epsilon subgroup cannot be definitively inferred. One
hypothesis is that the cyaY gene is originated in the common ancestor of the Proteobacteria which together with a probable massive loss of cyaY (#) in Delta/
Epsilonproteobacteria subgroup explains the presence of CyaY in the species of the Delta/Epsilonproteobacteria subgroup. Dotted arrows indicate
horizontal gene transfer events (HGT) (black) and the mitochondrial endosymbiosis (grey). Sequence-logo of the region 99–108 in IscU homologs is also
represented using Phylo-mLogo. This region contains the LPPVKmotif and amino acid residues at position 108.

doi:10.1371/journal.pgen.1005134.g006
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Recent genetic analysis by the Dancis group showed that modifying part of the ISC machin-
ery could render it independent of FXN. Indeed, in a search for suppressing mutation that
could bypass the lack of FXN, these authors identified a mutation in the scaffold-encoding
gene ISU1 [45]. The suppressing mutation allowed Isu1 to activate Nfs1, thereby mimicking
FXN [55,59]. Remarkably, this mutation changed a Met residue, conserved in eukaryotes, to an
Ile residue, conserved into prokaryote IscU proteins. Although largely speculative, this result
may open the way to deciphering the contribution of frataxin in the functioning of ISC ma-
chineries, and possibly provide a lead towards understanding the differences between prokary-
otes and eukaryotes.

In the present work, we carried out a bioinformatic analysis of IscU sequences in prokary-
otes. This allowed us to confirm that position 108 was mostly occupied by Ile, as in E. coli, Leu
or Val. By contrast, position 108 in prokaryotes was almost never occupied by Met (see below
for an exception), which is the situation most frequently encountered in eukaryotes. In an ef-
fort to address the importance of this residue experimentally, the Ile residue was changed to
Met at position 108 of IscU and expressed into E. coli lacking SUF. The results confirmed the
influential role of that position. First, the E. coli strain containing a eukaryotic-like IscUIM be-
came fully dependent on CyaY. Thus, this strain was unable to mature a series of Fe-S cluster
containing proteins such the transcriptional regulator IscR, a [2Fe-2S] protein, or Nuo and
Sdh, multi-cluster containing enzymes of the electron transport chain. Moreover, such a strain
became auxotrophic for various amino acids, including Ile, Leu and Val, the branched amino
acids whose synthesis depends on the Fe-S cluster containing proteins, dihydroxy-acid dehy-
dratase (IlvD) and isopropylmalate dehydratase (LeuD). In addition, the strain showed hyper-
sensitivity to oxidative stress, a phenotype linked to FXN deficiency in eukaryotes [39,60,61].
Therefore, a single Ile-to-Met substitution was sufficient to turn E. coli into a frataxin-
dependent organism for Fe-S cluster biogenesis.

How could a single conservative Ile-to-Met change have such a crucial impact on Fe-S clus-
ter biogenesis? A hypothesis is that the Ile-to-Met mutation alters the IscU protein, diminish-
ing its efficiency in contributing to the overall Fe-S cluster biogenesis process and that in this
context, the contribution of CyaY becomes essential. To test this hypothesis, we carried out a
thorough biochemical characterization of the IscUIM variant and could rule out structural or
stability defects. This fits with the in vivo observation that the IscUIM protein was as abundant
as the wt protein and failed to exhibit instability as assessed by immunoblot analysis. Moreover,
we observed that the IscUIM protein interacted with its natural partners, IscS and CyaY, in a
mode indistinguishable from the wild type. In contrast, in vitro, IscUIM was found to assemble
Fe-S clusters at a rate 2-fold slower than the wild type. Interestingly, these data are consistent
with the in vivo observation that E. coli containing a chromosomal copy of the mutated iscU al-
lele was 2-fold less efficient in maturing IscR than the wt strain. Hence, altogether these results
support the notion that the Ile-to-Met mutation altered the kinetic formation of Fe-S clusters
on IscU. A possible structural explanation for the effect might be that the mutation modifies
the accessibility of sulfur or iron for Fe-S cluster intermediate formation, as the 108th position
is in close vicinity to the Cys106, one of the three Cys residues acting as ligands. Regardless of
the structural basis for this effect, the fact is that this analysis revealed that a eukaryotic-like
IscU is slightly less efficient than the E. coli one in assembling a cluster and as a consequence,
the contribution of frataxin becomes more significant for helping the process to go on. As pre-
viously shown, we observed that via its interaction with IscS, CyaY slowed down the kinetic of
Fe-S cluster formation on IscU (S7 Fig) [22,62]. At first this contradicts the view of CyaY acting
as a positive effector for Fe-S cluster formation and this has already been discussed at length in
the literature [22,62,63]. But what matters here is that CyaY also inhibited, and to the same ex-
tent, Fe-S cluster assembly by the IscUIM variant (S7 Fig). This indicated that the CyaY action
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is not strictly connected to the nature of the residue at position 108. Thus one possibility is that
CyaY and IscUIM influence the overall Fe-S cluster biogenesis process at different steps. The
fact that the CyaY dependency is not bypassed by increasing amount of the IscUIM scaffold, as
indicated in vivo by the CyaY-dependent maturation of IscR when IscUIM was overproduced
(S8 Fig), is consistent with this hypothesis. Further biochemical analyses are needed to investi-
gate the possible sites of action in the Fe-S cluster assembly process, such as iron donation, con-
trol of sulfur flux, Fe-S cluster transfer to downstream recipients, or HscBA-associated steps,
for the CyaY and IscUIM effect.

The involvement of CyaY in Fe-S cluster biogenesis was proposed in the early 2000’s on the
basis of co-occurrence of cyaY and hscBA genes [64]. This led to the belief that CyaY would be
as conserved as the other ISC components. The reason why the cognate structural gene was not
part of the isc operon in bacteria remained unclear. Here, exploiting the larger number of ge-
nomes now available for analysis, we reinvestigated the distribution of CyaY and its co-
occurrence with the ISC system. Surprisingly, CyaY was found to be much less conserved in
eubacteria than previously thought, as its presence was mostly restricted to Alpha-, Beta-, and
Gammaproteobacteria. Interestingly, in these bacteria, none of the genes encoding components
related to Fe-S cluster biogenesis were to be found in the vicinity of cyaY. Phylogenic analysis
revealed that CyaY originated in the last common ancestor of Proteobacteria. This contrasts
with the story for A-type Fe-S cluster carriers, which we previously found to be present in the
last bacterial common ancestor [65,66]. Even more surprising was the fact that many genomes
contained iscU but not cyaY, suggesting that these bacteria learned how to make Fe-S clusters
in an ISC-dependent and CyaY-independent way. In contrast, all genomes containing cyaY
also contained iscU. Hence overall this leads to picture CyaY as a Fe-S cluster biogenesis factor
associated with the ISC machinery in most eukaryotes and in a restricted number of prokary-
otes. Interestingly, not only some lineages such as Deltaproteobacteria, but also some species
within the Alpha- and Betaproteobacteria have lost CyaY, indicating that there might have
been some evolutionary drift favoring organisms that evolve without it. Amino acids encoded
by the codon at position 108 of IscU are essentially Ile, Leu or Val. Methionine appears in only
two cases, in Methanobacteria and some Rickettsiae species that also have a cyaY gene. Rickett-
siae are thought to have given rise to mitochondria via the first endosymbiosis event. Hence, it
is tempting to speculate that the current mitochondrial Isu protein originated from the IscUM

version that was already present in the ancestor of Rickettsiae.
Based upon the above considerations, one can envision the following scenario: i) Frataxin

appeared in the ancestor of the Proteobacteria, and joined the ISC system for Fe-S cluster bio-
genesis, ii) Mitochondria developed from Proteobacteria by endosymbiosis, in particular from
Rickettsiae, acquiring components what would give rise to the actual IsuM and FXN, iii) Proteo-
bacteria acquired SUF, which released the pressure on ISC, and in parallel they explored varia-
tion in the ISC scaffold at position 108. In particular, the Met-to Ile, Leu, Val changes
happened to improve Fe-S cluster assembly, iv) Frataxin dependency was loosened in Proteo-
bacteria that have a more efficient ISC scaffold and other Fe-S back up system.

Materials and Methods

Bacterial strains and growth conditions
The E. coli K-12 strain MG1655 and its derivatives used in this study are listed in Table 1. Dele-
tion mutations from the KEIO collection were introduced by P1 transduction [67]. Transduc-
tants were verified by PCR, using primer pairs hybridizing upstream and downstream of the
deleted gene. Strain BR755 producing the IscUI108M variant from a chromosomal copy was
constructed as follows: a DNA fragment carrying the iscUI108M allele was obtained after a

Single Mutation in the ISC Scaffold Imposed Frataxin Dependency

PLOS Genetics | DOI:10.1371/journal.pgen.1005134 May 21, 2015 12 / 22



mutagenesis procedure by overlap extension PCR reactions using the following primer pairs:
IscU-UPBamH1/IscUI108M-DO, IscUI108M-UP/IscU-DOXbaI, IscU-UPBamH1/IscU-DOXbaI
(S2 Table). This DNA fragment was introduced in a strain in which the iscU gene had been re-
placed by a cat-sacB cassette as previously described [68]. The Suc-resistant clones were
checked for Cm sensitivity, and the appropriate region was sequenced. The iscUI108M allele was
transduced into desired strains by using a KanR-linked marker in the yphD gene, which is locat-
ed close to the iscU gene. The Δsufmutation was introduced in the iscUIM background strains
that contained the eukaryotic Fe-S cluster independent mevalonate pathway for IPP biosynthe-
sis (MVA), in case the combination of iscUIM ΔcyaY would have been lethal [50,51]. This pre-
caution proved to be unnecessary since the iscUIM Δsuf and iscUIM Δsuf ΔcyaY strains could be
obtained without the addition of arabinose and mevalonate. Addition of arabinose and mevalo-
nate did not improve growth of the iscUIM Δsuf and iscUIM Δsuf ΔcyaY strains; therefore, all the
experiments have been done without. However, the iscUIM Δsuf and iscUIM Δsuf ΔcyaY strains
are auxotroph for tryptophan since the MVA synthetic operon was inserted in the trp operon,
therefore when grown in M9 glucose minimal medium tryptophan was added [50].

Oligonucleotides used in this study are listed in S2 Table. Supplementary strains are listed
in S3 Table.

E. coli strains were grown at 37°C in Luria—Bertani (LB) rich medium or in minimal medi-
um (M9) supplemented with glucose (0.4%) and MgSO4 (1 mM). Arabinose (0.2%), amino
acids (0.5 mM), sucrose (5%), thiamine (0.2 μg/mL) and nicotinic acid (12.5 μg/mL) were
added as required. Solid media contained 1.5% agar. Antibiotics were used at the following
concentrations: chloramphenicol 25 μg/mL, kanamycin 30 μg/mL, tetracycline 25 μg/mL, gen-
tamicin 5 μg/mL and ampicillin 50 μg/mL.

Table 1. Bacterial strains and plasmids used in this study.

Strain or
plasmid

Relevant genotype Reference or
source

E. coli K-12
strains

MG1655 Parental strain Lab collection

DV901 lacIpoZ Δ (Mlu) λ -PiscR-lacZ [51]

DV915 lacIpoZ Δ (Mlu) λ -PiscR-lacZ ΔiscR::kan [51]

DV925 lacIpoZ Δ (Mlu) λ -PiscR-lacZ ΔcyaY Lab collection

BR667 lacIpoZ Δ (Mlu) λ -PiscR-lacZ ΔiscU This study

DV1093 MG1655 MVA+ [51]

BR755 lacIpoZ Δ (Mlu) λ -PiscR-lacZ iscUI108M ΔyphD This study

BR756 lacIpoZ Δ (Mlu) λ -PiscR-lacZ iscUI108M ΔyphD ΔcyaY This study

BR757 lacIpoZ Δ (Mlu) λ -PiscR-lacZ iscUI108M ΔyphD MVA+::kan This study

BR763 lacIpoZ Δ (Mlu) λ -PiscR-lacZ iscUI108M ΔyphD MVA+::kan Δsuf::
cat

This study

BR767 lacIpoZ Δ (Mlu) λ -PiscR-lacZ iscUI108M ΔyphD MVA+::kan Δsuf::
cat ΔcyaY::spec

This study

PM12.05 MG1655 mal::lacIq, ΔaraBAD, lacI’::PBAD-cat-sacB:lacZ, mini λ
tetR

[68]

Plasmids

pET22b-CyaY pET22b expressing CyaY-(his)6 [85]

pQE-30-IscS pQE30 expressing (his)6-IscS [74]

pET21a-IscU pET21a expressing IscU-(his)6 This study

pET21a-IscUIM pET21a expressing IscUI108M-(his)6 This study

doi:10.1371/journal.pgen.1005134.t001
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Plasmid construction
Plasmid pIscU was constructed by PCR amplification of the coding region of iscU from E. coli
MG1655 chromosomal DNA using the following primer pair: NcoI-IscU/HindIII-IscU (S2
Table). The PCR product was then digested by NcoI andHindIII and cloned into the NcoI/Hin-
dIII linearized pBAD24 vector.

Production of the IscUIM variant exhibiting a single amino acid substitution isoleucine to
methionine at position 108 was obtained by site-directed mutagenesis in the pIscU plasmid to
generate pIscUIM using the following primer pair: IscUI108M_for/IscUI108M_rev (S2 Table).

Plasmids pETIscUWT and pETIscUIM were constructed by PCR amplification of the coding
region of iscU from E. coliMG1655 chromosomal DNA and from the pIscUIM vector, respec-
tively, using the following primer pair: NdeI-IscU/HindIII-IscU (S2 Table). The PCR products
were then digested by NdeI and HindIII and cloned into the NdeI/HindIII linearized pET21a
+ vector.

Plasmids pET22b-CyaY and pQE-IscS for production of recombinant E. coli CyaY and IscS,
were described previously [69].

Generation of survival curves
Overnight cultures were diluted and grown aerobically in LB at 37°C to an OD600 of 0.2. At this
point, antibiotics were added to the cells (Gm at 5 μg/mL and Kan at 10 μg/mL). At different
incubation times, 100 μL of cells were diluted in PBS buffer, spotted on LB agar and then incu-
bated at 37°C overnight. Cell survival was determined by counting colony-forming units per
mL (CFU/mL). The absolute CFU at time-point 0 (used as the 100%) was� 5x107 CFU/mL.

Paraquat and hydrogen peroxide sensitivity test
Overnight cultures were diluted in sterile PBS and 5 μL were directly spotted onto LB plates
containing either paraquat (250 μM) or H202 (1 mM). The plates were incubated overnight at
37°C before growth was scored.

β-Galactosidase assay
Strains were grown at 37°C in LB rich medium, to an OD600 of ~1.5. β-galactosidase assays
were carried out as previously described [70].

Enzymatic assays
NADH dehydrogenase activity. NADH dehydrogenase activity was assayed as previously

described [71]. Briefly, cells were grown to an OD600 of 0.6–0.8, harvested by centrifugation, re-
suspended in MES-10% glycerol buffer pH 6.5, and disrupted in a French press. Aliquots of the
whole-cell extract were immediately frozen in liquid nitrogen and stored at -80°C until used.
Enzymatic activity was measured spectrophotometrically at 30°C by following absorbance at
340 nm in a reaction mixture containing 50 mMMES, pH 6.5, 10% glycerol and 200 μM
D-NADH, as a specific substrate. Protein concentration was determined using the protein A280

method on NanoDrop2000 spectrophotometer.
Succinate dehydrogenase activity. Succinate dehydrogenase activity (Sdh) was assayed as

described previously [71]. Briefly, cells were grown to an OD600 of 0.6–0.8, harvested by centri-
fugation, resuspended in MES-10% glycerol buffer pH 6.5, and disrupted in a French press.
Following centrifugation (11 000 rpm for 15 min at 4°C), the supernatant was submitted to
ultracentrifugation (45 000 rpm for 2 h at 4°C) to obtain the membrane fraction. Sdh activity
was assayed for the pellet fraction resuspended in MES-10% glycerol buffer pH 6.5. Because
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Sdh is partially inhibited by oxaloacetate, the enzyme was first activated by incubation in 50
mM Tris-HCl pH 7.5, 4 mM succinate and 1 mM KCN for 30 min at 30°C [72,73]. Sdh activity
was then measured spectrophotometrically at 30°C by following the phenazine ethosulfate
(PES)-coupled reduction of DCPIP at 600 nm, in a reaction mixture containing 50 mM Tris-
Hcl pH 7.5, 4 mM succinate, 1 mM KCN, 400 μM PES and 50 μMDCPIP. Protein concentra-
tion was determined using a NanoDrop2000 spectrophotometer to determine the protein A280.

Western blot analysis
Equal quantities of protein were applied to SDS-PAGE and transferred onto nitrocellulose
membranes. The membrane filters were incubated with appropriate antibodies (1/200, 1/2000,
1/2000, 1/150 dilutions of the anti-IscU, anti-NuoF, anti-NuoC and anti-IscR serums, respec-
tively). Immunoblots were developed by using horseradish peroxidase-conjugated goat anti-
rabbit antibody, followed by chemiluminescence detection.

Expression and purification of proteins
Recombinant CyaY, IscUWT and IscUIM proteins containing a C-terminal His6 tag were ex-
pressed in E. coli and purified as follows: E. coli BL21 (DE3)/pETcyaY was grown in LB medi-
um containing 50 μg/mL ampicillin at 37°C. Protein expression was induced for 4 h by the
addition of 0.5 mM isopropyl β-D-thiogalactoside (IPTG) at an OD600 � 0.5. The bacterial pel-
let was resuspended in buffer A (0.1 M Tris-HCl, pH 8, 500 mMNaCl, 20 mM imidazole) and
disrupted in a French press. After centrifugation (15 min, 11 000 rpm, 4°C), the supernatant
was loaded onto a 1-mL HisTrap affinity column (GE Healthcare) equilibrated with buffer A.
Proteins were eluted with a gradient of buffer A containing 500 mM imidazole. Protein-
containing fractions were desalted with a Nap-25 column (Amersham Biosciences) and then
concentrated. A similar procedure was used to purify IscUWT and IscUIM proteins except that
protein expression was induced by the addition of 1 mM IPTG. Recombinant E. coli IscS con-
taining an N-terminal His6 tag was expressed and purified as previously described [74]. The
protein concentration was estimated by measuring the absorbance at 280 nm with the Nano-
Drop2000 spectrophotometer and using the calculated molar extinction coefficient.

Circular dichroism experiments
CD spectra were recorded on a Jasco J-815 spectropolarimeter by using Hellma 110-QS cu-
vettes of 1 mm path length. CD measurements were performed in 50 mM Tris-HCl pH 8, 50
mMNaCl using protein concentrations of 2 μM. 20 scans were averaged and the buffer baseline
was subtracted.

In vitro Fe-S reconstitution
The purified His-tagged IscUWT and IscUIM proteins were obtained in the apo-form. The pu-
rified proteins were reconstituted anaerobically in a glove box as described previously [48].
Briefly, 144 μM protein was mixed with 5 mM DTT, 1.44 μM IscS, 2 mM L-cysteine and 0.43
mM Fe(SO4)2(NH4)2 in a total volume of 500 μL of buffer A (50 mM Tris-HCl pH 8). Forma-
tion of Fe-S clusters on IscU was followed by UV-visible absorption spectroscopy using a
Cary 1 Bio spectrophotometer. After 3 h incubation, samples were loaded onto a 1-mL anion
exchange column (QFF) (GE Healthcare) equilibrated with buffer A and eluted with a gradi-
ent of buffer A containing 1 M NaCl. Protein fractions were concentrated on a Microcon con-
centrator (Amicon) and each concentrate was analysed for its Fe content, and for its UV-
visible spectrum.
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Ion exchange chromatography
Purified His-tagged IscUWT or IscUIM, IscS and CyaY proteins were mixed anaerobically in a
1:1:1 ratio (144 μM of each protein) for 40 minutes with 4-fold excess of Fe(SO4)2(NH4)2,
10-fold excess of L-cysteine and 5 mMDTT in a total volume of 500 μL of buffer A (50 mM
Tris-HCl pH 8). The mixture was loaded onto a 1-mL QFF column (GE Healthcare) equilibrat-
ed with buffer A and eluted with a gradient of buffer A containing 1 M NaCl. Proteins elution
was visualized by SDS-PAGE.

Kinetics of Fe-S formation
To assess kinetics of cluster formation on IscUWT or IscUIM, absorbance at 420 nm was mea-
sured as a function of time. 25 μM IscUWT or IscUIM was incubated anaerobically with 100 μM
Fe(SO4)2(NH4)2, 2 mMDTT in 50 mM Tris-HCl pH 8. Subsequently, 25 μM IscS and 250 μM
L-cysteine were added to start the reaction.

Bioinformatic and phylogenomic analyses
The 2742 complete prokaryotic proteome (2591 bacterial and 151 archaeal) available at the
NCBI in March 03, 2014 were downloaded (ftp://ftp.ncbi.nlm.nih.gov/genomes/). The
HMMER package v3.0b2 and self-written scripts were then used to search for CyaY homologs
in these complete genomes, requiring the presence of Frataxin-like domain (PFAM accession
number PF01491) [75]. Alignments E-value with the 599 profile less than 0.1 were considered
as significant. To retrieve CyaY sequence we imposed homology with the entire CyaY sequence
and an E-value with 1.7e-7 as threshold. In addition, alignments have been visually inspected.
Proteins of the YjbR family, such as YdhG from Bacillus subtilis have not been detected since
despite their structural similarity with CyaY they lack similarity at the sequence level [76,77].
The corresponding sequences were subsequently analysed with the same software in order to
determine the presence of additional known functional domains. Additional BLASTP/
tBLASTN searches were performed in complete genomes to ensure that the CyaY family was
exhaustively sampled and in the nr database at the NCBI to retrieve eukaryotic sequences [78].
For each homolog, the gene context, defined as the 5 neighboring genes located upstream and
downstream, was investigated using MGcV (Microbial Genomic context Viewer) [79].

The retrieved homologous sequences were aligned using MAFFT v7.045b [80]. The best re-
sulting alignment was then visually inspected and manually refined using ED program from
the MUST package [81]. The regions in a multiple sequence alignment that were suited for
phylogenetic inference were selected by using BMGE (BLOSUM30 similarity matrix) [82].

The phylogeny of all the prokaryotic CyaY was constructed using both maximum likelihood
(ML) and Bayesien methods. ML analyses were run using PHYML version 3.1 with the Le and
Gascuel (LG) model (amino acid frequencies estimated from the dataset) and a gamma distri-
bution (4 discrete categories of sites and an estimated alpha parameter) to take into account
evolutionary rate variations across sites [80]. The robustness of each branch was estimated by
the non-parametric bootstrap procedure implemented in PhyML (100 replicates of the original
dataset with the same parameters). Bayesian analyses were performed using MrBayes version
3.2.2 with a mixed model of amino acid substitution including a gamma distribution (4 discrete
categories) and an estimated proportion of invariant sites [83]. MrBayes was run with four
chains for 1 million generations and trees were sampled every 100 generations. To construct
the consensus tree, the first 1500 trees were discarded as ‘‘burnin”.

For the dataset construction IscU homologs was retrieved from complete proteome avail-
able in the local databank (see above) using BLASTP. The distinction between homologous
and non-homologous sequences was assessed by visual inspection of each BLASTP outputs (no
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arbitrary cut-off on the E-value or score). We imposed some additional criterion in order for a
protein to be considered as an IscU homologs: the presence of the three conserved cysteine res-
idues that are required for the scaffold activity of IscU, no other additional domain such as
those that could be found in NifU, and at least one other isc-related gene as a neighbor gene.
The IscU homologs were gathered in a dataset and the corresponding sequences were aligned
using MAFFT v7.045b [80].

Sequence-logo of IscU alignment was generated using Phylo-mLogo visualization tool in
order to highlight the LPPVK motif and residues in position 108 [84].

Additional materials and methods are mentioned in S1 Text.

Supporting Information
S1 Fig. Addition of thiamine and nicotinic acid rescues partially the residual growth defect
exhibited by the iscUIM Δsuf ΔcyaY strain. Growth of the iscUIM Δsuf (BR763) (diamonds)
and iscUIM Δsuf ΔcyaY (BR767) (squares) strains in glucose M9 minimal medium supple-
mented with all amino acids and complemented with (white symbols) or without (black sym-
bols) thiamine (B1) and nicotinic acid (NA). Growth was monitored at 600 nm. The
experiment was repeated at least three times. One representative experiment is shown.
(TIF)

S2 Fig. Quantification of western blots analysis. Quantification of western blots analysis of
results shown in Fig 4 was performed using ImageQuantTL software.
(TIF)

S3 Fig. IscUWT and IscUIM exist mainly as dimers. Comparison of the elution profiles be-
tween IscUWT (A) and IscUIM (B). For each protein, a gel filtration was performed on a Super-
dex 75 10/300 GL equilibrated with buffer A (0.1 M Tris-HCl pH 8, 50 mMNaCl). (C)
Oligomerization state of IscUWT and IscUIM was determined from calibration curve using ribo-
nuclease A (A; 13.7 kDa), chymotrypsinogen A (B; 25 kDa) and ovalbumin (C, 43 kDa) as mo-
lecular standards. Values of the elution volume (Ve)/ void volume (V0) are given for IscUWT

and IscUIM.
(TIF)

S4 Fig. Chromatographic profiles on anion exchange QFF of the mixture and single puri-
fied proteins. For each profile obtained from the mixtures of IscUWT/IscS/CyaY (A) and
IscUIM /IscS/CyaY (E), the black arrows indicate the elution for each single protein (U:
IscUWT/IM; S: IscS; C: CyaY) whose chromatographic profiles are shown below: IscUWT (B),
IscS (C), CyaY (D), and IscUIM (F). Equilibration buffer of QFF column is 50 mM Tris-HCl
pH 8 and elution was performed with a gradient of 50 mM Tris-HCl, pH 8, 1M NaCl. Flow
rate: 1 mL/min.
(TIF)

S5 Fig. CyaY phylogenetic tree. Unrooted Bayesian phylogenetic trees of CyaY (251 se-
quences, 70 positions). Numbers at nodes indicate posterior probabilities (PP) computed by
MrBayes and bootstrap values (BV) computed by PhyML. Only PP and BV above 0.5 and
50% are shown. The scale bars represent the average number of substitutions per site. In the
phylogenetic tree each prokaryotic phylum is highlighted in different colors: Alphaproteobac-
teria (orange), Gammaproteobacteria (blue), Deltaproteobacteria (green), Chlorobi (grey),
Acidobacteria (red), Betaproteobacteria (purple). This color code is the same as the one used
in the Fig 6.
(PDF)
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S6 Fig. Alignment of the prokaryotic IscU. IscU homologs were aligned using MAFFT
v7.045b. The 99LPPVK103 motif and the residue at position 108 are indicated at the top of the
alignment. Species having Methionine at position 108 are highlighted in yellow.
(PDF)

S7 Fig. Inhibitory effect of CyaY on Fe-S cluster formation on IscUWT and IscUIM in vitro.
Comparison of the kinetics of enzymatic Fe-S cluster formation on IscUWT (black diamonds;
red triangles) and IscUIM (white circles; white squares) with (red triangles; white circles) or
without (black diamonds; white squares) CyaY. Experiment was carried out using 25 μM
IscUWT or IscUIM, 25 μM IscS, 25 μMCyaY,100 μM Fe(SO4)2(NH4)2, 250 μM L-cysteine, 2
mMDTT. Fe-S cluster formation was followed by absorbance at 420 nm. The experiment was
repeated at least three times. One representative experiment is shown.
(TIF)

S8 Fig. Overproduction of IscUIM does not alleviate the CyaY requirement. Repression of
the IscR-regulated gene (iscR::lacZ) in the ΔiscU (BR667) mutant (A) and the ΔcyaY ΔiscU
(BR668) mutant (B) transformed with pBAD (empty vector) (white bars), pIscU (black bars)
or pIscUIM (grey bars) plasmids. Cultures were grown in LB medium supplemented with ampi-
cillin and arabinose. The amount of IscR-dependent repression (fold repression) was deter-
mined by dividing the β-galactosidase activity present in the strain lacking IscR (DV915) by
the β-galactosidase activity measured for each strain. Error bars represent the standard error
from three independent experiments.
(TIF)

S1 Text. Materials and methods.
(DOCX)

S1 Table. List of the homologs of the CyaY and IscU proteins found in complete genomes.
For each gene the accession number is provided.
(XLSX)

S2 Table. List of the oligonucleotides used in this study.
(DOCX)

S3 Table. List of supplementary bacterial strain and plasmids used in this study.
(DOCX)
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