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We theoretically and numerically analyze thermal invisibility based on the concept of scattering cancellation
and mantle cloaking. We show that a small object can be made completely invisible to heat diffusion waves,
by tailoring the heat conductivity of the spherical shell enclosing the object. This means that the thermal
scattering from the object is suppressed, and the heat flow outside the object and the cloak made of these
spherical shells behaves as if the object is not present. Thermal invisibilitymay open new vistas in hiding hot
spots in infrared thermography, military furtivity, and electronics heating reduction.

T he realization of electromagnetic invisibility cloaks1–4 is undoubtedly one of the most exciting and challen-
ging applications of metamaterials5. In the previous decades, thanks to the astonishing development of
micro- and nano-fabrication and 3D printing, this goal has got closer to reality. In 2005, Alu� and Engheta

proposed a transparency device that relies on the so-called scattering cancellation technique (SCT)6. This mech-
anism consists of using a low or negative electric permittivity cover to cancel the different scattering multipoles of
the object to hide. This class of cloaking devices has been shown to be quite robust to changes in the geometry of
objects and the frequency of operation7–9. Moreover, a recent experimental study has shown that these cloak
designs can actually be realized at microwave frequencies10. Applications in furtivity, non-invasive sensing, and
probing can be envisaged11,12, opening new directions in medicine, defense, and telecommunications. Recent
findings also suggest that objects can bemade invisible using themantle cloaking technology, where ametasurface
can produce similar effects with a simpler and thinner geometry. This is achieved by tailoring the surface current
on the metasurface and consequently the phase of re-radiated fields13–16. It should also be mentioned here that
other cloaking techniques have been put forward in the recent years based on various concepts such as conformal
mapping1, transformation optics2,3,17, homogenization of multistructures18,19, active plasmonic cloaks20, anom-
alous localized resonances21, and waveguide theory22.

The concept of invisibility has been extended to other realms of physics. Cloaks capable of hiding objects from
acoustic waves23–25, surface water waves26, flexural bending waves27, seismic waves28,29, quantummatter waves30,31

and even diffusive light propagation32,33 have been developed. And more recently, after the seminal work of
Guenneau et al.34, invisibility cloaks for heat waves has become another exciting venue for cloaking applica-
tions35–37. Thermal cloak designs inspired by transformation optics2 have been subsequently proposed38–40 to
control the flow of heat in metamaterial structures. Their experimental validation followed shortly41–44. Thermal
cloaking may find interesting applications in modern electronics. It can be used to reduce the heat diffused from
computers or to protect a specific nano-electronic component by re-directing the flow of heat. This technique can
also be used for isolation in buildings to reduce the consumption of energy required in heating or cooling.

In this paper, we propose to use the concept of scattering cancellation to generate the invisibility effect for heat
diffusion waves. The peculiarity of our cloak is that, unlike earlier designs, we consider both static and time-
harmonic dependence (note that time-harmonic heat sources can be generated using pulsating lasers45). This
scenario requires cancellation of two scattering orders for small objects, i.e. the monopole and dipole ones,
corresponding to the specific heat capacity and the heat conductivity, respectively. Numerical simulations
confirm that a scattering reduction of over 40 dB can be obtained for optimized cloak parameters.
Additionally, it is shown that the proposed cloak suppresses both the near and far heat fields.We also demonstrate
that coating an object with an ultra-thin layer or thermal metasurface is a viable way for scattering reduction
(mantle cloaking).
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Results
Heat diffusion waves and their dispersion relation. Using the first
principle of thermodynamics in a closed system46, one can show that
in the absence of radiation and convection, the temperature of a
physical system obeys the Fourier relation + : jQzrcLT=Lt~Q.
Here, jQ, r and T represent the density of heat flux (heat flow per
unit surface per unit time), the density of the fluid, and the
temperature field, respectively. c is the specific heat capacity and Q
denotes the heat energy generated per unit volume per unit time
(Fig. 1). Using the Fourier law, i.e. the linear and instantaneous
relation jQ~{k+T , where k is the heat conductivity of the
medium, one can derive,

rc
LT
Lt

~+: k+Tð ÞzQ : ð1Þ

For a constant conductivity and in the absence of heat sources, Eq.
(1) simplifies to LT=Lt~k=(rc)DT . To solve this equation, one can
assume that T(r,t)~<ðeT(r,t)Þ, with eT(r,t)~T0e

ik:r{ivt , where k is
the wave number of the pseudo diffusion plane wave and v its
angular frequency. This ansatz is valid, only because Eq. (1) is a
linear equation, meaning that T is a solution, if and only if, eT is a
solution. The dispersion relation of heat diffusion waves is thus
iv~k2k=rc. If one assumes that v is real, then k~+(1zi)=d,
with d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k=(rcv)

p
. The general solutions are thus attenuated

diffusing plane waves. Now, under the assumption of time-
harmonic dependence e{ivt , generated for instance by a
pulsating laser, and constant conductivity, Eq. (1) simplifies to

DTzk2T~{Q=k : ð2Þ
For the structure in Fig. 1, Eq. (1) is supplied with two boundary
conditions that should be satisfied at the surface of both spherical
object and the cloak. Across the boundaries r~a1 and r~a2, we
have the continuity of the temperature and the density of heat flux,
i.e. Tjr~a{1,2

~Tjr~az1,2
, and kLT=Lnð Þjr~a{1,2

~ kLT=Lnð Þjr~az1,2
,

where the signs 1 and 2 refer respectively to the inner and
outer regions, and L=Ln denotes the normal derivative, which
only depends upon the radial coordinate in the case of circular
objects. Here, a1 and a2 are the inner and outer radii of the shell.
Moreover, ki, ri, ci, ki½ �i~0,1,2 represent the conductivity, fluid
density, heat capacity, and wave number in the background
medium (rwa2), object (rva1), and shell (a1vrva2),
respectively.

Scattering cancellation technique for heat diffusion waves: static
regime. The aim of this study is to show that scattering from various
spherical objects can be reduced drastically by carefully choosing the

values of the shell conductivity and the specific heat capacity. First, a
spherical object centered at the origin of a spherical coordinate
system is considered. Two parallel plates set at different
temperatures T1vT2, generate a heat flux (plane heat diffusion
wave) that impinges on the scattering object [Fig. 1(a)]. In this first
section, the case of static (steady-state) regime is considered, i.e.
LT=Lt~0. So Eq. (1) is simplified to DTzQ=k~0. The scalar
temperature field T in the different regions of space can be
expressed in spherical coordinates (Fig. 1) as,

T(r, h)~
X?
l~0

Alr
lPl(cos h) ,0vrva1 , ð3Þ

T(r, h)~
X?
l~0

Blr
lzClr

{(lz1)
� �

Pl(cos h) ,a1vrva2 , ð4Þ

T(r, h)~
X?
l~0

Elr
lzDlr

{(lz1)
� �

Pl(cos h) ,rwa2 , ð5Þ

where Pl(:) represents the Legendre polynomial of order l. For r??,
T(rwa2)~{(Q=k0)r cos h, therefore E1~{Q=k0 and all the other
coefficients El=1 are zero. The remaining coefficients are obtained by
solving the linear system

1 1 1=a31 0

k1 k2 {2k2=a31 0

0 1 1=a32 1=a32
0 k2 {2k2=a32 2k0=a32

0
BBBBBB@

1
CCCCCCA

A1

B1

C1

D1

0
BBB@

1
CCCA~

0

0

Q=k0
Q

0
BBB@

1
CCCA , ð6Þ

which is obtained by applying the continuity conditions at the
boundaries r~a1 and r~a2. The scattering cancellation condition
is obtained by enforcing that the first scattering coefficientD1 is zero,

D1~
Q
2k0

(k0{k2)(k1z2k2){c3(k1{k2)(k0z2k2)
c3(k0{k2)(k1{k2){(2k0zk2)(k1z2k2)

~0 , ð7Þ

where c~a1=a2. Solving Eq. (7) for k2 yields the value of the shell
conductivity, which ensures that there is no temperature
perturbation with a uniform temperature gradient, as if the object
does not exist,

k2~
{ (k0{2k1)c3z(2k0{k1)½ �z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k0{2k1)c3z(2k0{k1)½ �2z8k0k1(c3{1)2

q
4(c3{1)

: ð8Þ

Scattering cancellation technique for heat diffusion waves: time-
harmonic regime. The scattering coefficients relate the scattered
fields to the incident ones, and depend on the geometry of the
object and the frequency v. Moreover, for a given size a of the
object, only contributions up to a given order l0 are relevant, since
the amplitude of the scattering coefficients changes as o(k0a)

2lz1.
The incident heat excitation is an oblique plane diffusion wave, of
incidence angle h, and is of the form eik0r cos h. In a spherical
coordinate system, it can be expressed as

T inc(r, h)~T0

X?
l~0

il(2lz1)jl(k0r)Pl(cos h) , ð9Þ

where jl denotes the lth spherical Bessel function and T0 is the
amplitude of the incident temperature field. The scattered field
(rwa2) can be expressed in a spherical coordinate system as

Tscat(r, h)~T0

X?
l~0

il(2lz1)slh
(1)
l (k0r)Pl(cos h) , ð10Þ

Figure 1 | Thermal scattering problem. (a) Cross-sectional view of the

heat transfer scenario, with the object to cloak in the middle. (b) Cross-

sectional view of the cloaked object.
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where sl are the complex scattering coefficients and h(1)l are
spherical Hankel functions of the first kind. Therefore, the
temperature field can be expressed in the different regions of
space as

T(r, h)~T0

X?
l~0

aljl(k1r)Pl(cos h) ,0vrva1 , ð11Þ

T(r, h)~T0

X?
l~0

bljl(k2r)zclyl(k2r)½ �Pl(cos h) ,a1vrva2 , ð12Þ

T(r, h)~T inczTscat

~T0

X?
l~0

il(2lz1) jl(k0r)zslh
(1)
l (k0r)

h i
Pl(cos h) ,rwa2 ,

ð13Þ

with al and (bl, cl) complex coefficients of the temperature field
inside the object and the shell, respectively. Applying the
continuity conditions at the boundaries r~a1 and r~a2 yields
the different coefficients. In particular, sl~{Ul= UlziVlð Þ. Here
Ul and Vl are given by the determinants

Ul~

jl(k2a1) yl(k2a1) {jl(k1a1) 0

jl(k2a2) yl(k2a2) 0 jl(k0a2)

k2k2j0l(k2a1) k2k2y0l(k2a1) {k1k1j0l(k1a1) 0

k2k2j0l(k2a2) k2k2y0l(k2a2) 0 k0k0jl0(k0a2)

���������

���������
,ð14Þ

and

Vl~

jl(k2a1) yl(k2a1) {jl(k1a1) 0

jl(k2a2) yl(k2a2) 0 yl(k0a2)

k2k2j0l(k2a1) k2k2y0l(k2a1) {k1k1j0l(k1a1) 0

k2k2j0l(k2a2) k2k2y0l(k2a2) 0 k0k0y0l(k0a2)

���������

���������
:ð15Þ

The scattering cross-section (SCS) fscat is a measure of the overall
visibility of the object to external observers. It is obtained by
integrating the scattering amplitude g(h), defined such that
Tscat=T0<g(h)=reik0r , for r??,

fscat~

ðð
dVjg(h)j2 : ð16Þ

Here, dV is the incremental solid angle, in spherical coordinates,
dV~2p sin hdh, and g(h) is expressed as

g(h)~{
i
k0

X?
l~0

(2lz1)slPl(cos h) : ð17Þ

Inserting Eq. (17) into Eq. (16) yields

fscat~
4p

jk0j2
X?
l~0

(2lz1)jslj2 : ð18Þ

In the quasistatic limit (long diffusion length k0a= 1), only few
scattering orders contribute to the overall scattering cross-
section, namely the first two orders (l~0 for the monopole,
and l~1 for the dipole mode, unlike in the electrodynamic
case, where the first dominant mode is the dipole one). In this
scenario, one has

fscat<
4p

jk0j2
js0j2z3js1j2
� �

: ð19Þ

Consequently, canceling these two modes, i.e. s0~0 and s1~0,
will ensure that fscat<0, and the thermal scattering from the
object will be suppressed. Namely, the SCT conditions on the
parameters of the cloaking shell k2, r2c2, and a2 are

r2c2{r0c0
r2c2{r1c1

~
a1
a2

� 	3

~c3 , for s0~0 , ð20Þ

and

(k0{k2)(k1z2k2)
(k1{k2)(k0z2k2)

~c3 , for s1~0 : ð21Þ

The monopole SCT condition in Eq. (20), depends only on the
product of the density and the specific heat of the shell, and
the ratio of radii of the object and the shell c. Similarly, the
condition in Eq. (21) depends only on the conductivity of the
shell and c. By enforcing these two conditions, the total
scattering from the spherical object can be suppressed in the
quasistatic limit.
Figures 2(a) and 2(b) illustrate numerical solutions to Eqs. (20)

and (21), where the variation of the relative specific heat capacity
r2c2=r0c0 and the relative heat conductivity k2=k0 are plotted versus
c and r1c1=r0c0 and k1=k0, respectively. From the solution of Eq.
(20), given in Fig. 2(a), one can see that the relative specific heat
capacity of the shell r2c2=r0c0, given here in logarithmic scale, takes
positive and negative values, depending on c and the heat capacity of
the object. The red line represents the curve obeying the equation
c3r1c1=r0c0~1 implying r2c2=r0c0~0. The specific heat capacity
takes negative (positive near-zero) values above (below) this curve.
From the solution of Eq. (21), given in Fig. 2(b), it can be seen that the
required relative heat conductivity of the shell k2=k0 needs to be
almost always negative, for varying c and k1=k0. However, for an
object with small heat conductivity and small radius [lower part of
Fig. 2(b), in blue color], the required shell conductivity is close to
zero. In fact, from Eq. (21), one can derive that for the negative
solution of Eq. (21)

k2=k0~
a{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z8k1=k0 1{c3ð Þ2

q
4 1{c3ð Þ , ð22Þ

where a~2zc3{(1z2c3)k1=k0. It can be clearly seen that for pos-
itive conductivities of the object, the condition k2=k0v0 has to be
satisfied to achieve the optimal heat cloaking effect.
Let us move now to the analysis of a specific scenario, where the

heat scattering of a spherical object is characterized. The relative
specific heat capacity of the object is r1c1=r0c0~1:25 and its relative
conductivity is k1=k0~0:5. The radius of the object a1~1, and the
wave numbers are normalized to a1. The free space wave number is
chosen as k0a1~0:5. This object is coated with a shell of outer radius
a2~1:1a1. f

scat of the total object-shell structure, defined in Eqs.
(16)–(18), is normalized to the SCS of the bare object, and plotted
against varying values of r2c2=r0c0 and k2=k0. The result is shown in
Fig. 3(a) in logarithmic scale. The blue regions correspond to signifi-
cant scattering reduction, whereas red regions correspond to
enhanced scattering from the structure. It can be noticed that ranges
of k2=k0 between 1 and 4, and r2c2=r0c0 between 0.05 and 0.5, are
best for thermal scattering cancellation (now using the positive solu-
tion of Eq. (21), for practical realizations). The white dot has coordi-
nates (3.1, 0.15) that correspond to the theoretical SCT condition
obtained from Eqs. (20) and (21). It is also interesting to note that
numerical simulations taking into account many scattering orders,
give scattering reduction of 40 dB, sensibly around the same point.
These results show the importance of taking into account both the

shell conductivity and specific heat capacity, in contrast to previous
studies that only considered the effect of conductivity through the
static analysis. This can be better understood fromFigs. 3(b) and 3(c),
where the normalized SCS is plotted versus k2=k0 for various values
of r2c2=r0c0, and versus r2c2=r0c0 for various values of k2=k0,
respectively. The sensitivity to variations in k2=k0 is more evident
from these figures, since a small variation from the optimum value

www.nature.com/scientificreports
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results in fast deterioration of the scattering reduction: when k2=k0 is
equal to 1 or 5, there is no dip in the SCS and the scattering is high, as
can be seen fromFig. 3(c). The sensitivity to variations inr2c2=r0c0 is
less important, as can be seen from Fig. 3(b), but it is important to
choose values around those predicted by Eqs. (20) and (21). On the
other hand, when Vl~0, peaks corresponding to modal resonances
start appearing in the scattering cross-section (related to Fano-like
response of the system due to interference between dark and bright
scattering modes)47.
To better illustrate the efficiency of the proposed cloak, the far-field

scattering patterns, i.e. the heat scattering amplitude jg(h)j in polar
coordinates, in the x2y plane, are shown in Figs. 4(a) and 4(b). These
figures demonstrate that the object is almost undetectable at all angles
with scattering amplitude orders of magnitude lower than that of the
bare object. As a result, there is no temperature perturbation around
the object immersed in the thermal fields. To further demonstrate the
functionality of the cloak, Figs. 4(c) and 4(d) plot the amplitude dis-
tribution of the scattered thermal field when the heat from the infinite
sheet of oscillating heat source is impinging from left to right on the

structure, without and with the cloaking shell, respectively. When the
object is cloaked, the field amplitude is constant everywhere in space in
contrast to the case of the object without the cloak.

Discussion
Mantle cloaking for heat diffusion waves. As stated in the
introduction, recent findings suggest that objects can be made
invisible using the surface cloaking technology, where a
metasurface may produce similar cloaking effects in a simpler and
thinner geometry14–16. The ultrathin mantle cloak with an averaged
surface reactance metasurface13 reduces the scattering from the
hidden object, comparable to bulk metamaterial cloaks. The setup
of the problem is similar to the previous section, except for the fact
that scattering cancellation is achieved by a surface, instead of a shell.
This is illustrated in the inset of Fig. 5(a). The impedance boundary
condition results in jumps in the radial component of the density of
heat flux, on the interface between the two media.
In what follows it is shown that the scattering from various spher-

ical objects can be drastically reduced by choosing the appropriate

Figure 2 | Optimal cloaking parameters. (a) Relative specific heat capacity of the shell r2c2=r0c0 in logarithmic scale, versus the ratio c~a1=a2 and the

relative specific heat capacity of the object r1c1=r0c0. The color bar denotes the plot of log r2c2=r0c0j j. (b) Relative heat conductivity of the shell k2=k0 in
logarithmic scale, versus the ratio c~a1=a2 and the relative heat conductivity of the object k1=k0. The color bar denotes the plot of log jk2=k0jand the

dashed black line represents log jk2=k0j~0.

κ2 = 1
κ2 = 3
κ2 = 3.1
κ2 = 3.2
κ2 = 5.68
κ2 = 10.45
κ2 = 20

ρ2c2 = 0.01
ρ2c2 = 0.1477
ρ2c2 = 1

Figure 3 | Thermal scattering reduction. (a) Normalized (analytical) SCS fscat in logarithmic scale, versus the relative heat conductivity k2=k0 and the

relative specific heat capacity r2c2=r0c0. The white dot represents the position of optimized scattering reduction, with a value of 40 dB. The color bar

denotes the plot of 10 log f2
scat=f1

scat� �
, where the subscripts 1 and 2 refer to the scattering cross-section of the obstacle and cloaked structure, respectively.

(b) Normalized SCS versus the relative heat conductivity for various values of the specific heat capacity r2c2=r0c0. (c) Normalized SCS versus the relative

specific heat capacity r2c2=r0c0 for various values of the relative heat conductivity k2=k0.

www.nature.com/scientificreports
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surface impedance, and thus their visibility to heat diffusion waves
can be suppressed.
To design a mantle cloak, we keep the boundary conditions at

r~a1 same as those in the previous sections, while we replace the
boundary conditions at r~a2 with

Tjr~a{2
~Tjr~az2

~Tjr~a2 , ð23Þ

1
iv

k
LT
Ln


 �r~a{2

r~az2

~Z{1
s Tjr~a2 : ð24Þ

Eq. (24) is a surface impedance condition that implies a jump in the
density of heat flux. Here, Zs~RsziXs is the averaged surface
impedance that relates the temperature to the density of heat flux
on the surface.
Following the procedure described in the previous section, with

these new boundary conditions, one can show that the lth spherical
scattering harmonic can be suppressed, provided that the following
determinant is canceled,

Ul~

jl(k0a1) yl(k0a1) {jl(k1a1) 0

k0j0l(k0a1) k0y0l(k0a1)=r0 k1=k0k1j0l(k1a1) 0

jl(k0a2) yl(k0a2) 0 jl(k0a2)

j0l(k0a2)

zyjl(k0a2)

y0l(k0a2)

zyyl(k0a2)
0 j0l(k0a2)

������������

������������
: ð25Þ

It should be noted that for the mantle cloak design considered here,
k2~k0 and r2c2~r0c0. In Eq. (25), the dimensionless function y is
defined as

y~
ivZ{1

s

k0k0
~

~Z{1
s

k0k0
: ð26Þ

For k0a2 = 1, the spherical Bessel functions take a simpler poly-
nomial form, and the approximate cloaking condition in this limit
can be written as

Xs~
2k0

3c3va1
c3z

k0z2k1
k1{k0

� 	
: ð27Þ

This clearly shows that by properly choosing the thermal surface
reactance (expressed in units of J5(m2K)), it is possible to suppress
the dominant multipolar scattering in the quasistatic limit.
Figure 5(a) plots the SCS versusXs for cloaked objects with various

c. The SCS of a bare object is plotted for comparison. For Xs??, we
notice that the metasurface does not reduce the scattering, consistent
with the limit of no-surface. For specific values of Xs, however, a
relevant scattering reduction is achieved, and this may be obtained
for different values of a2, even in the limit of a cloak winding con-
formal to the object (a2~a1, c~1).
Figure 5(b) plots the SCS versus the frequency for cloaked objects

with a2~a1 (conformal) and a2~1:1a1. We suppose here that the
surface reactance does not vary with frequency and is given with
Xs~1:36|10{7 for c~1 and Xs~1:62|10{7 for c~0:9. The

Figure 4 | Near and far-field characterization. Analytical scattering amplitude jg(h)j, given by Eq. (17), in polar coordinates, and in logarithmic scale

(a) for the bare object with k1=k0~0:5 and (b) for the cloaked object, with k2=k0~3:1. Amplitude of the oscillating temperature in the near-field of (c)

the same bare object of Fig. 4(a) and (d) the same cloaked object of Fig. 4(b) for k0a1~0:5. Arrows show the direction of+T and the color bar denotes the

plot of T=T inc
�� ��.
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SCS of uncloaked objects with radius r~a1 and r~1:1a1 are plotted
for comparison. It is evident that excellent scattering reduction may
be achieved over a large range of frequencies for both cases.
Figures 5(c) and 5(d) plot the amplitude of the temperature field

scattered by a cloaked and uncloaked object, on the x2y plane at a
time instant, respectively. When the object is cloaked, both forward
and backward scattering almost vanish. This reduction of scattering
is achieved due to the proper choice of the surface impedance, which
restores almost uniform amplitude all around the cloak.

Summary. In conclusion, we have proposed an original route
towards designing thermal cloaks based on the scattering
cancellation technique. This technique is inspired by the plasmonic
cloaking, which makes use of shells with induced negative
polarization to suppress scattered electromagnetic fields. And
contrary to invisibility cloaks based on transformation optics, SCT
offers simple cloaking designs (without the need of anisotropy and
inhomogeneity of the physical parameters).
One may envision that using this design may further make the

thermal cloaking closer to its practical and feasible realization. We
believe that such a structured cloak could be manufactured within
current technology, having in mind some potential applications in
invisibility, sensing and thermography. The range of industrial appli-
cations is vast, and our proof of concept should foster research efforts
in this emerging area of thermal cloaks and metamaterials.

Methods
Analytical methods based on scatteringMie theory of spherical thermal scatterers are
used to obtain the results presented in Figs. 2, 3, 4(a), 4(b), and 5. In the quasistatic
limit, where the size of the object is much smaller than the wavelength and only the
lowest-orderMie coefficients are kept, analytical formulas are obtained [Eqs. (20) and

(21)]. Those give results similar to the ones obtained from full Mie series solutions
[Fig. 3(a)]. The results given in Figs. 4(c) and 4(d) are obtained using COMSOL
Multiphysics software, which solves Eq. (2) with proper boundary conditions using a
finite element scheme.
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