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Abstract

Background: The present study aimed at characterizing the effects of increasing (relative) force level and aging on
isometric force control. To achieve this objective and to infer changes in the underlying control mechanisms,
measures of information transmission, as well as magnitude and time-frequency structure of behavioral variability
were applied to force-time-series.

Results: Older adults were found to be weaker, more variable, and less efficient than young participants. As a
function of force level, efficiency followed an inverted-U shape in both groups, suggesting a similar organization of
the force control system. The time-frequency structure of force output fluctuations was only significantly affected
by task conditions. Specifically, a narrower spectral distribution with more long-range correlations and an inverted-U
pattern of complexity changes were observed with increasing force level. Although not significant older participants
displayed on average a less complex behavior for low and intermediate force levels. The changes in force signal’s
regularity presented a strong dependence on time-scales, which significantly interacted with age and condition. An
inverted-U profile was only observed for the time-scale relevant to the sensorimotor control process. However, in
both groups the peak was not aligned with the optimum of efficiency.

Conclusion: Our results support the view that behavioral variability, in terms of magnitude and structure, has a
functional meaning and affords non-invasive markers of the adaptations of the sensorimotor control system to
various constraints. The measures of efficiency and variability ought to be considered as complementary since they
convey specific information on the organization of control processes. The reported weak age effect on variability
and complexity measures suggests that the behavioral expression of the loss of complexity hypothesis is not as
straightforward as conventionally admitted. However, group differences did not completely vanish, which suggests
that age differences can be more or less apparent depending on task properties and whether difficulty is scaled in
relative or absolute terms.
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Background
Variability: a marker of neuro-behavioral functioning
When a person is performing a motor task, behavioral
output is characterized by fluctuations over time. Behav-
ioral variability is also a generic manifestation of aging
in the neuro-musculo-skeletal system (NMSS). Indeed, it
has been repeatedly observed that aging leads to a
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significant increase in intra-individual variability of cog-
nitive and motor outputs [1,2]. According to information
theory and the neural noise hypothesis, such increase in
variability might lead to lower information processing
efficiency [3-5], that is currently measured by the signal-
to-noise ratio (see [6] for an example in Fitts’ task).
However, the increase in the magnitude of behavioral

variability is not the only consequence of aging. Indeed,
its dynamic structure, i.e., deterministic rules and corre-
lated fluctuations, can be also affected. Specifically, it is
widely recognized that the loss of complexity of behav-
ioral output fluctuations – i.e., change in time-structure
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of variability toward either an increase or a decrease in the
regularity measured by entropy metrics (e.g., approximate
entropy, ApEn) [7-10] – is a functional indicator of
organismic functions in health and disease. It may as
well contribute to the better understanding of age-
related reorganization of physiological and motor con-
trol systems [10-14].
The distinction between the amplitude and the struc-

ture of variability is based on the assumptions that: (i)
random/uncorrelated variability extracted from the sig-
nal’s variance is a proxy of the amount of white Gaussian
(neural) noise in the system and an index of its efficiency
through the measure of signal-to-noise ratio (e.g., [15]);
and (ii) the structure of variability, which is reflected in
the signal’s complexity, is a proxy of the underlying
organization of the multiple components or processes
involved at different temporal and spatial scales in task
performance [9,13,15]. Presumably, the magnitude of
variability and its time-correlation structure stem from
different origins and, accordingly, have specific func-
tional significance. However, the question arises as to
how the amplitude of variability (and, hence, the signal-
to-noise ratio) and its time-structure evolve in principled
ways as a function of task constraints (see [16] for an
illustrative example in bimanual coordination) and during
aging. One of the objectives of the present study was to
address this issue in an isometric force control task.

Isometric force production: a prominent paradigm in
motor control
Isometric force control is one of the most prominent
paradigms that are currently used in motor control and
aging research to explore the different mechanisms
underlying perceptuo-motor variability [17-23]. It has
been demonstrated that force output fluctuations around
a target value are sensitive to task demands, e.g., the
required force level. Further, variability of the force out-
put also changes with age [15,19,24-27]. This latter effect
is often attributed to age-related changes in motor unit
recruitment and/or firing rate to maintain a given level
of force output [28,29]. However, age-related changes in
force control are not limited to the product of intra-
muscular alterations. They are actually also driven by
task-specific control and coordination constraints [19].
Indeed, as in many functional tasks, accurate control of
magnitude, direction, and timing of force results from
a coalition of multiple constraints of various origins
(neural, cognitive, neuro-muscular, musculo-tendinous,
energetic, etc.) and, in particular, from central integra-
tion of different sensory feedback loops with specific
time delays [10,30,31]. The involvement of different
control processes in task-goal achievement can be assessed
through the relative amount of power expressed in specific
frequency ranges (for an overview see [32]). From this
perspective, low frequency bands (0–4 Hz) are associ-
ated with sensorimotor processing [33-35], whereas
higher frequency bands (8–12 Hz) are considered to re-
flect the neural components of physiological tremor
[36]. It has been suggested that with increasing diffi-
culty of the task, the relative contribution of low fre-
quency displays an inverted-U shape evolution with a
minimum around 40% of MVC [15,34]. Compared to
young adults, elderly were found to present greater relative
power in the 0–4 Hz bandwidth [23,37], which was pre-
sumably associated with deficits in visuo-motor processing
capacities (e.g., [38,39]).
Overall, changes in magnitude, structure, and frequency

content of force fluctuations convey valuable information
about underlying modifications and reorganizations be-
tween the aforementioned control mechanisms as a func-
tion of force levels and age. In the present study, we
hypothesized that these changes should occur concomi-
tantly in principled ways, as a signature of (self-organizing)
dynamics between functional mechanisms underlying
force- and age-related changes in efficiency and complex-
ity of the neuro-behavioral system [15,28].

Variability, information transmission, and complexity in
isometric force control
In commonly used force control tasks where subjects
are requested to either maintain or modulate their forces
as instructed by a visually presented target line (constant
or variable force over time), the magnitude of behavioral
fluctuations is measured in either absolute terms (i.e.,
via the standard deviation, SD) or in relative terms (e.g.,
via the coefficient of variation, CV, [19]). It has been
shown that in young adults, SD increases non-linearly
with increasing force level [15,28], whereas the CV is
highest for low force levels [20,19]. Older adults are
generally found to exhibit larger variability than young
adults when expressed in relative terms [18,20,23,39].
The results for variability expressed in absolute terms
are less consistent and vary between studies, from a
significant [40] to a nearly significant (e.g., [39]) age
effect or even no difference (e.g., [18]). It is noticeable,
however, that the effect of age on these two metrics has
not been systematically investigated across the range of
possible (relative) force levels. Available findings regarding
changes in the time-structure of force production with ad-
vancing age indicate that, at least for low force levels, the
variability of force maintenance gets more regular, and
thus less complex (i.e., ApEn decreases) [37,41].
Slifkin and Newell [15,34] addressed the issue of the

co-variation between signal-to-noise ratio (relying on
behavioral variance) and entropy measure during iso-
metric force control in young adults. They assumed that
maintaining a given level of isometric force results from
interactions between multiple component processes (e.g.,
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feedback loops, motor unit recruitment, firing rate of
neural commands, or attentional control) [10]. According
to this assumption they hypothesized that optimal com-
plexity of the system’s organization and information pro-
cessing efficiency should be functionally related. The
different experiments carried out in both studies com-
prised force levels between 3 and 95% of the individuals’
MVC. Although a smooth pattern could be less consist-
ently drawn from the second study, authors concluded
that: (i) signal-to-noise ratio (efficiency function) and com-
plexity measure (ApEn) followed a similar nonlinear trend
(inverted-U curve) and (ii) the optima of the two curves
roughly corresponded to the same range of force level
(35–40%). These findings are compatible with the hypoth-
esis that complexity of behavioral outputs is related to
variability and information processing in the system
[22,38]. In other words, the optimal organization of the
NMSS, which is reflected in entropy metrics, presumably
improves the efficient transfer and circulation of informa-
tion necessary to produce and control force over time
[42]. Such integrated view, which constitutes a theoretical
alternative to the classic approach to neuro-muscular con-
trol, has not been completely elucidated and suffers from
some limitations that preclude its extension to aging with-
out further empirical investigation. To our knowledge, no
other published work attempted to reproduce Slifkin and
Newell’s [15] results.

Variability of force output and the system’s efficiency:
limitations and challenges
Beyond the above-mentioned inconsistencies in Slifkin
and Newell’s study (cf., results of experiments 1, 2, and 3,
Figure two in [34]), some other limitations deserve to be
pointed out and addressed before (i) confirming the link
between information processing in the system and the
expressed complexity in behavioral outputs, and (ii)
understanding how this link is affected by task and age
factors. A major point is the single scale metric of entropy
that was used (i.e., ApEn) to infer complexity of force fluc-
tuations. Indeed, ApEn is known to be highly sensitive to
data length and to produce less consistent and reliable re-
sults than its subsequent version, i.e., sample entropy
(SampEn, [43,44]). Additionally, both single scale mea-
sures do not make the distinction between a completely
random signal and a complex one that contains long-
range correlations. For instance, white noise (random
signal) always yields higher entropy values than pink noise
(complex signal). To overcome this limitation and to offer
a better differentiation between random and complex pro-
cesses, Costa et al. [45] introduced multi-scale entropy
(MSE) and showed that this measure is more reliable than
the single scale estimators to characterize physiologic and
sensorimotor complexity by taking long-term correlations
into account (see [11,46] for detailed explanations).
Through the use of MSE, the different time-scales can
be, to some extent, linked to different processes operat-
ing at certain bandwidths. This has been recently
exploited in brain studies (see [47]; Sleimen-Malkoun
et al., revised) but, to our knowledge, never in behavioral
studies and, especially not, in force control experiments.
The underlying reasoning is that the coarse graining
procedure acts in similar fashion as a low-pass filter,
which would result in eliminating progressively the pro-
cesses operating at the fastest scales. Thus, MSE offers a
valuable addition to the spectral slope (log frequency-log
power plot) analysis that is more conventionally used to
hint at changes in auto-correlations characterizing the sig-
nal, and thereby revealing information about underlying
control processes (e.g.,[2]). For instance, Sosnoff and
Newell [2] proposed that with age a more broadband pro-
file of the frequency structure should be related to less
structure in the variability, and could be hence indicative
of a change in the number of active degrees of freedom.
Using MSE, this should be reflected in time-scale
dependent changes, thereby indexing the specific con-
tribution of the different processes to the observed
changes in complexity with increasing age.

Aims and hypotheses of the study
In the present study, we aimed to attain a better under-
standing of what distinguishes between different condi-
tions of functioning of the same system (i.e., different
force levels) and different functional systems (i.e., young
and older adults) during isometric force production. To
achieve this objective, we analyzed complementary vari-
ables that characterize the changes in the amplitude and
the structure of the variability of the force output. We
hypothesized that a more global picture of task- and
age-related differences could be afforded by linking them
with mechanisms known to operate on specific time-
scales and frequency bands. Accordingly, the compari-
sons with previous studies that used single scale entropy
measures and/or different acquisition frequencies and
filtering were made more straightforward by converting
scale factor (number of iteration of the coarse graining)
to time-scales (in ms).
For absolute variability as well as for frequency-based

measures, we expected a non-linear increase with in-
creasing force level. For the efficiency, we expected to
observe an inverted-U shape function with a maximum
around 35–40% of the MVC. In line with findings by
Slifkin and Newell [15,34], we expected that global com-
plexity measures of force fluctuations would match the
efficiency functions, with roughly aligned optima at
intermediate force levels. It was hypothesized that this
matching would be more pronounced for the time-scales
containing mostly information about lower frequencies
that are relevant to sensorimotor processing (i.e., < 4Hz).
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Indeed, focusing on specific scales would inform about
process-dependent changes in the signal’s complexity
(when a range of scales is examined) and predictability
(when one scale is considered).
With respect to aging effects, we expected older par-

ticipants to be overall more variable, less efficient, and
less complex in their force output. With regard to the
age-by-force levels interaction, we tested two contrasting
hypotheses: (i) the general organization and operating
mechanisms would remain the same as the system ages
but efficiency would be lower, inducing hence a down-
ward shift in the values of the different measures regard-
less of the force level; or (ii) the underlying organization
and control would breakdown at specific levels of con-
straints (i.e., force).

Methods
Participants
Eleven healthy older adults (mean age: 67 years; SD: 1.7;
range: 62–79; 6 women) and eleven healthy young adults
(mean age: 23 years; SD: 2.2; range: 20–28; 5 women)
participated in this study. All participants took part
voluntarily and provided their informed consent to the
procedure of the study. They were not aware of the
specific purpose of the study and it was stated that they
could stop the experiment at any time they would wish
to. Participants self-declared that they were healthy,
physically active, and autonomous in daily living activ-
ities. Further, all participants reported to be right-hand
Figure 1 Experimental setup. Participants were seated in a comfortable p
index finger was easily placed on the force transducer. Visual feedback of t
experiment included two steps with specific feedback displays: 1) the MVC
MVC, the pressure of the finger that was applied to the force transducer ra
two lateral red bars represented the target line (i.e., the force level in % MV
dominant, to have normal or corrected-to-normal vision,
and no trauma of upper limb or known disease that might
affect the results of the experiment. The experimental
protocol was approved by the local ethic committee of
Aix-Marseille University and was in accordance with the
ethical standards laid down in the Declaration of Helsinki.

Experimental setup
Participants sat at an experimental table with their fore-
arms resting on the table (see Figure 1), so that the right
index finger was lying comfortably on the force trans-
ducer (SCAIME, ZFA, 50 kg). To collect the force data
and to provide visual feedback to the participants, a
customized LabView (National Instruments) program and
a National Instruments acquisition card (DAQ NI-USB
6008- National Instruments) were used. The force data
were sampled at 240 Hz and saved for later analysis. In
front of the participants, the target area and task-specific
online feedback was presented on a 19” screen. The online
feedback consisted of a bar indicating the level of the
produced force in% MVC in reference to the target level
(see Figure 1). It was given at a sampling rate of 12 Hz
(i.e., 1 every 20 points of the acquired force time-series
was plotted on the screen).
Each trial was initiated by the participants starting to

press the force transducer. Data collection began as soon
as the average value of 20 sample points exceeded a
threshold of 2 N. This was indicated to the participant
by a bar next to the target area that was illuminated and
osition with both forearms resting on the tabletop so that the right
heir performance was provided on a screen in front of them. The
estimation (left) and 2) the force maintenance task (right). For the
ised up a blue column by 0.25 cm per 1 N. For the maintenance task,
C to reach) and a mobile blue bar restituted the applied force level.



Figure 2 General properties of force production. Mean force (a),
standard deviation (b), coefficient of variation (c), and signal-to-noise
ratio (d), as a function of force level for young (in black) and older
(in grey) participants. Each data point represents a group mean. Error
bars represent the standard deviation.
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remained illuminated until the trial was completed. The
participants were instructed to release their force when
the bar turned off. The start of each trial was self-paced,
but a mandatory break of 3 s was implemented in the
program. Data were stored in absolute force values.

Tasks and procedure
Participants were informed verbally about the general
procedure and were provided with written instructions
explaining the task and their positioning during the trials.
The experimental setup is summarized in Figure 1. Firstly,
MVC was measured by using data from three trials of 5 s
each. This procedure is the standard procedure to deter-
mine MVC for isometric force production with the finger
[15,21,26,48,49]. The participants were instructed to press
as hard as they could on the force transducer to lift then
hold the mobile bar on the screen as high as possible. A
resting period of about 30 s was given between trials. The
mean force obtained during the last three seconds of each
trial was considered as the MVC and was used to calculate
the relative target force levels of the consecutive task
conditions. Initial verification showed that the groups
differed with regard to their MVC, F(1,20) = 15.65,
p < .01, ηp

2 = .439 (mean ± SD, for young adults: 57.59 ±
19.40 N, and for old adults: 29.35 ± 13.58 N).
Next, participants had a phase of familiarization with

the experimental setup, during which they practiced all
the force levels used in the following step. Afterwards,
participants performed the force maintenance task at
various force levels. The target force levels were 10, 20,
40, 60, and 80% of each participant’s individual MVC.
The target force level to be maintained was indicated on
the screen with two red lines (2 pt width), between
which a blue line could be moved up and down as func-
tion of the force applied on the force transducer. The
participants were instructed to align the blue line with
the red ones and to maintain it as stable as possible for
15 s. Timing was indicated by the illumination of the
green bar next to the display (Figure 1). Each force level
condition was performed twice consecutively. The order
of force levels was randomized. Verification, preliminary
to data analysis, confirmed that all participants respected
task instructions and that there were no significant dif-
ferences between groups in terms of relative mean force
production (see Figure 2a).

Data analysis
The acquired data of the produced force over time were
analyzed with the use of a Matlab R2012b customized
program (MathWorks, Natick, MA, USA). The data
were low-pass filtered with a 4th order Butterworth filter
at 30 Hz. To exclude the ramp phase from further
analysis, the first 2.5 s were discarded. All the following
analyses were accordingly conducted on 12.5 s trials.
Data were converted to relative force values in percent-
age of the participants’ individual MVC. All variables
were calculated per trial and then averaged over the two
trials. The mean of the produced force, the standard
deviation, and the CV were calculated to characterize
general properties of force production CV = SD/mean
force. As an index of efficiency, the signal-to-noise ratio
was computed as: Signal-to-noise ratio = mean force/SD.
The variability structure of force time series was character-
ized using MSE as introduced by Costa and colleagues
[45]. This method consists of calculating SampEn [43]
over multiple time-scales contained in the analyzed time
series, and thus in the expressed dynamics [11,45]. Sam-
pEn measures the degree of irregularity in the fluctuations
of a time series by calculating conditional probabilities,
which represent the likelihood that a vector of m data
points matches a template with the same number of data
points within a tolerance range of r normalized to the SD
of the signal [50]. We set r to 0.2 and m to 2. The time-
scales were constructed by coarse graining the original
time series using a moving average with non-overlapping
windows of the size (i.e., number of points) of the scale
factor (see [11] for details and illustration). Then SampEn
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was calculated for each of the coarse grained time series.
Based on our signals’ length and sampling rate, sample en-
tropy was calculated for 60 scales. The MSE curves were
obtained by plotting SampEn values as a function of the
scale factor. To capture their general characteristics, based
on Zhang’s definition of complexity as the integral of
all scale-dependent entropies [51], the area underneath
the curves was calculated (see also [52]). Then, focus
was brought on the area of the time-scales range repre-
senting sensorimotor processing (i.e., containing infor-
mation about 0–4 Hz bandwidth). Additionally, specific
scales were examined to explore whether task and age
effects on behavioral regularity show clear scale de-
pendence that would be mediated by the control mech-
anisms at stake. Namely, three functionally relevant
scales were selected: Scale 4 (16 ms), representative of
the signals’ frequency range after filtering (i.e., 0–30 Hz);
Scale 10 (41 ms), more representative of the mechanisms
known to operate in force control, that is, sensorimotor
processing and physiological tremor (0–12 Hz); Scale 30
(125 ms), the most representative of sensorimotor pro-
cessing (0–4 Hz).
The structure of the force output in the frequency

domain was characterized by spectral analysis. The
power spectrum was calculated by use of the pwelch
function implemented in Matlab by means of a Hanning
window with 256 data points with a non-overlapping
window of 1024 data points. To characterize the overall
changes in the distribution of power, the slope of the
log-log plot was determined per participant for each
condition. It quantifies how broadband the power
spectrum is, with a 0 slope being that of white Gaussian
noise. Peak power was determined in the frequency band
from 0–4 Hz and in the frequency band from 7–14 Hz.
The window to detect peak power of the tremor compo-
nent was defined after visual inspection to account for
inter-individual differences in peak frequency. Addition-
ally, proportional power spectra were calculated and the
same detection of peak power within the aforementioned
frequency bands was performed.
Moreover, signal-to-noise ratio and MSE areas as well

as MSE values per representative scales were plotted
over the force levels and polynomial fittings were per-
formed to capture characteristics of task-related changes
per group. For the MSE values per scale the fitting was
used for visualization, for the signal-to-noise ratio and
the MSE area the peak values per group were detected
and interpreted.

Statistics
Statistical analyses were conducted in STATISTICA
(StatSoft, Tulsa, OK, USA). All dependent variables (i.e.,
SD, CV, signal-to-noise ratio, MSE curve areas, MSE
curve areas over sensorimotor range, spectral slope, peak
power and proportional peak power of the two func-
tionally relevant frequency bands) were analyzed with
an Age (2) × Force Level (5) ANOVA with repeated
measures on the latter factor. In order to analyze the
MSE for the specific scales, an Age (2) × Force Level
(5) × Scale (3) ANOVA with repeated measures on
both latter factors was calculated. The sphericity of
the data was verified with the test of Mauchley. The
Greenhouse-Geisser correction was applied when the
epsilon value was smaller than 1 [53]. Non-adjusted
degrees of freedom are reported. The level of signifi-
cance was set to p < 0.05. When significant, effect sizes
are given as partial Eta squares (ηp

2). Significant main
effects and interaction effects were followed by Newman-
Keuls’ post-hoc test.

Results
Variability of force production: SDs and CVs
Analysis of the SD (expressed in% of MVC, see Figure 2b)
revealed that it increased with increasing force level, F
(4,80) = 21.21, p < .01, ηp

2 = .401. On the other hand, no
main effect of age, F(4,80) = 1.94, p = .18, and no signifi-
cant age-by-force level interaction, F(1,20) = 0.17, p = .85,
were observed. For the CV (see Figure 2c), statistical
analysis revealed a main effect of force level, F(4,80) =
6.25, p < .01, ηp

2 = .238, with the relative variability in the
10% condition higher than in all other force levels (all
p < .01), and a main effect of group, F(1,20) = 5.57,
p = .03, ηp

2 = .218. Older adults were generally more vari-
able than younger adults. The interaction of force level
and age was not significant, F(4,80) = 1.52, p = .23.

Signal-to-noise ratio and efficiency functions
The signal-to-noise ratio curves can be inspected in
Figure 2d. The main effects of age, F(1,20) = 4.69,
p = .04, ηp

2 = .190, and force levels, F(4,80) = 18.57, p < .01,
ηp
2 = .481 were significant, along with a tendency for an

age by force level interaction, F(4,80) = 2.56, p = .08,
ηp
2 = .113. The young adults had higher values of signal-

to-noise ratios than older adults for low and medium
force levels (10, 20 and 40%) but not for the two higher
ones. Within the group of older adults, the 10% condi-
tion was performed with a lower signal-to-noise ratio,
than all other conditions, which were not different
between each other (all p < .01). For young adults the
20% and the 40% conditions revealed higher signal-
to-noise ratios than the 10%, 60%, and 80% conditions
(all p < .01). Newman-Keuls post-hoc comparisons
showed no significant pairwise age differences for each
force level (i.e., 10, 20, 40, 60, and 80%). In both groups,
signal-to-noise ratio curves were best fitted by a third
order polynomial (both R2 = 0.99; note, however, that
we had only five data points). These curves, represent-
ing efficiency functions, followed the same inverted-U
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trend for young (y = 0.0005×3 - 0.08×2 + 3.61× + 0.25)
and older (y = 0.0003x3 - 0.05×2 + 2.64× - 0.25) partici-
pants. Maxima were detected for young adults at 31.5%
of MVC and for older adults at 41.5% of MVC (corre-
sponding to absolute group averages of 18.14 N and
12.18 N, respectively).

Complexity of force output: MSE curves
Visual inspection
Figure 3a presents mean MSE curves for young and
older adults at different force levels. It shows scale-
dependent evolutions of SampEn with a common initial
fast increase for short scales up till around scale 5 (21 ms),
followed by a stabilization for longer scales (> scale 10,
Figure 3 Changes in the structure of force variability. (a) MSE curves p
older (right panel) participants. (b) Mean and standard deviation of the are
standard deviation of SampEn values per force level for young (in black) an
10 (41 ms) in the middle panel, and scale 30 (125 ms) in the right panel.
42 ms). For both groups, MSE curves of the different
force levels show a crossing around scale 10. Before the
crossing, i.e., for shorter scales, SampEn values de-
creased with increasing task difficulty. Conversely, after
the crossing, i.e., for longer scales, higher SampEn
values were found for higher force levels. Overall, the
curves suggest an increased complexity with increasing
force levels. Age-related differences could be observed
for low and medium force levels (10, 20, and 40%), with
a consistent finding that, on average, the older partici-
pants were less entropic for most of (long) time-scales
and hence showed trend for a less complex behavior
(see Figure 4 for group-wise comparison of MSE curves
per force level).
er force level (darker colors for higher levels) for young (left panel) and
a underneath the MSE curve for each force level. (c) Mean and
d older (in grey) participants at scale 4 (16 ms) in the left panel, scale



Figure 4 Structure of force variability per condition. Averaged MSE curves are plotted per group for the force levels 10 (a), 20 (b), 40 (c), 60
(d), and 80 (e)% of the MVC.
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MSE curve areas
ANOVA for this comparison revealed a main effect of
force levels, F(4,80) = 15.13, p < .01, ηp

2 = .431, but no
main effect of age, F(1,20) = 0.98, p = .34, or age-by-force
level interaction, F(4,80) = 0.84, p = .48. The 10% force
level had the smallest area (p < .01 for all pairwise com-
parisons) and the 20% area was larger than the 10% area,
but smaller than the 40% and the 60% areas (p < .05 for
all pairwise comparisons), which were equivalent. For
both young and older adults, the MSE area showed an
inverted-U trend over force levels with a peak value
roughly around 60% (see Figure 3-b left panel).

MSE curve areas range reflecting sensorimotor processing
ANOVA for this comparison showed a main effect of
force levels, F(4,80) = 17.34, p < .01, ηp

2 = 464, but no
main effect of age, F(1,20) = 1.98, p = .17, or age-by-force
level interaction, F(4,80) = 0.85, p = .49. As for the total
area, both young and older adults presented an inverted-
U trend over force levels with a peak value roughly
around 60% (see Figure 3-b right panel). Although it did
not reach statistical significance at group level, older
adults had, on average, lower SampEn values for the first
three force levels (10 – 40%).

Time-structure of fluctuations at functionally relevant
MSE scales
A Group (2) × Scale (3) × Force level (5) analysis of vari-
ance revealed: (i) main effects of force level, F(4,80) =
3.47, p = .02, ηp

2 = .148, and scales, F(2,40) = 12.21,
p < .01, ηp

2 = .379, (ii) a scale-by-force level interaction,
F(8,160) = 50.11, p < .01, ηp

2 = .715, and (iii) a significant
three-way interaction, F(8,160) = 1.91, p = .02, ηp

2 = .108,
statistically showing the described observations of time-
scale dependent entropy changes. Main effect of age,
F(1,20) = 0.09, p = .77, and the interactions of age-by-
scale, F(2,40) = 1.65, p = .21, and age-by-force level, F
(4,80) = 0.70, p = .55, were not significant. Post-hoc
comparisons revealed differential results for each scale.
For scale 4, in young adults, SampEn was the highest at
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the 10% condition. In addition, the SampEn observed at
the 20% condition was higher than the other three force
levels (all p < .05). At the 40% condition, older adults
yielded lower complexity values than at the 10 and 20%
conditions (both p < .01), but higher values than at the
80% condition (p = .03) and marginally higher values
than at the 60% condition (p = .07). For scale 10, no dif-
ferences between force levels were revealed in young
adults. Similar to the group of young adults, no signifi-
cant differences between force levels were observed in
older participants. For scale 30, in young adults, the
40% condition had higher SampEn values than the 10%
condition (p = .01). In older adults, SampEn at 40, 60,
and 80% was higher than at 10%, and SampEn for 60%
was higher than those observed for 20% (all p’s < .05). In
line with post-hoc results, looking at the entropy values
for the different force levels per scales revealed different
patterns: for scale 4, the entropy decreased with increasing
force level (Figure 3c left panel); for scale 10, the entropy
curve was almost flat (Figure 3c middle panel); and for
scale 30 (Figure 3c right panel), a marked inverted-U
shape was observed, closely resembling the signal-to-noise
ratio curves, with a peak around 40% for young adults
(2nd order fit: y = −0.01×2 + 1.41× + 51.19; R2 = 0.98) and
at 60% for older participants (2nd order fit: y = −0.07×2 +
0.81× + 63.80; R2 = 0.95). Although it did not reach statis-
tical significance at group level, at the short time-scale,
which reflects both fast and slow dynamics, older adults
had, on average, more entropic signals (i.e., less regular)
than younger adults for intermediate force levels. Con-
versely, when looking at the longer time-scale, older adults
expressed more regularity for the first three force levels
(cf. Figure 3c right panel).
Frequency-structure of force output
Absolute and proportional frequency spectra and log-log
frequency-power plots per group are presented in
Figure 5. Peak power and proportional peak power are
plotted in Figure 6 as a function of force level.
Spectral slope
The spectral slope differed between force levels, F(4,80) =
51.05, p < .01, ηp

2 = .720. The values of the slopes increased
with increasing force levels (see Table 1) indicating a
decrease in the spread of power across the spectrum
with increasing task demands. The slopes observed in the
10% and 20% conditions (−0.95 and −1.21) were signifi-
cantly lower than the three other force levels (40% = −1.64,
60% = −1.78 and 80% = −1.87, respectively). The slope
observed in the 40% condition was lower than those
observed for the 80% condition (p < .01). Main effect of
age, F(1,20) = 2.87, p = .11, and age-by-force level inter-
action, F(4,80) = 0.69, p = .49, were not significant.
Peak power of the functionally relevant frequency bands
Sensorimotor processing band
For peak power, in the frequency range of 0–4 Hz, ana-
lysis revealed a tendency toward a main effect of force
level, F(4,80) = 3.37, p = .06, ηp

2 = .144. Overall, the power
increased with force level. Post-hoc comparisons showed
that the peak power observed at 80% was higher than
those observed at 10%, 20%, and 40%. In addition, peak
power observed in the 60% condition was higher than
that observed at the 40% condition. Main effect of age,
F(1,20) = 1.60, p = .22, and age-by-force level interaction,
F(4,80) = 0.83, p = .52, were not significant. However,
older participants had, on average, greater absolute peak
power than younger adults at the two high force levels
(see Figure 5a, b for peaks of the mean curves and
Figure 6a for mean peak power values). Analysis of pro-
portional power revealed no significant effect of age,
F(1,20) = 1.89, p = .18, force level, F(4,80) = 1.34, p = .27,
and no significant interaction, F(4,80) = 0.97, p = .42.
Nevertheless, mean curves indicated a higher propor-
tional power for older adults for the lowest force levels
and an increase in proportional peak power with force
level for the group of young adults (see Figure 5c, d for
the mean curves and Figure 6c for mean peak power
values across force levels).

Physiological tremor band
The amount of peak power in the tremor component
showed a main effect of force level, F(4,80) = 9.40, p < .01,
ηp
2 = .320, being the highest for 80% (p < .01). The age

effect, F(1,20) = 3.21, p = .09, ηp
2 = .138, and the age-by-

force level interaction were not significant, F(4,80) = 0.32,
p = .40, although older adults displayed, on average,
greater peaks for low and medium force levels (see
Figure 5a, b for the mean curves and Figure 6b for
mean peak power values). The analysis of proportional
power showed no main effect of age, F(1,20) = 1.18,
p = .29, and the age by force level interaction, F(4,80) =
1.01, p = .36, failed to reach significance. The propor-
tional peak power differed for the force levels, F(4,80) =
19.85, p < .01, ηp

2 = .498. It decreased as task requirements
increased (see Figure 5c, d for the mean curves and
Figure 6d for mean peak power values). At 10% highest
proportional peak power was revealed and proportional
peak power at 20% was higher than at 40, 60, and 80%
(all p < .001).

Discussion
In the present study, we investigated the sensorimotor
processes underlying isometric force control through
measures of the magnitude and the time-frequency
structures of behavioral variability.
As a preliminary observation, our participants groups

presented significant differences in MVC, with older



Figure 5 (See legend on next page.)
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Figure 5 Characterization of frequency spectra. Curves represent group mean values for young (left) and older (right) adults per force level.
(a) and (b) Power spectrum for frequencies between 0 and 20 Hz (representing approximately 95% of the total power for each force level). (c)
and (d) Proportional power spectrum for frequencies between 0 and 20 Hz. (e) and (f) Log10 power as a function of the log10 frequency for
each force level with spectral slopes determined by linear regression (note: for data analysis slopes are calculated based on individuals
frequency spectra).
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participants’ values being lower than those of younger
ones. This result was expected and can be considered as
a typical marker of age-related dynapenia [30,31]. It is
noticeable however that the observed group difference
in MVC is considerably larger than what is usually
reported in the literature (see for example [18,40,54],
and [25,39] where no differences were found), which in-
sured that we tested here significantly different force
control systems. However, the use of relative force
levels, which is a procedure commonly used in the
literature to normalize for inter-individual strength
disparity [15,21,34,37,40,55], also insured that force
conditions were comparable between participants. In
this respect, we found that participants of both groups
were equally capable of correctly scaling their pro-
duced force and performing the task according to the
instructions.

Variability and efficiency differ between force levels in
young and older adults
Absolute variability of force outputs (SD) non-linearly
increased with force level in both groups. Relative vari-
ability (CV) was higher at the lowest force level (10%)
than for all the other levels and older adults were more
variable than young participants. These results are
consistent with previous studies reporting that CV is an
age-sensitive measure [56-58] and that the age effect is
more pronounced for relative than for absolute variabil-
ity [39,59]. They are also consistent with Christou’s [60]
assumption that age effects on force output variability
are more consistently observed for lower than for higher
force levels. Overall, age-related changes in variability
can also be related to those reported using other tasks.
Indeed, the observed increase in relative variability of
force output with age (CV) is consistent with the general
observation that older adults are more variable than
young adults in a wide range of cognitive (see [61] for
an overview) and motor tasks, e.g., repetitive reaching
[62] or gait [63].
The efficiency of information processing of the force

control system was estimated through the use of the
signal-to-noise ratio (see [15] for a similar procedure),
which showed an inverted-U shape in both groups, with
a peak value around 35% of the MVC in young adults,
and around 40% in older adults. This result is consistent
with the findings reported by Slifkin and Newell [15,34]
in young adults. It shows additionally that, while con-
serving a general inverted-U shape in both groups, aging
does not dramatically affect the range of optimal func-
tioning relative to the maximum force level. Results also
showed a lower signal-to-noise ratio in older adults,
which supports the hypothesis that aging leads to a de-
crease in information processing efficiency in the central
nervous system. This has been already observed in both
the sensorimotor (e.g., [9,6]) and the cognitive domains
(e.g., [64,65]). Nonetheless, the difference between young
and older adults was significant at low and medium
force levels, with the largest difference at the level corre-
sponding to optimal signal-to-noise ratio (i.e., optimal
information transmission) and no difference was found
for the higher force levels. Although the maximization
of age differences for intermediate relative force levels is
currently admitted for force control (see [66]), such pat-
tern differs from that observed with different paradigms,
as for instance in Fitts’ task [66] and, more generally,
from the age-by-complexity effect [67,68], which has
been reported in aging literature. Indeed, the relation be-
tween task difficulty and performance is, in general, de-
scribed as being linear and age-related differences as
being more pronounced with increasing task difficulty.
Presumably, the present different pattern of age-by-
complexity effect reflects the specificities of the task (see
[69] for a comparable argumentation). Indeed, in isomet-
ric force control tasks, the difficulty does not seem to in-
crease linearly with force level, as attested by the
inverted-U shape of the signal-to-noise ratio in both
groups. However, the shapes of the efficiency functions
are slightly different between the two groups, i.e., more
marked in young participants, thereby leading to a spe-
cific pattern of age differences. The observed age-related
differences presumably also depend on whether absolute
or relative variability is measured. As an illustration, we
did an exploratory analysis by studying the force levels
for which younger and older participants had on average
comparable absolute force levels. By doing so, group dif-
ferences in variability (SD) were reversed such as higher
differences were observed for the higher force levels.
Similarly, older participants were found to have lower
signal-to-noise ratios at higher force levels (12 and 24 N,
20% and 40% for young, 40 and 80% for older participants,
p < .05), but were equivalent at the low force level (6 N,
10% for young, 20% for older participants, p > 0.05).



Table 1 General properties of force production

Force level 10% 20% 40% 60% 80%

Group Young Old Young Old Young Old Young Old Young Old

Measure Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Mean 10.06 (0.34) 10.45 (1.64) 19.78 (0.44) 19.92 (1.14) 39.26 (0.80) 39.33 (1.11) 58.54 (1.62) 57.94 (1.81) 78.05 (2.17) 76.50 (3.45)

SD 0.41 (0.22) 0.79 (0.40) 0.47 (0.11) 0.71 (0.24) 0.94 (0.25) 1.22 (0.58) 1.99 (0.77) 2.52 (2.49) 2.82 (0.98) 3.56 (2.78)

CV 0.04 (0.02) 0.08 (0.04) 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.03 (0.01) 0.03 (0.01) 0.04 (0.05) 0.04 (0.01) 0.05 (0.04)

Index of efficiency

S-t-N 28.14 (7.35) 16.53 (7.36) 44.53 (11.09) 30.67 (13.16) 45.13 (11.42) 35.71 (14.49) 34.08 (10.19) 31.86 (12.17) 31.09 (10.35) 28.34 (10.67)

Frequency analysis

Slope −1.02 (0.33) −0.88 (0.49) −1.31 (0.35) −1.05 (0.31) −1.74 (0.32) −1.55 (0.28) −1.92 (0.26) −1.65 (0.36) −1.89 (0.32) −1.85 (0.38)

Peak power (0–4 Hz) 0.05 (0.03) 0.15 (0.12) 0.10 (0.03) 0.21 (0.20) 0.52 (0.41) 0.54 (0.27) 3.00 (3.36) 9.23 (25.18) 5.14 (4.83) 9.35 (11.99)

Prop power (0–4 Hz) 0.134 (0.082) 0.099 (0.049) 0.130 (0.033) 0.094 (0.046) 0.115 (0.025) 0.109 (0.018) 0.136 (0.040) 0.129 (0.058) 0.130 (0.041) 0.133 (0.009)

Peak power (7–15 Hz) 0.02 (0.02) 0.08 (0.10) 0.02 (0.02) 0.07 (0.08) 0.03 (0.02) 0.07 (0.08) 0.07 (0.05) 0.10 (0.08) 0.19 (0.23) 0.18 (0.13)

Prop power (7–15 Hz) 0.041 (0.038) 0.039 (0.019) 0.018 (0.011) 0.033 (0.022) 0.007 (0.005) 0.014 (0.010) 0.006 (0.006) 0.009 (0.014) 0.007 (0.009) 0.007 (0.009)

Multiscale complexity analysis (SampEn)

Area 70.53 (6.75) 63.32 (10.43) 79.18 (7.59) 74.96 (13.59) 88.98 (9.94) 83.42 (10.95) 88.29 (9.94) 90.24 (11.65) 84.10 (16.40) 85.87 (14.39)

Area 30-60 40.83 (6.24) 35.98 (7.01) 46.13 (4.89) 42.41 (9.89) 54.08 (7.71) 48.87 (6.54) 53.92 (7.08) 54.68 (8.09) 51.86 (10.95) 52.44 (8.22)

Scale 4 1.69 (0.21) 1.64 (0.29) 1.45 (0.20) 1.63 (0.26) 1.16 (0.21) 1.34 (0.21) 1.02 (0.22) 1.12 (0.29) 0.97 (0.34) 1.01 (0.35)

Scale 10 1.38 (0.11) 1.29 (0.23) 1.38 (0.17) 1.42 (0.17) 1.40 (0.19) 1.42 (0.18) 1.37 (0.18) 1.38 (0.26) 1.28 (0.31) 1.30 (0.34)

Scale 30 1.29 (0.17) 1.16 (0.24) 1.53 (0.26) 1.34 (0.19) 1.65 (0.33) 1.55 (0.22) 1.57 (0.28) 1.65 (0.21) 1.51 (0.30) 1.62 (0.33)

Means and standard deviations of the general properties of force production, signal-to-noise ratio (S-t-N), as well as results of the frequency and MSE analyses.
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Figure 6 Peak power per force level in the functionally relevant
frequency bands. (a) and (b) Mean and standard deviation of peak
power of the frequency bands reflecting sensorimotor processing
and tremor respectively, with their corresponding proportional peak
power values in (c) and (d).
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Frequency structure of force fluctuations across force
levels in young and older adults reflects different
sensorimotor processing components
The frequency structure of the force output fluctuations
was captured by the power distributions of frequency
spectra and by the spectral slopes. With respect to the
power spectra analysis, results showed that the power
distribution changed comparably in both groups as a
function of force level. Specifically, the spectral power
distribution showed two peaks that were located in the
frequency ranges presumably representing sensorimotor
processing and tremor, respectively. This distribution
structure is consistent with the findings previously re-
ported by Taylor et al. [70], whereas it remained unob-
servable in other studies that focused on the frequency
range representing sensorimotor processing [15,34].
Overall, for both frequency bands absolute peak power

increased with force levels. This effect was previously
reported for the frequencies reflecting sensorimotor
processing (e.g., [15]). Proportional power analysis showed
that, compared to absolute power, the effect of force level
was diminished in the frequency range reflecting sensori-
motor processing, and reversed for the tremor component
(i.e., the highest peak power observed for the lowest force
levels). These results suggest that force levels change the
relative contribution of the sensorimotor processing and
the tremor components to the produced behavior, which is
reflected in different frequency structures of force fluctua-
tions. Such changes are accompanied by changes toward
steeper spectral slopes with increasing force level. This indi-
cates that the frequency content of force output is not ran-
domly distributed, but rather dominated by structured
fluctuations. The contribution of lower frequencies in-
creases as the relative force requirements increase.
It is striking that similar frequency profiles and spec-

tral slopes were observed for both age groups. These re-
sults differ from those observed in previous, but not
strictly comparable, studies where higher absolute power
values were reported for older than for younger partici-
pants, for both frequency ranges, i.e., 0–4 Hz [37] and
8–12 Hz [71,72], respectively. With regard to propor-
tional power analysis, current literature is not unani-
mous when it comes to age effects. For instance, looking
at age-related differences in low relative force produc-
tion (15% MVC), Sosnoff and Voudri [73] found higher
proportional power for older participants than for
younger ones, but not for the frequencies representing
sensorimotor processing. Conversely, Heffernan et al.
[66], who used the 30% MVC force condition, for which
the highest group difference was expected, did not re-
port a significant age effect on any of the examined fre-
quency ranges (namely, 0–4, 4–8, and 8–12 Hz). Other
studies also did not report age-related differences for the
frequency range related to physiological tremor [2,74,75].
In this respect, Morrison and Newell [32] proposed two
possible explanations: (i) the increase of tremor might be
only detectable for participants older than 80 years; and (ii)
the task conditions under which the tremor is assessed
might be decisive, with more challenging situations (e.g., in-
volving multiple segments) being more affected by age (see
also [76]). However, as we didn’t study tremor explicitly
(i.e., we only captured the tremor component in force
control), we refrain from drawing extensive and specu-
lative interpretations. At least, it might be that, for both
the sensorimotor and tremor components, discrepan-
cies between the present results and those reported in
previous studies result from group differences in abso-
lute force levels.
In addition to the analysis of frequency structure of

fluctuations, we also investigated variability structure in
the time domain.

Complexity and time-scale dependent structure of force
output change across force levels in young and older adults
The changes in the time structure of force output fluctu-
ations were captured by the MSE analysis. To our know-
ledge, no previous study has investigated age-related
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differences of MSE of force output fluctuations across a
wide range of relative force levels. This metric is consid-
ered as a more reliable estimator of the system’s com-
plexity than single scale measure of entropy, e.g., ApEn
and SampEn. Indeed, restricting the analysis to the ori-
ginal time-scale of the acquired time-series conveys
simply information about its regularity, which could
change depending on the used sampling frequency and
filtering (e.g., [11]). Thus, plotting MSE curves provided
information about the richness of the signal across the
different scales, as a function of increasing force levels
and age.
Results showed that, across groups and force condi-

tions, the overall shape of MSE curves was prominently
characterized by an eventual stabilization, or a slight
increase, of SampEn values over longer time-scales. The
observed MSE profiles clearly differ from those corre-
sponding to random signals, e.g., white noise, for which
entropy values dramatically decrease beyond the first
scales (cf., [11]). Instead, they indicate the presence of
long-range correlations that are not dominated by a
single time constant. The presence of these non-random
fluctuations of force outputs reflects the inherent com-
plexity of the force control system, which implicates the
interaction of somatosensory and visual feedback net-
works, numerous brain regions, and muscular processes
operating over multiple time scales. In addition, these
long-range correlations constitute non-invasive markers
to elucidate multi-scale contribution of specific task- or
system-related constraints.
For both age groups, the increase in force level re-

sulted in an increase in SampEn values for most of the
higher scales, thereby suggesting an increase in long-
term correlations. For each force level, a visual inspec-
tion of group mean curves suggested lower complexity
in the elderly for the low and intermediate force levels
(<60%), as shown by the lower entropy at most longer
scales (>10; 42 ms). The whole area underneath the MSE
curve plotted as a function of force reveals an inverted-
U shape for both groups. This pattern indicates an opti-
mal complexity around 60% of MVC, which is a higher
percentage than those corresponding to the optimum of
the signal-to-noise ratio in young and older participants
groups. The area underneath the scales representing the
sensorimotor processing component (scale 30–60; 125 ms -
250 ms) also displayed a similar pattern of results. It is
noticeable, however, that, although the visual inspection
of MSE curves suggested a decrease in complexity with
increasing age, this was not confirmed by the statistical
analysis. This result does not allow us to draw conclu-
sions consistent with the currently admitted loss of
complexity hypothesis (LOCH, [13]), which predicts
a decrease in behavioral complexity with aging (for
reviews see [9,10]). The reasons that explain such lack
of statistical evidence are not completely clear. How-
ever, it can be noticed that most of previous studies,
including those on force control, inferring or predicting
age-related changes in complexity in support of the
LOCH have used single scale entropy measures (e.g.,
see [13] or [8,10] for reviews).
Though a single scale cannot be used to faithfully

describe the overall dynamics, which emerges from
interactions between processes operating at multiple
time-scales, we contend that it could be of interest to
assess specific control processes. This was supported
by the three-way interaction of age, force level, and
scale, which revealed a differentiated pattern of the
signal’s regularity at time scales related to the different
components of force output fluctuations. For instance,
the analysis of scale 4 (16 ms), which characterizes the
overall dominant/meaningful fluctuations of the force
output, revealed that behavioral regularity increased
(i.e., SampEn decreased) with increasing force level.
This result corroborates the findings of the spectral
slope analysis, and supports the hypothesis that with
increasing force level more long-term correlations are
present. Conversely, for scale 10 (41 ms) including fre-
quencies up to 12 Hz (tremor frequency) and around
the crossing of MSE curves of different force levels,
no effect of task conditions was observed on SampEn
values. It can be concluded that, after high frequencies
were averaged out from the signal (following the
coarse graining procedure), the structure of force fluc-
tuations was found to be similar across all force levels.
At scale 30 the sensorimotor processing component
can be more specifically examined. Here, as expected,
results showed an inverted-U shape pattern that is
comparable to the MSE area and to the signal-to-noise
ratio curves. Although no clear pattern of age differ-
ences could be extracted, the observations related to
the interaction of group factor with force level and
time-scale suggest that, compared to young adults and
depending on the control processes under scrutiny,
elderly could show more or less structured behavior at
different force levels.
Overall, on the one hand, our results show that young

and elderly participants adopt a qualitatively similar
organization of the force control system that is reflected
by the time-structure of fluctuations and the similar
changes in response to task requirements. However, it is
noticeable that these findings were highlighted by con-
fronting young and elderly to comparable constraints
that is, by controlling for the age-related deficit in
strength through the use of relative force. On the other
hand, group differences did not completely vanish,
which suggests that age differences can be more or less
maximized, depending on task settings. For instance, if
task difficulty was scaled in absolute instead of relative
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values, or if different degrees of freedom or muscular
synergies were used, age effects could be presumably lar-
ger (for converging findings, see [77], where different
structures of variability are reported when generating
isometric forces in two different directions). Thus, the
present observations suggest that, at least in isometric
force control tasks, a coalition of multiple factors deter-
mines how the system organizes its degrees of freedom
to accomplish the task, which is reflected in the ampli-
tude and structure of variability of behavioural outputs.
This perspective is consistent with Morrison and Newell’s
[32] assumption that the confluence of constraints includ-
ing aging, instead of the aging process itself, determines
the complexity of force outputs. Further research is still
needed to disentangle the contributing processes to force
control and their interactions at various task settings and
in different groups.

Correspondence between efficiency, complexity, and
frequency structure observed in young and older adults
The use of several measures provides multiple markers
to characterize variability, complexity, and efficiency of
the force control system and to capture information
about the contribution of the underlying sensorimotor
processes. Therefore, considering these measures in
conjunction, instead of separately, might afford a global
picture of how the force control system is organized in
principled ways under different task conditions and
whether this organization changes during aging.
Inspired by Slifkin and Newell’s [15] study, we searched

for the correspondence between the evolutions of signal-
to-noise ratio and complexity measure (i.e., the area
underneath the MSE curve), as well as entropy at specific
scales, as function of force levels. This was theoretically
grounded on the presumed functional relation between in-
formation processing efficiency and systemic organization
[42]. We extended this reasoning to the force control
system under the hypothesis that such a correspondence
would indicate that an optimal information transmission
between the different subsystems results from an optimal
organization of the underlying physiological connectivity.
However, in the present study, optima of the system’s
efficiency (i.e., signal-to-noise ratio), and its complexity
were not aligned. In addition, since the proportional peak
power showed no differentiated pattern between force
levels, we could not confirm that the peak power mirrors
the function of the information transmission measure.
Thus, our results were consistent with those previously
reported by Slifkin and Newell [15,34] with respect to the
profiles of the efficiency and complexity patterns over the
range of force levels, but not in terms of their correspond-
ence. To avoid misleading conclusions, it is noteworthy to
acknowledge that the present study is not directly compar-
able to those of Slifkin and Newell [15,34] that use ApEn,
which refers to regularity and is therefore considered as
insufficient to assess the changes in complexity [11].
Moreover, unlike MSE, their single scale measure doesn’t
offer the possibility of focusing on multiple specific and
functionally-relevant time-scales. Indeed, in the present
study, the adopted multiscale approach revealed the pres-
ence of strong time-scale dependence in the observed
changes in behavioral regularity. This finding implies dif-
ferent involvements of the control mechanisms in the
structure of force fluctuations at the different force levels.
In particular, it is noticeable that the inverted-U profiles of
complexity curves were only observed, in both age groups,
at scale 30, which is the scale capturing closely the func-
tioning of sensorimotor processes. The convergence be-
tween MSE and power spectra shows how the increase in
force level modifies the contribution of the two control
processes. More specifically, it reflects the decrease in the
relative implication of the tremor component with in-
creasing force requirements. In the frequency domain, this
was shown by the decrease of the proportional peak power
of the 7–14 Hz range, as well as by the steeper spectral
slope with increasing force level. In the time domain, it
can be seen by the change in the overall shape of the MSE
curves. In particular, the presence of a peak at short scales
[78] for the curves at the lowest two force levels indicates
that some meaningful information is contained at higher
frequencies (i.e., within the tremor range). Conversely, the
flatter profiles observed for 40–80% conditions indicate
that, under these task constraints, the signal’s entropy is
rather uniformly and predominantly contained in lower
frequencies, i.e., within the sensorimotor range, which
underlies the prominence of long-range correlations in
force fluctuations.

Conclusions
In the present study, we used MSE to assess changes in
long-range correlations in force output fluctuations and
to make the link with the findings observed with other
conventional analyses (i.e., SD, CV, signal-to-noise ratio,
frequency spectra and spectral slope). As currently ar-
gued within the framework of dynamical system analysis
[78-80], our results support the view that behavioral
variability, in terms of both magnitude and structure,
have a functional meaning and provide non-invasive
markers of the adaptations of the whole force control
system to various constraints. Specifically, the time and
frequency structures of force outputs can be used to
assess the dominance of processes underlying force
control. Here, we found that, for both age groups task
adaptation presented a strong dependence on time-
scales, with force control being increasingly dominated
by long-scales (low frequencies) dynamics as force re-
quirements increased. Although not statistically signifi-
cant, a tendency for an age-related loss of complexity
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was observable for the easy and moderate force levels.
The surprisingly weak age effects on variability and
complexity measures suggests a similar organization
of the system underlying force control for participants
of both age groups, even though efficiency was lower
in older as compared to younger participants. Never-
theless, we argue that the use of relative scaling could
have attenuated age effects. Indeed, it could be that
by normalizing for the most prominent age-related
deficit, which in our task is force weakness, we masked
age-related changes in the dynamics. For instance, to re-
veal how aging modifies the spontaneous dynamics in the
widely used bimanual coordination paradigm, task con-
straints are commonly scaled in absolute terms (see [81]).
Overall, our findings suggest that the behavioral ex-

pression of the LOCH is not as straightforward as con-
ventionally admitted (see [10] for a converging point of
view). Accordingly, a number of results reported in the
literature should be interpreted with caution.
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