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Abstract

Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglu-
tamine residues in the Huntingtin protein and characterized by progressive deterioration of
cognitive and motor functions. Altered brain glucose metabolism has long been suggested
and a possible link has been proposed in HD. However, the precise function of glucose
transporters was not yet determined. Here, we report the effects of the specifically-neuronal
human glucose transporter expression in neurons of a Drosophila model carrying the exon
1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that
overexpression of the human glucose transporter in neurons ameliorated significantly the
status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing
eye neurodegeneration. Then, we investigated whether increasing the major pathways of
glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To
mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which cata-
lyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly
survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate
dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of
HD flies and rescued eye neurodegeneration. Since GEPD is able to synthesize NADPH in-
volved in cell survival by maintenance of the redox state, we showed that tolerance to exper-
imental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally
overexpressions of hGIuT3, G6PD or PFK were able to circumvent mitochondrial deficits in-
duced by specific silencing of genes necessary for mitochondrial homeostasis. Our study
confirms the involvement of bioenergetic deficits in HD course; they can be rescued by spe-
cific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent,
the glycolysis seem to mediate the hGIuT3 protective effects, whereas, in addition, the PPP
provides increased protection to oxidative stress.

PLOS ONE | DOI:10.1371/journal.pone.0118765 March 11,2015

1/23


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0118765&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS | ONE

Neuronal Glucose Metabolism in a HD Drosophila Model

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

Huntington’s disease (HD) is a heritable neurodegenerative disorder characterized by lesions
in the striatum, progressive deterioration of motor and cognitive functions and psychiatric dis-
turbances. HD is caused by expansion of a poly-glutamine (poly-Q) tract in the N-terminus of
the Huntingtin protein (Htt) and consequently, accumulation of short N-terminus fragments
of the protein. Poly-Q stretches of more than 36 residues are associated with pathology which
affects the brain and numerous peripheral organs and tissues. New toxic functions were de-
scribed for the mutated Htt; moreover, the mutation induces a loss of function of the wild-type
Htt which plays an important role on cell survival and embryonic development [1]. Extensive
therapeutic strategies were developed, but none of them proved to be effective in halting the
disease progression and, up to date, treatments focus on alleviating HD-associated symptoms.
Indeed, although the cascade of molecular and cellular events leading to mHtt pathology is still
unclear, mHtt compromises several vital cellular functions such as intracellular trafficking [2],
transcriptional regulation [3, 4], cytoskeleton [5], energy metabolism and mitochondrial func-
tions [6], that were extensively described in reviews [7, 8].

Neurons depend on glucose for providing energy and redox protection. Because they are
unable to synthesize or store glucose, neurons are fully dependent on glucose import. In
human tissues, glucose homeostasis is mainly maintained by the members of the glucose trans-
porter family (referred as SLC2A) comprising 14 isoforms mediating facilitative sugar trans-
port [9]. The various isoforms show different affinity for glucose suggesting adaptation to the
various metabolic requirements of each cell. In mammalian brain, although several GluT mem-
bers are present, GluT1 and GluT3 are the predominant GluT's responsible for glucose trans-
port [10]. GluT1 is detected in glial cells such as astrocytes [11, 12] and permits glucose storage
into astrocytes by glycogen synthesis. GluT?3 is the major neuronal GluT and transports glucose
from the extracellular space into neurons [13, 14]. Glucose is metabolized through glycolysis in
the cytosol, generating two molecules of pyruvate which fuel mitochondria where most ATP is
produced. Neurons present relatively weak expression of glycolytic enzymes; in contrast, they
favor another important metabolic pathway in glucose oxidation, the pentose phosphate path-
way (PPP) in order to compensate for their limited antioxidant reserve [15, 16]. Indeed, the
PPP provides intermediates for nucleotide synthesis and is the major source of cytosolic
NADPH which is a critical factor for enzymes implied in cellular defense system against oxida-
tive stress. The NADPH levels are mainly maintained by glucose 6-phosphate dehydrogenase
(G6PD) activity, the first and rate-limiting enzyme of the PPP. As a by-product of energy pro-
duction, the mitochondria also generate most of the endogenous reactive oxygen species
(ROS), damaging both mitochondria and the rest of the cell. Thus, maintenance of mitochon-
drial integrity and function is the highest priority to brain cells. Any defect in brain mitochon-
dria functioning may lead to severe energy deficiency as well as increased generation of ROS in
neurons and ultimately to neuronal degeneration [17, 18, 19].

Numerous studies in HD patients and in animal models have indicated energy metabolism
defects in the pathogenesis of HD before the occurrence of any overt pathology. They suggest
that changes in energy metabolism are not a consequence of neuronal loss, but rather a contrib-
utory factor to the progression and development of the disease [20, 21, 22]. Studies on post-
mortem brain tissue or positron emission tomography imaging analyses revealed reduced cere-
bral metabolic activity in cortex and striatum of symptomatic HD patients and also in pre-
symptomatic subjects, so even before the onset of pathological symptoms [23, 24, 25, 26].
Moreover, Gamberino and Brennan [27] described decreases in glucose transporter levels by
post-mortem analysis in caudate and not in cerebral cortex of HD brains; these decreases were
not closely related to brain atrophy but can be associated to changes in transporter expressions.
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Interestingly, in a recent study on HD patients, a correlation was found between the onset of
the disease and the copy number of the GluT3 gene [28]. Moreover, biochemical studies on dif-
ferent HD models tended to demonstrate dysfunctions linked to mitochondrial homeostasis
[29]. The activity in oxidative phosphorylation was reduced [30, 31, 32]; they are associated
with increased ROS levels and triggers oxidative impairment as observed in several neuropath-
ological diseases [20, 33]. Plasma levels of oxidative damage products were found to be in-
creased in HD patients and asymptomatic HD gene carriers [34]. Enzymes of the TCA cycle
were impaired in post-mortem brain from HD patients or in HD models: mitochondrial aconi-
tase presented a loss of activity [35] and pyruvate dehydrogenase (PDH) levels were altered in
HD transgenic mice [36, 37].

Drosophila models for human neurodegenerative diseases (Alzheimer’s disease, Parkinson’s
disease, or poly-Q diseases such as SCA1, HD. ..) have been created by expression of the rele-
vant human pathogenic protein and provided many valuable insights into pathogenic mecha-
nisms resulting in the course of hallmarks of these diseases [38, 39]. Specifically as in the HD,
expression of the pathogenic Huntingtin in the Drosophila nervous system leads to neuropa-
thology and premature cell death. The neuronal expression of the exon 1 of the human mutant
huntingtin gene (containing 93 repeats of the CAG codon) in our Drosophila model (named
hereafter HQ93 flies, or mHtt for mutated Huntingtin) affects functions of both neurons and
glial cells [40]. Glucose homeostasis is maintained in a conserved manner in Drosophila, and
metabolic regulation shows strong similarities to mammals [41,42].

Therefore, we postulated that impaired brain glucose metabolism in Drosophila contributes
to HD pathogenesis and supposed altered expression of genes concerned with energy metabo-
lism. In order to test these hypotheses, we generated transgenic Drosophila bearing the human
glucose transporter hGluT3 and showed that its overexpression in HQ93 neurons is an effec-
tive approach to rescue lifespan, restore locomotor activity and slow down neurodegeneration.
Results show that overexpressed PFK glycolytic enzyme in neurons has no impact on the early
death of HQ93 flies; nevertheless it was able to decrease eye neurodegeneration, suggesting a
moderate efficiency of increasing glycolysis. However, both organismal lifespan and neurode-
generation can be significantly rescued by overexpression of G6PD. As G6PD is involved in
mechanisms of antioxidative defenses, we showed that resistance to experimental oxidative
stress induced by H,O, was enhanced in flies carrying both HQ93 and G6PD. In order to in-
vestigate the role of glucose metabolism on mitochondria defects which are one of the hall-
marks of HD, we mimicked mitochondria dysfunction by silencing genes required for
mitochondrial activities. Fly neurons were knocked down for genes expressed at the first step
of the TCA cycle and in the first complex of the respiratory chain. We observed that hGluT3,
PFK and G6PD transgenes increased the survival of flies presenting mitochondrial defects.
This suggests that the mitochondrial activity deficit can be rescued by improving glucose me-
tabolism. Finally, we conclude that increased neuronal glucose uptake by increasing glucose
transporter expression alleviates HD pathogenesis. This effect was poorly mediated by up-regu-
lation of glycolysis, but can be triggered by activation of G6PD in the PPP which permits to
neurons to replenish NADPH pool and so, ameliorating the capacity of neurons to resist to oxi-
dative stress induced by HQ93.

Results

The transgenic Drosophila HD model used in this study has been widely exploited; it carried the
exon 1 of the human mutated Huntingtin with 93 CAG repeats [40, 43]. In our experiments, ex-
pression of mHtt was regulated by the yeast UAS/Gal4 system in which the mHtt transgene lies
downstream of the UAS sequence. HD flies were generated by crossing UAS-HQ93 flies to flies
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expressing the Gal4 protein in a tissue-specific manner. To achieve co-expression, crosses were
conducted so that in the female F1 progeny, both UAS-mHtt and other UAS-transgenes were ex-
pressed in neurons under the regulation of the pan-neuronal specific Elav-Gal4 driver.

Expression of a glucose transporter

Previously we showed that the overexpression of an isoform of a predicted Drosophila sugar
transporter family, referred as DmGluT1 [44], improved survival of flies expressing HQ93 in
glial cells [45]. Since DmGluT1, like the other putative Drosophila orthologs of human sugar
transporters, are not functionally characterized, we have verified whether DmGIuT1 was able
to transport glucose in comparison with the previously described activity of hGluT3 [46]. We
measured the intracellular concentration of glucose with a FRET glucose sensor which allows
estimation of transporter activity at cellular resolution in HEK-293 cells [47]. Using this meth-
od, we measured glucose in HEK-293 cells expressing the glucose sensor FLIT'*Pglu-7001A6
alone or in the presence of the DmGIuT1 or hGIluT3 cDNAs (Fig. 1A). GluT3 overexpression
induced a strong significant increase in intracellular glucose concentration. In the presence of
5 mM extracellular glucose concentration, hGluT3-expressing cells maintained a steady-state
intracellular glucose concentration averaging 1.12 + 0.17 mM instead of 0.35 + 0.03 mM for
control cells. The S1 Fig. showed that hGluT3-expressing cells displayed cytoplasmic fluores-
cence for the glucose sensor compared to non-transfected cells. Glucose clearance was en-
hanced by hGIuT3 expression after lowering extracellular glucose concentration to 0 mM

(Fig. 1A). Finally, hGluT3-expressing cells also uptake galactose in accordance with previously
characterized parameters in Xenopus ovocytes [46]. In the same conditions we found that
DmGIuT1 expression did not change glucose entry and clearance in HEK-293 cells, although
close to significance levels (Fig. 1A); in contrast to hGluT3, no galactose uptake was observed
with DmGIuT1. In order to demonstrate that the low activity of DmGluT1 was not due to a
failure of expression in HEK-293 cells, we also performed analysis using a DsRed-tagged con-
struct. The localization of the tagged DmGIuT1 was comparable to that of hGluT3 (Figs. 1B
and 1C), namely at the plasma membrane. Nevertheless, DsRed-DmGIluT1 expression was
able to significantly increase intracellular glucose levels when HEK-293 cells were bathed with
25 mM extracellular glucose (Fig. 1D). However, in this case, the steady-state intracellular glu-
cose concentration still remained lower than the one measured with hGluT3 at 5 mM extracel-
lular glucose. Thus, DmGluT1, which can transport glucose with a low affinity but does not
transport galactose, is probably not a close "functional” ortholog of hGluT3.

From these results, to investigate whether expression of a glucose transporter could affect the
course of a human disease, it seems more relevant to establish Drosophila lines expressing a high
glucose affinity transporter. For this purpose, we generated flies carrying an insertion of hGluT3
and by crossing them to flies bearing the pan-neuronal Elav-Gal4 driver, we could induce
hGluT3 expression in control or HQ93 neurons. To validate that our construct was expressed in
Drosophila, we detected specifically the hGluT3 transcript by RT-PCR in neurons (Fig. 1E).

Glucose transporter overexpression improves survival of mHtt flies in
neurons

As previously reported, expression of mHtt in Drosophila neuronal cells reduces fly longevity
[48]. Adults expressing HQ93 displayed a lifespan mean occurring at 17 + 1 days (Fig. 2A) and
a maximum lifespan (time to 90% mortality) of 22 + 1 days, whereas lifespan mean of wild-
type flies ranges around 66 days (S2 Fig.). When hGluT3 transgene was expressed together
with HQ93, the life expectancy mean reached up to 29 + 2 days (Fig. 2A), indicating a 71% in-
crease of lifespan. In the presence of the two transgenes, the maximum survival time was also
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Fig 1. Expression and functional characterization of DmGIuT1 and hGluT3. (A): Measurements of uptake parameters. HEK 293 cells were transfected
with the glucose sensor and either an empty (control), DmGIuT1, or hGIuT3 plasmids. Only hGIuT3 expression resulted in very significant increases in
intracellular glucose concentration at 5mM extracellular glucose (a), glucose clearance (b) and galactose uptake (c). (B): hG/uT3 immunodetection: HEK-293
cells transfected with the empty plasmid were not labelled, with the hGIuT3 antibody (middle panel) whereas hGluT3-transfected cells revealed plasma
membrane localization (right panel). The left panel shows hGluT3-transfected cells in bright field. Scale bar: 5 pm. (C): Detection of the DsRed-DmGIuT1
(right panel) showing its localization at the plasma membrane; The left panel shows DsRed-transfected cells as control. Scale bar: 5 um. (D): Exposure of
DsRed-DmGilut1 cells to 25 mM extracellular glucose resulted in significantly higher intracellular glucose relative to control cells. (E): Detection of hGIuT3 and
actin mRNA in flies expressing no transgene or hGluT3 under the control of the Elav-Gal4 driver. RT-PCR analysis was performed from Drosophila heads at
4 days of adult age.

doi:10.1371/journal.pone.0118765.9001
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doi:10.1371/journal.pone.0118765.g002

significantly enhanced since it was 34 + 1 days. We conclude that hGluT3 overexpression is
sufficient to significantly improve the survival of the HD flies, by enhancing the mean and
maximum lifespans. Expression of hGluT3 did not alter significantly the lifespan mean of con-
trol flies (63 days) (S2 Fig.), suggesting that its neuronal overexpression alone has no effect on
fly survival. Moreover, HQ20 flies, which express an unexpanded tract of 20 glutamine residues
showed no premature death (S3 Fig.) compared to HQ93 flies, in the presence or not of hGluT'3.
As expected, the survival curve of HQ20 flies was not different from flies expressing no transgene.
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mHtt-induced locomotor impairments are rescued by glucose
transporter expression

We utilized a behavioral test, the climbing assay, also named geotaxis negative test which has been
extensively used to measure locomotor activity of Drosophila [48, 49]. Placed in a column and
tapped down, control flies containing the neuronal driver Elav-Gal4 alone promptly started to
climb along the column and 87% reached the top (S4 Fig.), indicating normal locomotor activity.
In contrast, only a reduced fraction of flies expressing HQ93 in neurons (48%) were able to reach
the top (Fig. 2B). However, flies expressing HQ93 and the human glucose transporter improved
significantly their locomotor performances since 66% flies had reached the top of the column.

The glucose transporter slows neurodegeneration in HD fly eyes

The fly compound eye, although dispensable for normal development and viability, is a power-
ful model for analyzing genes contributing to human neurodegenerative diseases [39] and al-
lows to observe neurodegeneration [50]. The Drosophila eye is composed of ommatidia with a
regular arrangement of seven visible photoreceptor neurons as observed in control by pseudo-
pupil analysis (Fig. 2C) [51]. Expression of HQ93 in neurons led to an obvious loss of one or
more photoreceptors leading to a disorganization of ommatidia arrangement. In these flies, the
number of ommatidia with seven visible photoreceptors declined from 24% at day 1 to 11% at
day 4 after adult emergence (Fig. 2D). This increased loss of photoreceptors was significantly
evidenced and showed that neuropathology in the fly is progressive as in the human condition.
However, disruption of ommatidia was markedly rescued when the human glucose transporter
was co-expressed with HQ93: 78% of ommatidia had 7 photoreceptors one day after adult eclo-
sion and 52% of intact ommatidia were detected at the fourth day of adult life. Overexpression
of hGluT3 alone had no effect on the photoreceptors (data not shown).

Implication of the glycolysis pathway in mHtt Drosophila neurons

To investigate the role of glycolysis, we analyzed whether the up-regulation of the glycolytic
flux was beneficial in the Drosophila HQ93 neurons by overexpressing PFK which catalyses a
rate-limiting step between fructose-6-phosphate and fructose-1, 6-biphosphate. For this, we
used transgenic flies bearing Drosophila PFK [52]. After crossing them with HQ93 flies and
Elav-Gal4 as driver, we analyzed lifespan and eye neurodegeneration. The Fig. 3A shows that
overexpression of this enzyme in neurons did not change the survival of HQ93 flies. However,
statistical analysis of the pseudopupil data (Fig. 3B) showed that PFK overexpression prevented
neurodegeneration at day 1 and day 4. Since this result could be interpreted as an inefficient
import of glucose in brain sensu stricto in comparison with the photoreceptors, we analyzed
the impact of hGluT3 and PFK co-expression on HD toxicity in the brain and eyes. We showed
that PFK and hGIuT3 co-expression had no additional effect on survival compared to HD flies
expressing hGluT3 alone (Fig. 3C). Similarly, the rescue of photoreceptor degeneration was not
enhanced when hGluT3 and HQ93 were co-expressed (Fig. 3D). All these results allow to con-
clude that overexpression of PFK has no sufficient impact in the brain to rescue longevity of
HQ93 flies but was able to delay neurodegeneration in photoreceptors.

Implication of the pentose-phosphate pathway (PPP) in mHtt Drosophila
neurons
G6PD activity, by counteracting oxidative stress, can protect neuronal cells [15, 53]. We hy-

pothesized that overexpression of G6PD would extend the lifespan of HQ93 flies and enhance
their resistance to oxidative stress by its ability to produce NADPH. To perform these
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Photoreceptor frequency distributions in 1- or 4-day old fly ommatidia expressing HQ93 alone (black bars), or PFK and HQ93 (grey bars) under the control of
Elav-Gal4. Statistical significances on median values of photoreceptor numbers per ommatidium were determined by one-tailed Mann-Whitney test (at day 1,
p =0.0033.; at day 4, p< 0.0001). (C): The lifespan of flies expressing HQ93 together with PFK and hGIuT3 (filled circles) was not statistically different from
that of flies expressing HQ93 and hGIuT3 (open circles); in the experiment, 219 and 181 flies were used. (D): Photoreceptor frequency distributions in 1- or 4-
day old fly ommatidia expressing HQ93 together with PFK and hGIuT3 (white bars), or HQ93 and hGIuT3 (grey bars) under the control of Elav-Gal4. The one-
tailed Mann-Whitney test indicates no statistical significances between the two fly lines neither at day 1 nor at day 4.

doi:10.1371/journal.pone.0118765.9003

experiments, we used a Drosophila transgenic line previously characterized, exhibiting a high
enzyme activity in the brain and an increase of NADPH content; this line also presented an ex-
tension of lifespan and an enhanced resistance to oxidative stress generators as hyperoxia and
paraquat treatments [54, 55]. As shown in Fig. 4A, increased expression of G6PD in HD flies
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bars), or GEPD and HQ93 (grey bars). The median value of photoreceptor number per ommatidium between the two lines was statistically significant at the
15t and 4" day after adult emergence (Mann-Whitney test; at day 1, p = 0.0104; at day 4, p< 0.0003). (C): Lifespan of HQ93 flies carrying hGluT3 and G6PD
(filled diamonds) was not different from the lifespan of HQ93 flies carrying only hGIuT3 (open diamonds) with Elav-Gal4, n = 117 and 181 flies respectively.

doi:10.1371/journal.pone.0118765.g004

was significantly associated with an extension of lifespan: this increase was up to 33% in com-
parison with flies expressing only the HQ93 transgene. The mHtt-induced neurodegeneration
in eyes was significantly rescued by the overexpression of G6PD as seen in Fig. 4B; flies express-
ing both HQ93 and G6PD have more intact photoreceptor cells (17%) at day 4 after adult eclo-
sion than flies expressing HQ93 alone (5%). To investigate the effects of G6PD on HD fly
survival in the presence of hGIuT3, we overexpressed HQ93 and G6PD together with hGluT3.
As shown in the Fig. 4C, lethality of these flies was not statistically different from that of HD
flies expressing hGluT3 alone. This suggests that the co-expression of hGluT3 and G6PD has
no cumulative effect on survival rate.

Next, we tested resistance of HQ93 flies in the presence or not of G6PD to an oxidizing
agent, hydrogen peroxide (H,O,). At first, we verified that after 48hr exposure, flies with
G6PD-expressing neurons were more tolerant to H,O, than wild-type flies (Fig. 5A). Secondly,
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Fig 5. G6PD and Jafracl ameliorate oxidative stress tolerance of HD flies. (A): Representative survival
rate of 12 day-old flies expressing no transgene (white bar) or GEPD (grey bar) after 48 hr exposure to 2%
sucrose or to 1.5% H,0, in 2% sucrose. Numbers of flies included in this assay were respectively: 40; 19; 99;
74. Results represented the means + SEM of the percentages obtained from a representative experiment.
The Mann-Whitney test indicates a significant difference between the two genotypes for H,O.-exposed

flies (*, p = 0.016). (B): Representative survival rate of 12 day-old flies expressing HQ93 (black bar), or co-
expressing HQ93 and G6PD (grey bar) after 48 hr exposure to 2% sucrose or to 1.5% H,O, in 2% sucrose.
Numbers of flies included in this assay were 36; 56; 93; 85 respectively. Results represented the means +
SEM of the percentages obtained from a representative experiment. The Mann-Whitney test indicates a
significant difference between the two genotypes for non-treated flies (*, p = 0.041) and for H,O,-exposed
flies (**, p =0.006). (C): The survival curve of flies expressing HQ93 as control (squares) or HQ93 and
Jafrac | (diamonds) under the neuronal driver Elav-Gal4, with n = 100 and 159 flies respectively. The log-rank
test indicates that the two survival curves were very different (***, p<0.0001).

doi:10.1371/journal.pone.0118765.9005

in the presence of HQ93 alone, exposure of 12 day-old flies to H,O, drastically reduced fly sur-
vival from 70 to 22% (Fig. 5B). Flies with neuronal HQ93 and G6PD transgenes presented a
significantly enhanced resistance to oxidant compared to flies carrying only HQ93: 63% of flies
with the two transgenes survived in the presence of H,O, whereas 22% of HQ93 flies remained
alive (Fig. 5B). The amplitude of the decreased lifespan was only 30% with G6PD instead of
48% without G6PD. This result suggests that G6PD was able to rescue fly survival by exerting
its anti-oxidative activity even in the presence of mHtt. By contrast, we observed that 6 day-old
HQ93 flies were insensitive to oxidative stress generated by oxidative treatment (S5 Fig.), but it
is noteworthy that these flies did not yet present pathological symptoms. Further, to determine
whether the antioxidant capacity of G6PD in HQ93 neurons was responsible for its positive ac-
tion, we analyzed the effects of NADPH-dependent peroxidases on fly survival. Peroxiredoxins
and thioredoxins have been identified by their ability to reduce oxidant activities in conjunc-
tion with thiol-reducing systems using NADPH pool as electron donor [56, 57, 58]. The neuro-
nal expression of Jafracl, a Drosophila homologue of the human peroxiredoxin 2 (Fig. 5C) or
the Drosophila thioredoxin deadhead (S6 Fig.) significantly extended the fly lifespan in the
presence of HQ93. Thus, G6PD expression and, consequently, activation of the PPP, in addi-
tion to their anabolic function, were protective by providing antioxidative supply for mHtt-ex-
pressing neurons which are particularly vulnerable to oxidative stress.

The glucose transporter expression rescues mitochondrial dysfunction

An increasing number of studies have shown that mutant Htt action results in mitochondrial
dysfunction [59, 60]. We tested whether or not increasing glucose metabolism could prevent
effects of mitochondrial dysfunction. Therefore, we examined the impact of hGluT3 neuronal
overexpression on fly lifespan after genetic inactivation of two key genes for mitochondrial ac-
tivity: the pyruvate dehydrogenase complex and the mitochondrial respiratory system. In mito-
chondrial matrix, the pyruvate dehydrogenase complex (PDH) catalyses the conversion of
pyruvate to acetyl-coA and constitutes the first step of the TCA cycle. The mitochondrial respi-
ratory complex I contains evolutionary conserved NADH ubiquinone oxidoreductase complex
components; it produces significant amounts of ROS and its dysfunction triggers oxidative im-
pairment as observed in several neuropathological diseases [17, 61, 62]. Firstly, we verified by
RT-qPCR analysis that RNA interference (RNAi) expressions in neurons have efficiently re-
duced the expression of their respective targets: the alpha-subunit of the acetyl-transferring
component of the PDH complex (E1-PDH) and the 23kD subunit (ND23) in the complex I
(Fig. 6A). The Fig. 6B shows that knockdown of these both genes in neurons led to a dramatic
reduction of the lifespan with a expectancy mean of 5 and 4 days respectively; this shows the
key role of mitochondria in neuronal functions. However, when the hGIuT3 transgene was ex-
pressed together with each RNAA, life expectancies were very significantly rescued since the
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(**, p=0.0076 for E1-PDH; **, p = 0.0083 for ND23). (B, C, D): Survival curves of flies expressing each mitochondria-targeting RNAi alone or together with
either hGIuT3, G6PD or PFK in the respective figure under the control of Elav-Gal4. Only the first fourty days of the lifespan were presented. The survival
curves of flies expressing only the RNAIs specifically-targeted to E7-PDH (filled squares; n = 51) and ND23 subunits (filled triangles; n = 53) were in common
for the figures B, C and D. The survival for control flies (Elav; hGIuT3 or Elav; G6PD or Elav; PFK) was indicated by open circles in each corresponding graph
(n=75; 81; 131, respectively). In each figure, the log-rank test indicates a p-value <0.0001 (***) between the survival curves of the flies overexpressing
hGIuT3 or GEPD or PFK and the RNAi and the survival curves of the flies expressing each RNAi only. (B): Survival curves of flies expressing the RNAis or co-
expressing each respective RNAi and hGIuT3 (open symbols; n = 84 and 73) under Elav-Gal4. (C): Survival curve of flies expressing the RNAis or co-
expressing each respective RNAi and G6PD (open symbols; n = 84 and 60 respectively) under Elav-Gal4. (D): Survival curve of flies expressing the RNAis or
co-expressing each respective RNAi and PFK (open symbols; n = 79 and 111 respectively) under Elav-Gal4.

doi:10.1371/journal.pone.0118765.g006

means reached up 56 days with the E1-PDH RNAi and 59 days in the case of the ND23 RNAi
(Fig. 6B). These results indicate that hGluT3 overexpression was sufficient to rescue the surviv-
al of the flies presenting mitochondrial defects. Then, to test the respective roles of the glycoly-
sis or PPP to counteract mitochondrial dysfunction, we overexpressed the key enzymes G6PD
(Fig. 6C) or PFK (Fig. 6D) in neurons in the presence of each RNAi. Both enzymes rescued the
survival of the E1-PDH or ND23 RNAi expressed in neurons. This suggests that an increase in
glycolysis and/or in PPP was required to maintain cell survival in stress conditions following
impairment of mitochondrial functions.

Discussion

In the present work, using a genetic approach, we provided the first evidence that increasing
metabolism of glucose sustained by overexpression of the glucose transporter hGluT3 ensures
neuronal maintenance and survival in HD pathology. Previously, we have showed that
DmGluT1, a predicted Drosophila sugar transporter ameliorates the survival of HQ93 flies
when it was expressed in glial cells [45]. We also found that DmGIuT1 expressed in neurons
confers protection against mHtt (data not shown), and this result has been recently confirmed
[28]. However, although having striking amino acid homology (44-49%) with the human clas-
sical glucose transporters (GluT1-4), we showed here that DmGluT1 has low affinity for glu-
cose and galactose contrary to hGluT3. Moreover, it was transcribed at a very low level in wild-
type fly heads (data not shown). On the basis of these data, we concluded that this isoform is
probably not implicated in Drosophila neuronal glucose import and that DmGIuT1 is likely
not the neuronal “functional” ortholog of the hGIuT3, although this role has been suggested in
the report of Vittori et al. [28]. However, we cannot exclude that DmGluT1 may transport an
undetermined or modified sugar. Thus, consequently, we focused our study on hGluT3 overex-
pression in Drosophila neurons. We showed that expression of this glucose transporter in Dro-
sophila neurons is sufficient to suppress most of the neurological mHtt-induced phenotypes by
strikingly improving fly survival, restoring locomotor activity and rescuing neurodegeneration.
Our data confirm that HD progression could be affected by hGluT3 gene expression level and
its glucose uptake activity in neurons.

In physiological conditions, after its import, intracellular glucose is phosphorylated and is
thus ready to enter metabolic pathways, mainly glycolysis or PPP. But in HD, functions of
genes related to carbohydrate metabolism and acting downstream glucose transporters are al-
tered [63, 64, 65]. Diverse mechanisms have been proposed which could underlie the hypome-
tabolism observed: decrease of glycolysis activity [66, 67], deregulation of mitochondrial
metabolism [68] including high ROS production [69] or ATP depletion [26].

To test the effect of the increasing glycolytic flux in mHtt transgenic flies, we used the PFK
enzyme which catalyses an irreversible step of the glycolysis and is known as a regulator of this
pathway. We found that overexpression of PFK in neurons had an overall modest impact on
HD progression. This is not due to a low import of glucose in fly neurons since increasing
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glucose entry by hGluT3 did not reveal a beneficial effect of PFK. However, the absence of an
efficient glycolytic effect on fly survival could be explained by the continuous degradation of
the PFK or by a functional blockage at the PFK step as described in mammals [70]. Moreover,
glycolysis up-regulation might have adverse effects since stabilization of the neuron-specific
isoform of PFK by an excitotoxic stimulus increased neuronal glycolysis but thereafter led to
oxidative damage and cell death [71]. It has been also demonstrated that GAPDH, a key en-
zyme in the glycolytic pathway downstream of the PFK step, can mediate neurotoxicity by
binding to the polyglutamine stretch of the mutated huntingtin [72, 73]. Inhibitors of glycolysis
were found to suppress cell death in a cell culture model expressing poly-Q [74], suggesting
that enhancement of the glycolysis may exacerbate the toxic action of mHtt in neurons. In con-
clusion, activation of glycolysis does not appear as an efficient pathway to compensate HD-in-
duced energy deficits.

Neurons are the most sensitive cells of the brain to oxidative damage [75]. The PPP largely
contributes to neuronal protection against oxidative injury by the G6PD activity which reduces
NADP to NADPH, a necessary cofactor for regeneration of glutathione or thioredoxin in the
reduced form. Several studies have shown that the PPP is up-regulated when the brain is sub-
jected to traumatic injury or abnormal oxidative stress [76] and appears to play a critical role
during neurological diseases [77]. It is well documented that HD pathological conditions aug-
ment production of ROS in patients and in HD models [78]. Here, we have showed that GGPD
overexpression in neurons was beneficial for HQ93 fly survival and produced eye neuroprotec-
tion. G6PD and hGIuT3 overexpressions seem to have no cumulative effects on the lifespan of
HD flies, further indicating that these two genes are involved in the same metabolic pathway.
We also showed that flies expressing G6PD in neurons in the presence of HQ93 presented a
greater resistance to H,O,-induced oxidative stress than flies expressing only HQ93, indicating
that the rescuing effect of G6PD was probably mediated by increased NADPH production. It
has been reported that polyglutamine toxicity in Drosophila eyes was reduced by increasing
NADPH level through elevated G6PD activity [55]. Furthermore, we showed that ROS detoxi-
tying enzymes belonging to the Drosophila redox buffer system [57] such as thioredoxins and
peroxiredoxins, conferred protection in neurons expressing HQ93. This result was in agree-
ment with the neuroprotective effect of the mouse glutathione peroxidase in HD flies [79]. We
thus propose that neurons overwhelmed by the pleiotropic action of mHtt, became more and
more vulnerable to mHtt-induced ROS overload, and that the up-regulation of the PPP is a
necessary protective antioxidant strategy against HD by reducing the amounts of ROS.

Mitochondrial abnormalities has long been proposed to underlie neuronal loss in HD pa-
thology and during recent years, numerous studies focused on the role of mitochondrial dys-
function in the disease [68, 80]. To investigate the effects of glucose metabolism on impaired
mitochondrial function, RNAis were used to reduce the respective activities of the TCA cycle
and complex I by specifically silencing the E1 component of the PDH complex and the 23kD
subunit of the NADH ubiquinone oxidoreductase complex. Our data showed that the knock-
down of these two targets reduced drastically fly survival and that overexpressions of either
hGluT3, G6PD or PFK ameliorated lifespan. It was proposed that mitochondria can adjust cel-
lular bioenergetic performance and alleviate stress by inducing metabolic readjustments
through a feedback mechanism, the mitochondrial retrograde signal. It has been firstly charac-
terized in yeast [81] and represents coordinated cellular responses to changes in the functional
state of mitochondria to promote cell survival. Recent studies in Drosophila or in a Drosophila
cell line also point to a retrograde response to support cell survival and activity during mito-
chondrial stress [82, 83]. Our results show that overexpression of genes involved in glucose me-
tabolism may compensate for mitochondria-induced alterations. Nevertheless, further studies
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are required to determine whether or not such compensatory mechanisms occur in the HD
context and particularly, prior to the onset of symptoms.

In conclusion, we show that the unique feature of increased glucose neuronal import by in-
creasing neuronal transporter expression has a striking beneficial impact on HD pathology to
maintain neuronal activities. The induction of PPP is able to delay HD progression likely by
providing efficient neuroprotection against ROS. In contrast, the enhancement of glycolysis is
probably not a preferential way since glycolysis might promote neurotoxicity by compromising
the efficacy of the antioxidant system. These observations could contribute to find future thera-
peutic strategies implying the neuronal glucose metabolism.

Material and Methods
Drosophila Stocks

Flies were raised at 25°C on standard cornmeal agar diet. The UAS-Htt exon 1-Q93 flies, hereaf-
ter named HQ93 flies, and UAS-Htt exon1-Q20 flies (named HQ20 flies) were provided by

L. Marsh and had been described in [43]. The transgenic overexpression strains: UAS-PFK
(line #4) were kindly provided by C.S. Thummel; the UAS-G6PD (line #5f) flies were supplied
by W.C. Orr, the UAS-Jafrac I flies by W-]J. Lee and the UAS-deadhead flies by T. Aigaki. The
neuronal driver Elav-Gal4 (line c155) was obtained from the Bloomington Drosophila Stock
Center (Bloomington, Indiana). The RNAi lines UAS-ND23-IR (#110797) and UAS-EI-PDH-
IR (#40410) were purchased from VDRC (Vienna, Austria). Accordingly to the genetic back-
ground of the different lines, we used as control either the yw or the w!!18 (BL5905) lines

(S1 Table). To proceed to neuron-specific expression, flies carrying one or two UAS constructs
were crossed to flies transgenic for the pan-neuronal Elav-Gal4 driver. Female F1 progeny car-
ried both UAS and Gal4 were used for subsequent analyses.

Lifespan experiments

Newly eclosed adult female flies of the appropriate genotypes were collected within 24 hrs of
emergence in vials at a density of about 20 flies per vial and maintained at 25°C. Flies were
transferred every 2-3 days to fresh food, and the number of dead flies counted each day. Two
to eight experiments were conducted in the same conditions and representative survival curves
were shown. Survival curves were generated and statistical significance was tested by using log-
rank statistics software (GraphPad Prism).

Locomotion assay

Locomotor performance was tested by the negative geotaxis test [48]. Briefly, female flies were
anesthetized with CO, and placed in a plastic column. After 30 min recovery, flies were gently
tapped to the bottom of the column, then allowed to climb for 30 sec. The test was repeated 3
times for each batch of flies at 1 min intervals. For each experiment, the percentages of flies
that reached the top of the column and that remained at the bottom were separately calculated.
Statistical significance was assessed using the Student’s t-test (GraphPad Prism).

Pseudopupil analysis

One eye of adult female head was dipped in vaselin grease covering a microscope slide. Eyes
were observed with a Leica TCS SP2 microscope using a x60 objective, and photographed with
a CoolSnaps HQ Photometrics camera. The visualization of the trapezoidal arrangement of
photoreceptor cells in the ommatidia was performed with Image J. At least 10 flies were exam-
ined per genotype and the numbers of visible rhabdomeres were scored for 20 ommatidia per
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fly. Comparisons between median value of photoreceptor number per ommatidium in each
line were performed using one-tailed Mann-Whitney’s test (GraphPad Prism).

Drosophila hGluT3 generation

The cDNA of hGluT3 in pCMV-Sport6 plasmid (IMAGE clone: 4396508, ImaGenes, Berlin,
Germany) was PCR amplified with the following primers: forward: 5 TTTGGATCCTTCCT-
GAGGACGTG and reverse: 5 TATCCTCGAGGGATACTCTAGAG, then digested with
BamH]1 and NotI restriction enzymes, respectively. The purified fragment (3.3 kb) was inserted
into the BglII and NotlI restriction sites of the pUAST plasmid. The selected clone was verified
by DNA sequencing. Germ-line transformation was performed by BestGene (BestGene Inc.,
USA) in a yw background.

DmGIuT1 and DsRed-tagged DmGIuT1 constructions

For non tagged-DmGIuT1 contruction, the pUAS-DmGIuT1 plasmid [45] was used to excise a
2.5 kb DmGIuT1 sequence using EcoRI and Xhol restriction enzymes. The purified DmGluT1

fragment was inserted in the EcoRI and Xhol sites of the pcDNA3 plasmid (Life Technologies,

USA), then ligated. The ligation boundaries were verified by sequencing.

The pDsRed-Monomer-N1 (Clontech Laboratories) plasmid was used to construct fusion
of the DmGluT1 coding sequence to the N-terminus of the DsRed sequence. The pUAS-
DmGluT1 plasmid was amplified with primers containing Xhol and BamHI restriction en-
zymes respectively, to insertion in the multiple cloning site of the DsRed vector: forward: 5'
TTTTCTCGAGGCAACTGGCAACGAAATGGCT and reverse: 5 TTTTGGATCCACA-
TACCTGCCATTGTTGTGC. After digestions and purification, the fragment (1.5 kb) was in-
serted into the DsRed vector, then the sequence of the construct was verified by sequencing.

Glucose and galactose intracellular measurements

HEK-293T cells (American Type Culture Collection) were co-transfected at 30% confluence
using Lipofectamine 2000 (Life Technologies, USA) and 0.5 pg/ml plasmid DNA coding for
the FRET glucose sensor FLIIlng1u700pA6 [84] and either control (mock or DsRed plasmids),
hGluT3, DmGIuT1 or DsRed-tagged DmGIluT1 vectors. After 24 hours, cells were superfused
with a bathing solution containing (in mM) 136 NaCl, 5 KCl, 1.25 CaCl2, 1.25 MgCI2, 2 glu-
cose, 10 HEPES pH 7.4, and imaged at RT with an Olympus FV 1000 laser confocal microso-
cope. Steady-state intracellular glucose concentrations at 5 or 25 mM extracellular glucose,
glucose clearance rate and galactose uptake were estimated as previously described [84, 85].

hGIluT3 immunodetection and Dsred-tagged DmGIuT1 detection

For hGluT3 immunocytochemistry, cells were 4% formaldehyde fixed (20 min) 24 hrs after
transfection and then permeabilized with 0.2% Triton X-100 for 10 min and treated with
50mM NH, CI (10 min). Cells were incubated in 1% BSA-PBS for 5 min (x3) to block non-spe-
cific interactions. Cells were then incubated with the primary antibody used at a 1:100 dilution
(rabbit anti C-term GluT3; Abcam) for 2h at RT. The secondary antibody was Dy549 goat
anti-rabbit (Jackson) used at a 1:500 dilution for 1h at RT. Cultures were imaged with an
Olympus FV 1000 laser confocal microscope. For DsRed fluorescent detection, cells were 4%
formaldehyde fixed (10 min) and confocal image acquisition was performed on a Zeiss
LSM780 laser scanning microscope.
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Reverse transcription-PCR

Total RNA was extracted from 10-15 heads of 6-day post-eclosion flies using Trizol reagent
(Life Technologies, USA). RNA concentration and purity were measured with a Nanodrop
spectrophotometer (NanoDrop 1000, v3.7.1, Thermo Fischer Scientific, USA). The cDNAs
were synthesized from 1 ug of mRNA template and oligo-dT primer (Euromedex, France)
using ImProm-II Reverse Transcriptase (Promega, France) at 42°C following the manufactur-
er’s instructions. PCR parameters were for 39 cycles: 30 s at 92°C, 30 s at 61°C and 45 s at 72°C
with the following primers: 5-GGAGTCCAGGGAAGAGAAAGT and 5-GTATGTG-
CACTGTCACTTTGC. Actin 5C primers (5'-CGTTTACAGTAGTTTTCACGCC and 5'-
CACTTGCGGTGCACAATGGA) amplify a 1180 bp cDNA fragment and a 1773 bp genomic
DNA fragment to check for potential genomic DNA contamination. PCR products were sepa-
rated on 1% agarose gels and visualized by SybrSafe (Life Technologies) staining. Total RNA
samples for RT-PCR were independently prepared 3 times.

Quantitative PCR

Reactions were monitored by using ABI Prism 7500 Fast thermal cycler (Life Technologies,
USA) and KAPA SYBR Fast qQPCR Master mix (Clinisciences, France) on reverse-transcribed
cDNAs as obtained above. Cycling parameters were used: 40x (95°C for 3 sec, 60°C for 30 sec).
Primers were designed with AmplifX version 1.7.0 software (http://crn2m.univ-mrs.fr/pub/
amplifx-dist; CNRS, Aix-Marseille University) and are listed in the S2 Table. Data were ana-
lyzed using the relative quantification method (-2 ACt method). The transcript levels were nor-
malized with values obtained after amplification of ribosomal RNA (rp49) as endogenous
control. Serial dilutions from 1:1 to 1:625 cDNAs were used for each gene and for the internal
control to generate standard curves to check a nearly 100% efficiency. Data represent two aver-
aged replicates of at least three independent experiments, each of which was carried out on sep-
arate set of tissue samples. Melting curves were established for each reaction to check that only
one specific amplicon was synthesized during the amplification. Excel software (Microsoft)
was used to analyze data and to generate representative graphs expressing mean expression lev-
els + SEM. Expression levels were expressed in percent relative to controls, then compared
with Mann-Whitney test (GraphPad Prism).

Hydrogen peroxide resistance

Female adult Drosophila were collected within 24 hrs of emergence and transferred into vials
with food in groups of 20 flies per vial. Six or twelve days after emergence, Drosophila were test-
ed at 25°C for resistance to H,O, (Sigma-Aldrich, USA) treatment. Flies were starved for 2 hrs,
then placed into vials containing Whatman paper pieces saturated with 1.5% H,O, (v:v) in 2%
sucrose or with 2% sucrose alone as control. Numbers of dead flies were recorded at 48 hrs
after the beginning of the treatment. Two independent trials were performed, and a representa-
tive experiment was shown. One-tailed Mann-Whitney tests (GraphPad Prism) were used to
determine the significance of the data expressed in percentages of surviving flies.

Supporting Information

S1 Fig. Immunodetection of hGluT3 and the glucose sensor. After co-tranfection with the
FRET glucose sensor FLII'*Pglu700uA6 (left panel) and hGluT3 (central panel), HEK-293 cells
showed localization of the two labellings (right panel): hGluT3 was mainly located to plasma
membrane and cytoplasm whereas the sensor was mostly cytoplasmic. Confocal
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epifluorescence microscopy was performed at x 63. Scale bar is 50 pm.
(TIF)

S2 Fig. Overexpression of hGluT3 in control flies has no effect on longevity. Survival curve
of flies expressing no transgene (control; circles) or hGluT3 (triangles) under the neuronal driv-
er Elav-Gal4. The log-rank test indicates no significant difference.

(TIF)

S3 Fig. Survival of flies expressing an unexpanded polyglutamine tract (HQ20) in neurons.
Under the neuronal driver Elav-Gal4, 98% flies expressing HQ20 (filled triangles; n = 109) and
98% flies with no transgene (open diamonds; n = 90) were alive at 40 days of age, whereas
100% of HQI3 flies (white triangles; n = 97) were died. The presence of hGluT3 ameliorated
the survival of HQ93 flies (open circles; n = 106) and has no effect on HQ20 flies (filled circles;
n=112).

(TIF)

$4 Fig. Locomotor performance in control flies. Negative geotaxis test was assayed on 12
day-old flies expressing no transgene under the neuronal Elav-Gal4 driver. Open column indi-
cates the percentages of flies remaining at the bottom of the column; filled column indicates
the percentages of flies climbing to the top. Results were the means + SEM of the percentages
obtained from a representative experiment (n = 55 flies).

(TIF)

S5 Fig. Resistance to H202-induced stress was not altered in neurons of 6 day-old flies. (a):
Representative survival rate of 6 day-old flies expressing no transgene (white bar) or GGPD
(grey bar) after 48 hr exposure to 2% sucrose or to 1.5% H,O, in 2% sucrose. Numbers of flies
included in this assay were: 35; 58; 75; 101 respectively. Results represented the means + SEM
of the percentages obtained from a representative experiment. The Mann-Whitney test indi-
cates no significant difference. (b): Representative survival rate of 6 day-old flies expressing
HQ93 (black bar), or co-expressing HQ93 and G6PD (grey bar) after 48 hr exposure to 2% su-
crose or to 1.5% H,0, in 2% sucrose. Numbers of flies included in this assay were 67; 49; 97;
119 respectively. Results represented the means + SEM of the percentages obtained from a rep-
resentative experiment. The Mann-Whitney test indicates no significant difference.

(TIF)

S6 Fig. Survival of flies overexpressing the Drosophila thioredoxin deadhead and HQ93 in
neurons. Lifespan of flies expressing the two transgenes dhd and HQ93 (open circles) was ex-
tended in comparison with control flies (filled triangles) with Elav-Gal4, n = 129 and 140 flies
respectively. Survival curves were highly significantly different by log-rank test (***,
p<0.0001).

(TIF)

S1 Table. Control lines according to the genetic background of the Drosophila lines used in
experiments.
(DOC)

S2 Table. List of primers used for qPCR.
(DOC)
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