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The three common signature charac-
teristics of many neurological diseases
are brain hypometabolism, oxidative
stress, and neuroinflammation (Melo
et al., 2011; Cai et al., 2012; Heneka
et al., 2014). In order to be effi-
cient, successful treatment should target
all three pathologies simultaneously.
Pyruvate seems to be an ideal candi-
date for such a treatment because of
its unique combination of neuroprotec-
tive effects (Figure 1). In this opinion
paper, we attempt to review and sum-
marize recent information concerning
these effects and their significance for
neuroprotection.

PYRUVATE ENHANCES THE
BRAIN-TO-BLOOD GLUTAMATE EFFLUX
Perisynaptic astrocytes normally provide
fast take-up of glutamate released during
synaptic activity. In pathological condi-
tions however, extracellular glutamate
levels can be abnormally high and neu-
rotoxic (Wang and Qin, 2010). Part of this
glutamate can be cleared via glutamate
transporters located in the capillary
endothelial cells that form the blood-
brain-barrier. The efficacy of such efflux
depends on the glutamate concentration
gradient between blood and interstitial
fluid (Teichberg et al., 2009). Meanwhile,
blood glutamate content can be low-
ered by activation of a blood-resident
enzyme glutamate–pyruvate transami-
nase that in the presence of pyruvate
transforms glutamate into 2-ketoglutarate
(Gottlieb et al., 2003), thus reducing
the glutamate blood concentration. This
should favor the glutamate flux from the
interstitial fluid to the blood. Therefore,

extracellular glutamate levels can be con-
trolled in part by blood pyruvate, which
can enhance the brain-to-blood glutamate
efflux.

Indeed, Zlotnik and co-authors
demonstrated (Zlotnik et al., 2008, 2012)
that intravenous injection of pyruvate
after traumatic brain injury in rats led to
a transient decrease in blood glutamate
levels and significantly improved neu-
rological outcome during the first days
following injury as well as hippocampal
neuron survival at 30 days after injury.

One of the most severe acute neurolog-
ical conditions, associated with excessive
glutamate release, is the status epilepticus
(SE). Glutamate-induced excitotoxicity is
largely based on massive influx of Ca2+
via glutamate receptors, which seems to
be a necessary step in the overall process
of neuronal degeneration and the acute
neuronal cell death that occurs after SE.
Morphological analysis of the rat brain
after pilocarpine-induced SE demonstrates
that the hippocampal subfield CA1 and
the hilus of dentate gyrus are particu-
larly susceptible to neuronal cell loss. SE-
induced neuronal loss in CA1 was largely
prevented in rats treated with pyruvate
plus oxaloacetate (i.p. injection 30 min
after development of SE) (Carvalho et al.,
2011). Moreover, neuronal damage in the
dentate gyrus was prevented in rats that
received pyruvate alone while oxaloacetate
alone did not reveal any neuroprotective
effects. The authors related the observed
beneficial effects to the blood glutamate
scavenging, although other capabilities of
pyruvate could also influence the positive
outcome.

PYRUVATE NON-ENZYMATICALLY
SCAVENGES H2O2

Pyruvate in relatively small concentra-
tions (<1 mM) protects neurons against
H2O2–induced toxicity (Desagher et al.,
1997). This effect is not related to the pyru-
vate’s function as an energy substrate but
rather to its ability to non-enzymatically
interact with H2O2 producing acetate,
water, and carbon dioxide (Holleman,
1904). The antioxidant effects of pyruvate
and other alpha-ketoacids has been con-
firmed both in vitro in several cell types
including neurons and in vivo in whole
organs such as heart or kidney (Desagher
et al., 1997; Das, 2006). Accumulation of
reactive oxygen species (ROS) is a promi-
nent feature of oxidative stress and by
scavenging ROS pyruvate may substan-
tially reduce the toxic consequences of this
pathological event.

ANTI-INFLAMMATORY ACTION OF
PYRUVATE
Many studies on different organs provided
evidence that pyruvate (ethyl pyru-
vate) is an effective anti-inflammatory
agent (reviewed in Kao and Fink, 2010).
They demonstrated that pyruvate treat-
ment down-regulates activation of the
pro-inflammatory transcription factor,
NF-kB, as well as the expression of sev-
eral pro-inflammatory proteins, such
as tumor necrosis factor (TNF), inter-
leukin 6 (IL-6) and others (Das, 2006;
Kao and Fink, 2010). The mechanism of
this pyruvate effect is yet unclear although
it may be explained, at least partly, by
the pyruvate antioxidant properties as
well as by the pyruvate-induced inhibi-
tion of poly-ADP ribose polymerase-1
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FIGURE 1 | Pyruvate and lactate in normal and pathological conditions.

(A) In normal conditions, glucose enters the cell via glucose transporters
(GluT) and is metabolized in a 10-step glycolysis. Endogenous pyruvate is a
final product of glycolysis and the main energy substrate for ATP generation
in mitochondria. Excessive for mitochondria pyruvate can be transformed to
lactate by lactate dehydrogenase (LDH) in the presence of NADH.
Extracellular lactate can enter the cell via monocarboxylate transporters
(MCT). Lactate then is converted to pyruvate by LDH in the presence of
NAD+ (green arrows). This explains why extracellular lactate may serve
efficiently as the energy fuel for brain cells. (B) The situation is changed
radically under pathological conditions. A number of neurological disorders
are characterized by the oxidative stress and increased level of interstitial
glutamate—both factors inducing strong excitotoxicity. Oxidative stress
results from excessive presence of ROS, while glutamate induces cellular
overload with Ca2+ ions. ROS induce DNA damage leading to the
overactivation of poly-ADP ribose polymerase-1 (PARP-1) that results in
depletion of cytosolic NAD+. ROS also activate the pro-inflammatory
transcription factor NF-kB inducing neuroinflammation. Depletion of NAD+

induces inhibition of glycolysis since the glycolysis step 6, conversion of
glyceraldehyde 3-phosphate to 3-phosphoglycerate, requires two molecules
of NAD+. This results in the insufficient outcome of pyruvate and decline in
the mitochondrial ATP production. Moreover, NAD+ depletion makes
ineffectual the conversion of lactate to pyruvate (dashed green arrows) and
lactate cannot serve as the energy substrate anymore. (C) Exogenous
pyruvate is able to ameliorate many impaired cellular functions described in
(B). In blood, pyruvate activates a blood resident enzyme glutamate–pyruvate
transaminase which transforms glutamate into 2-ketoglutarate and thus
lowers the blood glutamate level. This results in an enhanced efflux of
glutamate from brain parenchyma that reduces neuronal overload with Ca2+
ions. Pyruvate reacts directly with H2O2producing acetate, H2O and CO2 and
thus reducing oxidative stress. Pyruvate inhibits PARP-1 overactivation that
prevents depletion of NAD+ and thus promotes glycolysis
(glyceraldehyde-3-phosphate depending step). It also inhibits expression of
several pro-inflammatory proteins, such as tumor necrosis factor (TNF),
interleukin 6 (IL-6) and others. All these effects explain the neuroprotective
properties of pyruvate.

(PARP-1) overactivation (see below and
Figure 1C).

PYRUVATE ENHANCES GLYCOGEN
CONTENT IN ASTROCYTES
Pyruvate supplementation prior to glu-
cose deprivation significantly protected
synaptic function against the deleterious
effects of hypoglycemia in brain slices
(Shetty et al., 2012). The authors asso-
ciated beneficial effect of pyruvate with
both increased glycogen content during
pyruvate pretreatment and subsequent
glycogen utilization during glucose depri-
vation leading to the increased ATP levels.
Interestingly, both extra glucose and lac-
tate pretreatment also increased the glyco-
gen content, although significantly less
efficiently than pyruvate. However, neither
lactate nor extra glucose pretreatment was
sufficient to provide the protective effect
on synaptic transmission during glucose
deprivation.

Pyruvate chronic supplementation also
strongly increased the glycogen content of
cortical tissue in vivo in the Alzheimer’s
disease mouse model (APPswe/PS1dE9)
(Zilberter et al., 2013).

PYRUVATE PROVIDES
NEUROPROTECTION AGAINST
DAMAGE INDUCED BY POLY-ADP
RIBOSE POLYMERASE-1
OVERACTIVATION
Poly-ADP ribose polymerase 1 (PARP-1)
synthesizes polymers of ADP-ribose that
are implicated in regulation of a number
of cellular processes including modula-
tion of transcription, DNA repair, neu-
ronal survival and death (Smith et al.,
2013). Importantly, to generate polymers
of ADP-ribose PARP-1 consumes cyto-
plasmic NAD+. In various neurological
disorders, excessive activation of PARP-
1 by oxidative stress has been docu-
mented (Ma et al., 2012). This process

compromised cell survival via activation of
pro-death pathways by ADP-ribose poly-
mers and by creating energy deficit via
depletion of cytoplasmic NAD+ that was
followed by inhibition of glycolysis and
ATP production (see Figure 1B).

It has been also reported recently
that PARP-1 directly inhibits hexokinase
(Andrabi et al., 2014), increasing its poten-
tial for blocking glycolysis. Importantly,
Ying and colleagues reported (Ying
et al., 2002) that exogenous TCA cycle
substrates (including pyruvate) admin-
istration following PARP-1 activation
reduced cell death in the astrocyte–
neuron cultures from approximately
70% to 30%.

Similar neuroprotective effects of pyru-
vate was reported in vivo in transient
cerebral ischemia and severe hypoglycemia
models, in which PARP-1 had been shown
to be a key mediator of neurotoxicity
(Suh et al., 2003; Moroni and Chiarugi,
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2009). In these models, pyruvate treatment
either completely prevented the neuronal
loss or reduced it by 70–90% (Lee et al.,
2001; Suh et al., 2005). Brain damage
reduction due to pyruvate treatment was
also reported in the rodent model of
traumatic brain injury with documented
prominent oxidative stress, PARP-1 over-
activation and loss of NAD+ (Satchell
et al., 2003; Clark et al., 2007; Fukushima
et al., 2009; Sharma et al., 2009). Venous
infusion of pyruvate after controlled arte-
rial hemorrhage in swine reduced oxida-
tive stress and PARP fragmentation in the
brain (Mongan et al., 2003). Although elu-
cidating the exact mechanisms of pyruvate
neuroprotection was beyond the scope of
these studies, the authors suggested that
the pyruvate action includes the ROS scav-
enging, NAD+ replenishment, recovering
the pyruvate-dehydrogenase activity and
direct mitochondrial fueling.

Interestingly, PARP-1 overactivation
was also demonstrated in the brain of
transgenic Alzheimer’s disease mouse
model (Abeti et al., 2011). In mixed cul-
tures of neurons and glial cells, β-amyloid
peptide, the major neurotoxic agent in
the pathophysiology of Alzheimer’s dis-
ease, evokes oxidative stress followed by
hyperactivation of PARP-1, depolariza-
tion of mitochondrial membrane and
finally cell death. (Abeti and Duchen,
2012). Addition of pyruvate to culture
medium of β-amyloid treated cells pre-
vented the mitochondrial membrane
potential loss (Abramov and Duchen,
2005) and improved cell survival (Alvarez
et al., 2003).

One reasonable explanation for the
efficient pyruvate action may be in its
antioxidant properties. Since PARP-1 is
activated in response to oxidative dam-
age to DNA, reducing oxidative stress
would decrease PARP-1 activity resulting
in NAD+ depletion. In addition, exoge-
nous pyruvate can provide energy in con-
ditions when glycolysis intensity is reduced
due to a low cytoplasmic NAD+. Indeed,
pyruvate is a “direct” energy substrate
for mitochondria, while lactate needs to
be converted first to pyruvate in the
reaction dependent on the availability of
cytoplasmic NAD+. Importantly, mito-
chondrial pool of NAD+, indispensible
for pyruvate metabolism in mitochon-
dria, is maintained for at least 24 h when

cytoplasmic NAD+ is depleted (Stein
and Imai, 2012), thus ensuring energy
production.

ANTIEPILEPTIC EFFECTS OF PYRUVATE
Recently, a robust antiepileptic effect of
pyruvate (combined with antioxidants
ascorbic acid and alpha-tocopherol) treat-
ment has been revealed in the genetic
model of temporal lobe epilepsy (Simeone
et al., 2014). In addition, the authors
showed that a single pretreatment of
wild-type mice with these drugs reduced
the severity of kainate-induced events
resulting in 100% protection from severe
tonic–clonic seizures. Unfortunately, the
authors did not determine the con-
tribution of each applied drug to the
antiepileptic effect. To the best of our
knowledge neither ascorbic acid nor
alpha-tocopherol expresses significant
antiepileptic action (Waldbaum and Patel,
2010). Therefore, we believe that pyruvate
is the major player in the Simeone’s work
and the pyruvate antiepeileptic effect is
presumably reinforced by complementary
antioxidants.

Neuronal hyperactivity leading to
abnormal oscillations and epilepsy,
characteristic for Alzheimer’s disease
(Amatniek et al., 2006; Noebels, 2011),
has been observed as well in different
mouse models of the disease (Palop and
Mucke, 2009). We found (Minkeviciene
et al., 2009; Zilberter et al., 2013) that
the general reason for hyperactivity may
be the Aβ-induced modification of basic
neuronal properties, such as the resting
membrane potential and reversal potential
of GABA-induced currents, presumably
evoked by energy metabolism imbalance.
Critically, in the presence of pyruvate,
Aβ failed to induce its deleterious effects
on the cellular parameters. Moreover,
pyruvate chronic dietary supplementation
considerably reduced epileptic phenotype
in APP/PS1 mice (Zilberter et al., 2013).
In another Alzheimer’s disease model
(3xTg-AD mice), chronic pyruvate treat-
ment reduced both oxidative stress and
hyperexcitability, and inhibited short and
long-term memory deficits (Isopi et al.,
2014).

CONCLUSIONS
Oxidative stress and metabolic dysfunc-
tion are significant pathogenic factors

contributing to neurological disorders.
Pyruvate may be a unique therapeutic tool
for correcting neuronal network abnor-
malities developing due to these factors.
Combination of the following properties
validates this conclusion: (i) Oxidative
stress is the general feature of neurological
disorders and is associated with accumula-
tion of ROS. Pyruvate is a potent scavenger
of ROS and its contribution to the antiox-
idant defense system becomes significant
during neuropathologies; (ii) The oxida-
tive stress-induced overactivation of
PARP-1 results in the depletion of cytoso-
lic NAD+ and inhibition of glycolysis that
evokes energy deficiency and frequently
results in a cell death. Pyruvate signifi-
cantly abates overactivation of PARP-1. In
addition, as pyruvate is a direct substrate
for mitochondrial metabolism and its oxi-
dation does not depend on the cytoplasmic
redox state, pyruvate bypasses restric-
tions imposed by PARP-1 and can restore
energy deficiency in such conditions;
(iii) Pyruvate reduces the blood gluta-
mate level, facilitating the glutamate efflux
from brain tissue through the blood-brain
barrier thus reducing the glutamate-
induced neurotoxicity; (iv) Pyruvate
augements glycogen stores, thus increas-
ing neuronal tolerance to ischemia and
hypoglycemia; (v) Neuroinflammation
is a common attribute of a number
of neuropathologies. Pyruvate reveals
a potent anti-inflammatory action;
(vi) Pyruvate prevents neural network
hyperexcitability.

We conclude that pyruvate, in addition
to its well-recognized function in energy
metabolism, is a powerful neuroprotector,
the potential therapeutic significance of
which is yet widely underrated.
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