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Abstract
Elastically mediated interactions between surface domains are classically described in terms of point forces. Such point forces lead

to local strain divergences that are usually avoided by introducing a poorly defined cut-off length. In this work, we develop a self-

consistent approach in which the strain field induced by the surface domains is expressed as the solution of an integral equation that

contains surface elastic constants, Sij. For surfaces with positive Sij the new approach avoids the introduction of a cut-off length.

The classical and the new approaches are compared in case of 1-D periodic ribbons.
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Introduction
The classical approach used to calculate the strain field that

surface domains induce in their underlying substrate consists of

modeling the surface by a distribution of point forces concen-

trated at the domain boundaries [1-3], the force amplitude being

proportional to the difference of surface stress between the

surface domains [3-6]. However, point forces induce local strain

divergences, which are avoided by the introduction of an atomic

cut-off length. Hu [7,8] stated that the concept of concentrated

forces is only an approximation valid for infinite stiff substrates.

Indeed if the substrate becomes deformed by the point forces

acting at its surface, the substrate in turn deforms the surface

and then leads to a new distribution of surface forces so that the

surface forces have to be determined by a self-consistent

analysis. In this paper, we show that when elastic surface prop-

erties are properly considered, the strain field induced by the

surface domains may be expressed as the solution of a self-

consistent integro-differential equation.

Results and Discussion
Let us consider (see Figure 1a) a semi-infinite body whose

surface contains two domains (two infinite ribbons) A and B

characterized by their own surface stress sA and sB. The 1D

domain boundary is located at xo = 0. Note that for the sake of

simplicity only the surface stress components  are taken to be
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different from zero (see Appendix I for the Voigt notation of

tensors).

Figure 1: (a) Classical model in which each domain is characterized
by its own supposedly constant surface stress. (b) When taking into
account surface elasticity, the surface stress at mechanical equilib-
rium is no longer constant except far from the boundary.

In the classical approach [6-8] the strain field generated in the

substrate is assumed to be generated by a line of point forces

 (with δ(x) being the Dirac function)

and is given by:

(1)

where Dxx(x/x',z) is the xx component of the Green tensor and

where the component fx(x) = Δs1 originates from the surface-

stress difference  at the boundary between the two

surface domains. The Green tensor valid for a semi-infinite

isotropic substrate can be found in many text books [1,2,9] so

that the deformation at the surface ε1(x,z = 0) finally reads:

(2)

where  with Esubs and νsubs being

the Young modulus and the Poisson coefficient of the substrate

(supposed to be cubic). The strain at the surface (Equation 2)

exhibits a local divergence at the boundary x = x0 = 0. The

elastic energy can thus be calculated after introduction of an

atomic cut-off length to avoid this local divergence [6,10].

However, the concept of point forces is only an approximation.

If the substrate is deformed by point forces acting at its surface,

the substrate in turn deforms the surface and then leads to a new

distribution of surface forces. In the following, we consider

that, due to the elastic relaxation, the surface stress at equilib-

rium exhibits a Hooke’s-law-like behavior along the surface

[9,11,12]:

(3)

with i = A, B according to whether x lies in region A or B. In

Equation 3,  is the surface stress far from the domain bound-

ary (or in other words the surface stress before elastic relaxa-

tion) and  the surface elastic constants properly defined in

terms of excess quantities (see Appendix). The surface force

distribution due to the surface stress variation (see Figure 1b) is

obtained from force balance and reads fx(x,z = 0) = ds1/dx.

By using the Green formalism again, we obtain at the surface,

z = 0:

(4)

where ε1,x = dε1/dx.

This equation replaces the classical result of Equation 2.

Equation 4 is an integro-differential equation that has to

be solved numerically. At mechanical equilibrium the absence

of surface stress discontinuity at the domain boundary,

 combined to the constitutive Equation 3 leads

to the following boundary condition

(5)

When the elastic constants of the surface are positive,

Equation 4 can be easily numerically integrated. Figure 2a

shows (black dots) the result obtained by integration of

Equation 4 with the boundary condition

that means for . We also plot in Figure 2a the

classical result calculated from Equation 2 (continuous red

curve). It is clearly seen that the new expression avoids the local

strain divergence that is now replaced by a local strain jump

Δs1/S11 at x0 = 0.

Since the solutions of Equation 4 depend on the values of hS11

and Δs1 we report in Figure 2b the results obtained for different

typical values of hS11 and Δs1 data obtained from [11]. More

precisely, since the classical expression scales as 1/x, we plot ln

ε versus x. As can be seen, in the limit of large x all solutions

tends towards the classical one (common red asymptote in

Figure 2b). Moreover we can clearly see that the classical ap-

proach is recovered in the limit S11→ 0.
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Figure 2: (a) Continuous (red) curve: normalised strain field ε/Δs1
calculated with Equation 2, Black dots: normalised strain field ε/Δs1
calculated from Equation 4 with Δs1/S11 = 0.4 (b) ln–ln diagram of the
normalised strain field ε/Δs1 calculated from Equation 4 for hS11
varying from 10−1 to 10−4 (arbitrary units). The common asymptote is
the classical result calculated from Equation 2.

The elemental solution of Equation 4 enables to describe more

complex experimental configurations as the one that corre-

sponds to the spontaneous formation of 1D periodic stripes by a

foreign gas adsorbed on a surface (as for instance O/Cu(110)

[13]). In the classical model each stripe (width 2d) is modeled

by two lines of point forces one located at d and the other at −d

with the opposite sign fx(x) = Δs1(δ(x − d) − δ(x + d))) so that

for a set of periodic ribbons of the period L the elastic field is

obtained by a simple superposition of the elemental solutions

given in Equation 2. In the classical case it reads

(6)

whereas within the new approach the elastic field is solution of

the integral equation:

(7)

The results are shown in Figure 3 in which two cases are

reported. In the first case d/L = 1/2, whereas in the second case

d/L = 3/10. Again both solutions (classical and new approach)

are quite similar since the only difference lies in the local diver-

gences of the classical model (red curves in Figure 3) that are

now replaced by local strain jumps.

Figure 3: Normalised strain fields ε/Δs1 calculated for 1-D periodic
stripes. (a) d/L = 1/2 , (b) d/L = 3/10. In both cases the continuous (red)
curve corresponds to the classical solution of Equation 6 and black
dots to the numerical solution of Equation 7. (Vertical blue lines corres-
pond to the location of the ribbons edges sketched in grey in the upper
part of the figures)

For surfaces with negative surface elastic constants Equation 4

does not present stable solutions. It is quite normal since in this

case, the surface is no more stable by itself but is only stabi-

lized by its underlying layers (see Appendix I). From a physical

point of view it means that, for mechanical reasons, we have to

consider a “thick surface” or, in other terms, that the surface has

to be modeled as a thin film the thickness a of which corre-

sponds to the smaller substrate thickness necessary to stabilize

the body (bulk + surface). It can be shown that this is equiva-

lent to modify the integro-differential equation for S11 < 0, by

changing the kernel:

(8)



Beilstein J. Nanotechnol. 2015, 6, 321–326.

324

In Figure 4 we show the result obtained from numerical integra-

tion of Equation 8 for the test value hS11 = −0.01. In this case

a = |2hS11| is the minimum value necessary to stabilize

Equation 8. Since s1 is positive but S11 is negative, there is a

sign inversion of ε close to the boundary. For vanishing a this

local oscillation propagates on the surface and is at the origin of

the instabilities that do not allow to find stable solutions to

Equation 4. However we cannot exclude that the total energy of

materials with s1S11 < 0 could be reduced by some local

morphological modifications of their surface. In such a case, the

Green tensor used for this calculation should be inadequate.

Figure 4: Black squares: normalised strain ε/Δs1 solution of
Equation 8 calculated for Δs1/S11 = 0.5, red squares: classical solution
plotted from Equation 2. (arbitrary units, vertical blue line corresponds
to the location of the ribbons edges sketched in grey in the upper part
of the figures).

In conclusion, the self-consistent approach expressed in terms

of surface elastic constants is more satisfactory than the clas-

sical approach, particularly in the case of stable surfaces (char-

acterized by positive surface elastic constants) for which there

is no need to introduce a cut-off length. In case of unstable

surfaces (negative surface elastic constants) a cut-off length is

still necessary, its value is connected to the minimum substrate

thickness necessary to stabilize the body (surface + underlying

bulk). Even if the model only deals with 1D structures it can be

generalized to other structures such as 2D circular domains. The

so-obtained equations are less tractable but the main result

remains the same (see Appendix II).

Appendix I: Surface elasticity
From a thermodynamic point of view all extensive quantities

may present an excess at the interface between two media (for a

review see [9]). For a system formed by a body facing vacuum

the following excess quantities can be defined [9]:

where

(9)

is the second order strain development of the energy of a body

of volume V0 limited by a surface of area A0 and

(10)

is the second order development of a piece of body of same

volume V0 but without any surface. In these expressions 

are the bulk stress components and Cijkl the bulk elastic

constant.

The so-defined surface quantities depend on a typical length

scale at which surface effects are disentangled from bulk

effects. Actually, in surface energy calculations, this length is

unambiguoulsy determined by a Gibbs dividing surface

construction [14]. Surface stress and surface elastic constants

values can thus be calculated from strain derivatives of the well-

defined surface energy quantity [11].

In contrast to surface energy density and bulk elastic constants,

surface stress components and surface elastic constants do not

need to be positive. [9,11]. This does not violate the thermody-

namical stability condition since actually a surface can only

exist when it is supported by a bulk material. Hence the stability

of the solid is ensured only by the total energy (surface +

volume).

Finally, in the body of the paper we use the Voigt notation so

that the surface stress can be written as the components of a 3D

vector s = (sxx,syy,sxy) = (s1,s2,s6), while surface and bulk elastic

constants are written as the components of 3D matrices Sij and

Cij, respectively.
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Appendix II: 2D circular domains
In case of a circular domain of radius R, the classical approach

considers a force distribution fr(r) = Δs0δ(r−R) that generates a

displacement field expressed in terms of complete elliptic inte-

grals K(x) and E(x) as:

(11)

In the distributed force model, we use the stress-strain relations

valid at the surface expressed in polar coordinates:

(12)

(13)

again with the Voigt notation in polar coordinates Arr≡Ar,

Aθθ≡Aθ.

By using the classical mechanical equilibrium equation

 and strain–displacement rela-

tions expressed in polar coordinates we obtain the following

force distribution

(14)

The displacement can thus be obtained from the self-consistent

equation (which replaces Equation 11)

(15)

The necessary boundary conditions, analog to Equation 5, must

now be written for normal and tangential strains

(16)

(17)

The integral equation for the displacement field, Equation 15,

only needs the surface elastic constant S11, but the edge condi-

tion introduces the need of the other surface elastic constant S12.

Qualitatively the result is similar to the one shown in Figure 2.
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