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Abstract
The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falcipa-
rum, is now severely limited due to widespread resistance. Amodiaquine is one of the most

potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-

resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical

use. In search of new compounds able to retain the antimalarial activity of amodiaquine

while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-amino-

quinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and

are thus incapable of generating toxic quinone-imines. The new compounds displayed high

in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to

amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falcipa-
rum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and met-

abolic stability comparable or higher than that of amodiaquine. Computational studies

indicate a unique mode of binding of compound 4 to heme through the HOMO located on a

biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this

compound.

Introduction
Malaria continues to be a major global health problem. According to the WHO, an estimated
3.2 billion people are at risk of being infected with Plasmodium and developing disease, and 1.2
billion are at high risk. It is estimated that 198 million cases of malaria occurred globally in
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2013, leading to 584,000 deaths, mainly in the African Region (90% of all malaria deaths), and
mostly in children under 5 years of age (78% of deaths) [1]. For decades one of the most suc-
cessful and widely used drugs for treating malaria, especially Plasmodium falciparum infection,
was chloroquine (CQ, Fig 1); however, widespread resistance has rendered it essentially useless
in most parts of the world [2]. The 4-aminoquinoline pharmacophore has been the focus of
intense efforts to develop new drugs not susceptible to resistance; for instance, amodiaquine
(AQ, Fig 1), which is structurally related to CQ but contains a p-hydroxyanilino ring in the
side chain of the molecule, is considerably more potent than CQ and remains effective against
most CQ-resistant strains. However, toxicity issues limit its clinical use, in particular the occur-
rence during prolonged treatment or prophylaxis of agranulocytosis and potentially fatal idio-
syncratic hepatotoxicity, linked to the formation of a reactive quinone-imine metabolite [3–7].
Related compounds like tebuquine (Fig 1) and its analogs also display high activity against CQ-
resistant P. falciparum but are equally susceptible to P450-induced oxidation to toxic quinone-
imine metabolites [8]. In order to circumvent this particular type of toxicity, other AQ analogs
unlikely to form quinone-imine intermediates have been considered. They include isoquine
[5,9] and the related GSK369796 [6,9]; amopyroquines [10–12] (Fig 1) and fluoroamodia-
quines [13]; N-tert-butylamino Mannich base derivatives [14,15], and benzoxazines [4], all of
which display high antiplasmodial activity. Other important developments concerning quino-
line antimalarials are the discovery of ferroquine, a highly active and selective organometallic
agent against CQ-resistant P. falciparum [16], and of phenylequine, a compound closely related
to the ones described in this paper, which displays activity comparable to that of ferroquine
against CQ-resistant parasites (Fig 1) [17]. Other aminoquinolines [18–24] and organometallic
CQ derivatives [25–27] with interesting antimalarial properties have been reported in recent
times. In this paper we describe the synthesis and antiplasmodial evaluation of a group of new
4-aminoquinolines 1–5 (Fig 2) structurally related to AQ, but lacking the 4-hydroxyl group in
the side ring. These compounds are highly active in vitro against CQ-sensitive and CQ-resis-
tant P. falciparum and are incapable of generating toxic quinone-imine metabolites.

Results and Discussion

Synthesis and characterization of new aminoquinolines
The new N-benzyl-4-aminoquinolines 1–4, and the reduced N-cyclohexadienylmethyl deriva-
tive 5 (Fig 2) were prepared by condensation of the appropriate amines 6–10 (Fig 2) with
4,7-dichloroquinoline (11) in N-methyl-2-pyrrolidone (NMP) in the presence of K2CO3 and
triethylamine, as exemplified in Fig 3 for compound 1. The precursor amine 6 was obtained
from the reaction of o-cyanobenzylbromide (12) with diethylamine in ethanol to yield o-
(diethylaminomethyl)benzonitrile (13), followed by LiAlH4 reduction of the nitrile group in
diethylether. The other (diethylaminomethyl)benzylamines used in this study (7–9) were pre-
pared by analogous procedures, starting from the corresponding cyanobenzylbromides. Cyclo-
hexadiene 10 was obtained by Birch reduction of 6. All new compounds were characterized by
1H and 13C NMR spectroscopy and high-resolution mass spectrometry (complete data in
Materials and Methods Section); the purity of all samples used in biological tests (> 95%) was
established by elemental analysis and HPLC. It is worth noting that our high yield synthetic
method for 1–5 relies on inexpensive commercially available starting materials.

In vitro evaluation of antiplasmodial activity and cytotoxicity
The activity of compounds 1–5, as well as CQ and AQ, was evaluated in vitro against the CQ-
sensitive 3D7 and CQ-resistant K1 and Dd2 strains of P. falciparum in two independent labo-
ratories designated as A and B. The results of these assays are collected in Table 1, where we
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note that the IC50 values for CQ toward the Dd2 and K1 from laboratory B were consistently
lower than those from laboratory A. There are precedents for this type of differences in anti-
plasmodial activity as a function of the experimental conditions; more specifically, results of
chemosusceptibility tests have been shown to be affected by the initial parasitemia, hematocrit,
incubation time, time when 3H-hypoxanthine is added, the use of serum substitute, and the gas
mixture [28]. Oxygen tension is a particularly important factor governing CQ activity against

Fig 1. Aminoquinoline antimalarial drugs and drug candidates.

doi:10.1371/journal.pone.0140878.g001

Fig 2. New aminoquinolines (1–5) and precursor amines (6–10) synthesized.

doi:10.1371/journal.pone.0140878.g002
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P. falciparum; it has been shown that high O2 tension (21%) leads to increased efficacy of the
drug compared to lower (10%) O2 tension. Furthermore, the O2 influence was found to be
strain-specific, with particular ocurrence in resistant strains [29]. In accordance with this, for
Dd2 and K1 IC50 values for CQ from laboratory A, using an incubator with a fixed atmosphere
of 5% CO2, 10% O2, 85% N2 for parasite culture, are higher than those from laboratory B,
which employs a candle jar with a ~17% O2, 3% CO2, and 80% N2, whereas IC50 values for 3D7
are similar in both settings.

The new compounds 1–5 display high activity against all the parasites assayed. For the CQ-
sensitive strain 3D7, 1–4 show comparable or slightly higher potency than those measured for
CQ and AQ. More importantly, when tested against the CQ-resistant parasites (K1 and Dd2)
the activity of 1–5 is consistently much higher than that of CQ. Compound 1, which only dif-
fers from the known highly active phenylequine [17] in that it contains a diethylamino instead
of dimethylamino group at the end of the side chain, was about 21 times more potent than CQ
against K1 parasites under conditions A, and close to eigth times more active under conditions
B. Switching to themeta and para isomers 2 and 3, or replacing the arene ring by the corre-
sponding cyclohexadiene in 5 led to a slight decrease of activity under conditions A and a slight
increase under conditions B. On the other hand, the presence of the large biphenyl group in 4
resulted in activity as high as that of 1 under conditions A, and in the highest potency of all
compounds against K1 under conditions B. Compounds 1–5 are also more effective than CQ
against the Dd2 strain, which was found to be CQ-resistant under conditions A but CQ-sensi-
tive under conditions B. The most active compounds are 1 and 4 also in this case, with the lat-
ter again being the most potent under both sets of conditions A and B. Additional
antiplasmodial activity data for selected compounds against CQ-sensitive (F32) and CQ-

Fig 3. Synthetic strategy for compound 1 and other new aminoquinolines.

doi:10.1371/journal.pone.0140878.g003
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resistant (K14 and FcB1) strains are collected in S1 Table (Supporting Information). The trends
observed in those cases are similar to the ones described above, with the new compounds being
comparable or somewhat better than CQ against CQ-sensitive parasites and much more active
than CQ against resistant strains. Compound 4 showed once more the highest potency against
the highly resistant K14 strain under conditions A, with a remarkable IC50 of 7.5 nM.

The low values of the resistance indexes (RI = IC50Dd2/IC503D7 and IC50K1/IC503D7) for
1–4 suggest a low potential for these compounds to develop cross-resistance with CQ [18,23].
It is also important to highlight from the data in Table 1 and S1 Table that the antimalarial
potency of the new 4-aminoquinolines against CQ-resistant strains of P. falciparum is similar
to that of the highly active AQ. As noted above, the clinical use of AQ has been hampered by
its tendency to form toxic quinone-imine metabolites. The molecular design of the compounds
presented here eliminates the potential for this type of toxicity, since all of them lack the
4-hydroxyl group in the ring present in the side chain of each molecular structure and are
therefore incapable of generating quinone-imine intermediates.

In order to further ascertain the possibility of indiscriminate cytotoxicity we also measured
the ability of compounds 1–4 to inhibit normal rat L6 and human MRC5 cell lines by the
method described in the Materials and Methods Section. The data in Table 2 reveal low toxicity
to the mammalian cells, which translates into high selectivity ranges for both CQ-sensitive and
CQ-resistant P. falciparum.

Table 1. In vitro activities of compounds 1–5, CQ, and AQ against CQ-sensitive and CQ-resistant
strains of P. falciparum.

Antiplasmodial activity, IC50 (nM) Resistance Indexes

3D7 Dd2b K1 Dd2/3D7 K1/3D7

A

CQ 17.6±0.71 521.6±95.73 1086.0±163.50 29.7 61.7

AQ 24.6±3.06 31.6±7.77 34.3±0.58 1.3 1.4

1 13.5±0.71 21.3±2.52 52.7±0.99 1.6 3.9

2 18.4±0.66 26.5±5.07 64.2±6.16 1.4 3.5

3 17.3±0.58 30.5±2.12 60.3±4.07 1.8 3.5

4 15.2±1.57 20.7±0.20 53.4±2.03 1.4 3.5

5 - 59.0±1.85 63.7±1.46 - -

B

CQ 18.0±12.31 35.1±12.08 124.0±48.05 1.9 6.9

AQ 11.9±1.00 11.3±0.64 9.60±0.51 0.9 0.8

1 21.6±3.11 19.4±2.18 14.6±0.36 0.9 0.7

2 17.1±2.97 17.1±1.72 12.0±1.15 1.0 0.7

3 16.1±2.44 17.7±3.78 12.4±0.40 1.1 0.8

4 12.9±0.85 14.4±0.50 11.8±1.00 1.1 0.9

5 - - 20.2±6.55 - -

IC50 ± SD values (nM) determined from independent experiments performed in triplicate in two laboratories

(A, Marseille; B, Paris) under different assay conditions (see main text and Materials and Methods Section

for details). CQ: chloroquine, AQ: amodiaquine, -: not determined.
bNote that Dd2 is CQ-resistant under the culture conditions of laboratory A and CQ-sensitive under the

culture conditions of laboratory B.

doi:10.1371/journal.pone.0140878.t001
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In vitrometabolic stability measurements
We also examined the metabolic stability of compounds 1–4, as well as of CQ and AQ, by mea-
suring their intrinsic clearance and half-lives upon incubation with human liver microsomes in
the presence and in the absence of NADPH. The data (Table 3) were compared with values for
the well-characterized positive controls verapamil (CLint 134 mL min-1 mg-1, t1/2 17.2 min) and
warfarin (CLint 0.0 mL min-1 mg-1, t1/2 >240 min), which are considered of low and high meta-
bolic stability, respectively.

In the absence of NADPH no significant metabolism was observed for any of the com-
pounds tested (t1/2 > 240). In the presence of NADPH, CQ displayed the longest half-life of all
the aminoquinolines (133 ± 15.5 min), while AQ showed a short half-life of 5.4 ± 0.42 min.
The t1/2 values for 1–3 are in the range 40–51 min, intermediate between CQ and AQ, while
compound 4, which appears as the most active of the series, shows a t1/2 ~5 min, very similar to
that of AQ. It is known that CQ [30] is rapidly dealkylated via cytochrome P450 enzymes into
the pharmacologically active desethylchloroquine (DECQ), and to a lesser extent, bisdesethyl-
chloroquine, (BDECQ), while AQ is quickly metabolized into active desethylamodiaquine
(DEAQ); elimination of the active metabolites is in turn very slow (in the particular case of the
rapidly metabolized AQ the terminal half-life is ~100 h) [31]. Therefore both CQ and AQ may
be considered pro-drugs, which are bio-activated to DECQ and DEAQ; it is likely that 1–4 are
metabolized by P450 enzymes in a similar manner.

Table 2. Cytotoxicity of compounds 1–4 towardmammalian cells.

L6 MRC5

CC50
a(μM) SIb(min-max) CC50(μM) SI(min-max)

CQS strains CQR strains CQS strains CQR strains

1 27.7 ± 1.73 923–2052 442–2289 26.4 ± 1.75 880–1955 421–2182

2 20.6 ± 3.92 1505–1884 431–1544 20.3 ± 3.40 1435–1796 411–1544

3 13.8 ± 1.90 1140–1720 459–1565 13.0 ± 2.26 1086–1639 438–1491

4 2.8 ± 0.15 1639–2147 519–3693 2.6 ± 0.12 1562–2046 494–3520

aCC50: concentration of drug inducing 50% of cell growth arrest.
bSI: Selectivity index expressed as (CC50 to each mammalian cell line)/(IC50 to P. falciparum). SI max corresponds to the most sensitive strain of P.

falciparum and SI min toward the less sensitive parasite strain.

doi:10.1371/journal.pone.0140878.t002

Table 3. Metabolic stability data.

Compd NADPH-dep. aCLint (μl.min-1.mg-1) NADPH-dep. bt1/2 (min) NADPH-free bt1/2 (min)

1 45.6±0.12 50.9±0.55 >240

2 56.2±0.55 41.1±0.41 >240

3 51.1±3.06 45.3±1.36 >240

4 465.9±43.99 5.0±0.47 >240

CQ 17.5±2.03 133.2±15.52 >240

AQ 431±33.4 5.4±0.42 >240

[Compd] = 1 μM. [protein] = 0.3 mg/mL.
aMicrosomal Intrinsic Clearance.
bHalf-life

doi:10.1371/journal.pone.0140878.t003
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Computational studies
Aminoquinoline drugs exert their antimalarial action by disrupting aggregation of heme into
hemozoin. It is therefore interesting to examine the interactions of new drug candidates with
heme, to try to find correlations with antimalarial potency. The binding of 1–5, CQ, and AQ to
heme was analyzed by use of Autodock 4.2.11 (Details in Materials and Methods Section). For
all the compounds studied the energetically most favorable binding is guided by H-bonding as
well as π-stacking interactions between the aminoquinoline and heme. Although the docking
energies shown in Table 4 are comparable for compounds 1–5 and only marginally stronger
than for CQ, a significant difference in the nature of the interactions among the molecules
studied is that stacking of 4 over the porphyrin takes place through the biphenyl moiety,
whereas for all other systems the stacking happens via the quinoline ring (Fig 4 and S1 Fig in
Supporting Information). This different binding mode of 4 to heme is likely related to the local-
ization of the HOMO over the biphenyl unit, unlike the other four molecules for which the
HOMO is concentrated mostly over the quinoline moeity (Fig 5, and S2 Fig, Supporting Infor-
mation). This structural difference could be in part responsible for the high activity observed
for this compound.

Conclusion
We have synthesized a series of new 4-aminoquinolines designed to display the high antimalar-
ial potency of amodiaquine while avoiding associated toxicity issues caused by quinone-imine
metabolites. This molecular design led to compounds with high in vitro activity, markedly supe-
rior to chloroquine and comparable to amodiaquine, against CQ-sensitive and particularly
against CQ-resistant strains of P. falciparum, accompanied by low toxicity toward L6 rat fibro-
blasts and MRC5 human lung cells. Compounds 1–3 display moderate in vitrometabolic stabil-
ity to human liver microsomes, lower than that of chloroquine but higher than amodiaquine,
while 4 shows a shorter half-life, very similar to that of amodiaquine. The high activity of 4 is
possibly linked with a unique mode of bindig to heme through the biphenyl unit.

Materials and Methods

Synthesis of compounds
General. Solvents (analytical grade, Aldrich) were purified immediately prior to use by

means of an Innovative Technology solvent purification unit. Other reagents (Aldrich) were
used as received. NMR spectra were obtained at 400 MHz for 1H and 75 MHz for 13C using an
AVANCE Bruker 400 instrument; δ values are referred to residual proton or carbon signals in
the deuterated solvents. Elemental analyses were performed by Atlantic Microlab, Norcross,
Georgia. The Mass Spectrometry Service of Hunter College CUNY performed the mass spectral
analyses.

Precursor nitriles 13–16. o-(Diethylaminomethyl)benzonitrile (13): Dropwise addition
of o-cyanobenzylbromide (12) (10.0 g, 50 mmol) in ethanol (30mL) to cold diethylamine (57
mL, 0.55 mol) was followed by 3 h of stirring at room temperature. The solution became
orange and a white precipitate was observed. Aqueous Na2CO3 (20 mL, 0.1 M) was added until
the solution became basic to pH paper. At this time the white precipitate dissolved. Then the
solution was concentrated and extracted into an ether layer. The organic layer was washed with
water 3 times, dried over Na2SO4, and evaporated under vacuum to yield the product as a red-
dish-orange oil. Yield: 8.47 g, 90%. 1H NMR (CDCl3) δ (ppm): 7.54 (m, 2H); 7.47 (td, 1H); 7.22
(td, 2H); 3.69 (s, 2H); 2.49 (q, 4H); 0.98 (t, 6H). ESI-MS (M+H+), 189.1313 (calc), 189.1388
(found).
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m-(Diethylaminomethyl)benzonitrile (14) was prepared by following an analogous proce-
dure, usingm-cyanobenzylbromide (6.0 g, 30 mmol) in ethanol (40 mL) and cold diethylamine
(35 mL, 340 mmol) and stirred at room temperature for 3 h. The product was collected as an
orange-colored oil. Yield 4.1 g, 72%. 1H NMR (CDCl3) δ (ppm): 7.7 (s, 1H); 7.61 (d, 1H); 7.56
(d, 1H), 7.45 (t, 1H), 3.26 (s, 2H), 2.55 (q, 4H), 1.05 (t, 6H).

p-(Diethylaminomethyl)benzonitrile (15) was prepared by following an analogous proce-
dure, using p-cyanobenzylbromide (7.2 g, 36 mmol) in THF (25 mL) and cold diethylamine
(40 mL, 403 mmol), stirring for 1.5 h at room temperature. The product was collected as
brown-orange oil. Yield 5.9 g, 86%. 1H NMR (CDCl3) δ (ppm): 7.57 (m, 2H); 7.47 (m, 2H);
3.59 (s, 2H), 2.52 (q, 4H), 1.02 (t, 6H).

4’-((diethylamino)methyl)-[1,1’biphenyl]-4-carbonitrile (16) was prepared by following
an analogous procedure, using 4’-bromomethyl-[1,1’-biphenyl]-4-carbonitrile (10.0 g, 36.7
mmol) in THF (40 mL) and cold diethylamine (40 mL, 403 mmol), stirring for 1.5 h at room
temperature. The product was collected as a colorless oil. Yield 9.4 g, 97%. 1H NMR (CDCl3) δ
(ppm): 7.8 (d, 1H); 7.65 (m, 1H); 7.55 (m, 6H), 3.65 (s, 2H), 2.6 (q, 4H), 1.1 (t, 6H).

Precursor amines 6–10. o-(Diethylaminomethyl)benzylamine (6) o-(Diethylamino-
methyl)benzonitrile (13) (6.0 g, 32 mmol) in anhydrous diethylether (20 mL) was added drop-
wise over a period of 10 min to a suspension of LiAlH4 (2.4 g, 64 mmol) in anhydrous diethyl
ether (50 mL, 0°C, N2 atmosphere). The mixture was allowed to come to room temperature,
stirred for 12 h, cooled in ice, treated dropwise with 20% NaOH (17 mL) with cooling, and
extracted three times with ether (50 mL each). The combined organic phases were dried over
Na2SO4, filtered, and evaporated under vacuum. The product was collected as reddish-orange
colored oil. Yield 6.8 g, 79%. 1H NMR (CDCl3) δ (ppm): 7.17 (m, 4H); 3.75 (s, 2H); 3.50 (s 2H);
2.43 (q, 4H): 1.928 (s, NH2); 0.962 (t, 6H). ESI-MS (M+H+) = 193.1626 (calc), 193.1715
(found).

m-(Diethylaminomethyl)benzylamine (7) was prepared by an analogous procedure using
m-(diethylaminomethyl)benzonitrile (14) (4.1 g, 22 mmol) in anhydrous diethylether (15 mL)
and lithium aluminum hydride (1.7 g, 44 mmol) in anhydrous diethyl ether (40 mL). The

Table 4. Computed docking energies.a

Compd 1 2 3 4 5 CQ AQ

ΔE Docking (kcal/mol)b -5.58 -5.11 -5.42 -5.97 -5.31 -4.72 -5.38

aComputed at the B3LYP/6-31G(d) level using the solvation model of Truhlar and co-workers. Computational details are found in the Supporting

Information.
bBis-protonated ligand geometries used for all docking simulations.

doi:10.1371/journal.pone.0140878.t004

Fig 4. Docked poses of 1 and 4 on heme. Both aminoquinoline molecules were employed in the
diprotonated form. Atom color code: white: H, brown: C, blue: N, red: O, and gold: Fe. Only polar hydrogens
are shown for clarity.

doi:10.1371/journal.pone.0140878.g004

New 4-Aminoquinoline Antimalarials

PLOS ONE | DOI:10.1371/journal.pone.0140878 October 16, 2015 8 / 15



product was collected as orange colored oil. Yield 3.4 g, 81%, 1H NMR (CDCl3) δ (ppm): 7.29
(m, 4H); 3.86 (s, 2H); 3.56 (s, 2H), 3.26 (s, 2H), 2.54 (q, 4H), 1.04 (t, 6H).

p-(Diethylaminomethyl)benzylamine (8) was prepared by an analogous procedure using
p-(diethylaminomethyl)benzonitrile (15) (5.9 g, 32 mmol) in anhydrous diethylether (15 mL)
and lithium aluminum hydride (2.4 g, 63 mmol) in anhydrous ether (15 mL) The product was
collected as a pale orange colored oil. Yield 4.1 g, 67%. 1H NMR (CDCl3) δ (ppm): 7.27 (m,
4H); 3.84 (s, 2H); 2.52 (q, 4H), 1.03 (t, 6H).

N-((4’-(Aminomethyl)-[1,1’-biphenyl]-4-yl)methyl)-N,N-diethylamine (9) was prepared
by an analogous procedure using 4’-((diethylamino)methyl)-[1,1’biphenyl]-4-carbonitrile (16)
(9.4 g, 36 mmol) in anhydrous diethylether (25 mL) and lithium aluminum hydride (2.7 g, 71
mmol) in anhydrous ether (25 mL). The product was collected as slightly orange colored oil.
Yield 7.1 g, 78%. 1H NMR (CDCl3) δ (ppm): 7.3 (m, 8H); 3.83 (s, 2H); 3.64 (s, 2H), 2.58 (q,
4H), 1.1 (t, 6H).

N-((2-Aminomethyl)cyclohexa-1,4-dien-1-yl)methyl)-N,N-diethylamine (10) A solution
of o-(diethylaminomethyl)benzylamine (6) (1.5 g, 7.8 mmol) in anhydrous ethanol (24 mL)
was added to liquid ammonia (25 mL) at –78°C. To this mixture was added Li (0.5 g, 10 eq.) in
small portions over two hours. After quenching the reaction with NH4Cl (1.6 g) in H2O (7
mL), the aqueous suspension was extracted with CH2Cl2, and the organic extracts were dried
(Na2SO4) and evaporated under vacuum to give the product as a yellow colored oil. Yield 1.3 g,
89%. 1H NMR (400 MHz, CDCl3) δ 5.72 (m 2H), 3.30 (s, 2H), 3.00 (s, 2H), 2.43 (q, 4H); 2.75
(m, 4H), 2.02 (s, NH2), 1.01 (t, 6H). ESI-MS (M+H+) = 195.1783 (calc), 195.1854 (found).

New 4-aminoquinolines. 7-Chloro-N-(2-((diethylamino)methyl)benzyl)quinolin-
4-amine (1) o-(Diethylaminomethyl)-benzylamine (6) (0.8 g, 4.2 mmol), 4-7-dichloroquino-
line (11) (5.0 g, 25 mmol), K2CO3 (1.0 g, 7.25 mmol), anhydrous triethylamine (5 mL, 36
mmol) and anhydrous NMP (7 mL) were placed in a 25 mL round bottomed flask and heated
under reflux under nitrogen for 15 h. The mixture was allowed to cool to room temperature
before diluting with ethyl acetate. The product was washed 10 times with brine, and then
washed 6 times with a large amount of water to remove NMP. The organic layer was dried over
Na2SO4, filtered, and the solvent was removed under reduced pressure. The product was puri-
fied by column chromatography (ethylacetate: hexane: three drops of Et3N) and collected as a
yellow crystalline product. Yield 0.7 g, 50%. 1H NMR (MeOD), δ (ppm): 8.20 (d, J = 5.6 Hz,
1H), 7.93 (d, J = 9.0 Hz,1 H); 7.68 (d, J = 1.7 Hz, 1H), 7.29 (dd, J = 9.0 Hz, J’ = 1.9 Hz, 1H),
7.28–7.34 (m, 4H), 6.44 (d, J = 5.6 Hz, 1H), 4.59 (s, 2H), 3.57 (s, 2H), 2.48 (q, J = 7.1 Hz, 4H),
0.93 (t, J = 7.1 Hz, 6H), 13C NMR (CDCl3), δ (ppm): 152.2, 150.4, 149.5, 137.5, 137.4, 134.7,
132.2, 130.7, 128.4, 127.9, 127.5, 124.6, 122.6, 118.1, 99.2, 56.4, 47.1, 46.5, 10.5. Anal. Calcd for
C21H24N3Cl: C, 71.27; H, 6.84; N, 11.87. Found: C, 71.19; H, 6.85; N, 11.82. ESI-MS (M+H+) =
354.16588 (calc), 354.17501 (found).

Fig 5. HOMO’s of compounds 1 and 4.

doi:10.1371/journal.pone.0140878.g005
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7-Chloro-N-(3-((diethylamino)methyl)benzyl)quinolin-4-amine (2) was prepared by an
analogous procedure usingm-(diethylaminomethyl)benzylamine (7) (3.4 g, 18 mmol), K2CO3

(3.0 g, 21 mmol), 4-7-dichloroquinoline (11) (20.8 g, 105 mmol), triethylamine (22 mL, 159
mmol) and NMP (25 mL). The resulting product (white powder) was dried under vacuum.
Yield 2.9 g, 47%, 1H NMR (CDCl3), δ (ppm): 8.54 (d, J = 4.8 Hz, 1H); 7.99 (s, 1H); 7.71 (d,
J = 5.0 Hz, 1H), 7.29 (m, 5H), 6.48 (d, J = 4.8 Hz, 1H), 4.54 (s, 2H), 3.59 (s, 2H), 2.54 (q, J = 7.1
Hz, 4H), 1.04 (t, J = 7.1 Hz, 6H). 13C NMR (CDCl3), δ (ppm): 152.1, 149.5, 149.2, 141.1, 137.1,
134.9, 128.8, 128.5, 128.2, 128.1, 120.9, 117.2, 99.7, 57.4, 47.7, 46.8, 11.7. Anal. Calcd for
C21H24N3Cl: C, 71.27; H, 6.84; N, 11.87. Found: C, 71.14; H, 6.95; N, 11.73. ESI-MS (M+H+) =
354.16588 (calc), 354.17610 (found M+H+).

7-Chloro-N-(4-((diethylamino)methyl)benzyl)quinolin-4-amine (3) was prepared by an
analogous procedure using p-(diethylaminomethyl)benzylamine (8) (4.1 g, 21 mmol), K2CO3

(3.5 g, 25.2 mmol), 4-7-dichloroquinoline (11) (20.8 g, 105 mmol), triethylamine (26 mL, 189
mmol) and NMP (30 mL). The resulting product (slightly yellow powder) was dried under vac-
uum. Yield 4.3 g, 57%, 1H NMR (CDCl3), δ (ppm): 8.58 (d, J = 3.9 Hz, 1H); 8.02 (s, 1H); 7.72
(d, J = 4.1 Hz, 1H), 7.30 (m, 4H), 7.41 (d, J = 4.0 Hz, 1H), 6.51 (d, J = 3.9 Hz, 1H), 4.53 (s, 2H),
3.62 (s, 2H), 2.58 (q, J = 7.0 Hz, 4H), 1.10 (t, J = 7.0 Hz, 6H). 13C NMR (CDCl3), δ (ppm):
152.1, 149.5, 149.1, 135.5, 134.9, 128.9, 127.5, 125.5, 120.9, 117.2, 99.7, 57.4, 47.7, 46.8, 11.7.
Anal. Calcd for C21H24N3Cl: C, 71.27; H, 6.84; N, 11.87. Found: C, 71.07; H, 6.92; N, 11.83.
ESI-MS (M+H+) = 354.16588 (calc), 354.17259 (found M+H+).

7-Chloro-N-((4’-((diethylamino)methyl)-[1,1’-biphenyl]-4-yl)methyl)quinolin-4-amine
(4) was prepared by an analogous procedure using N-((4’-(aminomethyl)-[1,1’-biphenyl]-4-yl)
methyl)-N,N-diethylamine (9) (7.8 g, 27.8 mmol), K2CO3 (3.1 g, 22.1 mmol), 4-7-dichloroqui-
noline (11) (14.6 g, 174 mmol), triethylamine (26 mL, 189 mmol), and NMP (30 mL). The
resulting product (light yellow powder) was dried under vacuum. Yield 6.8 g, 56%. 1H NMR
(CDCl3) δ (ppm): 8.49 (d, J = 8.2 Hz, 1H); 7.95 (s, 1H); 7.3 (m, 10H), 6.32 (d, J = 8.2 Hz, 1H),
4.49 (s, 2H), 3.6 (s, 2H), 2.54 (q, J = 7.2 Hz, 4H), 1.09 (t, J = 7.2 Hz, 6H). 13C NMR (CDCl3), δ
(ppm): 152.0, 149.1, 141.9, 134.6, 128.0, 125.3, 120.9, 117.1, 99.5, 57.1, 46.8, 45.8, 11.7. Anal.
Calcd for C27H28N3Cl: C, 75.42; H, 6.56; N, 9.77. Found: C, 75.12; H, 6.76; N, 9.81. ESI-MS
(M+H+) = 430.19718 (calc), 430.20347 (found M+H+).

7-Chloro-N-((2-((diethylamino)methyl)cyclohexa-1,4-dien-1-yl)methyl)quinolin-
4-amine (5) was prepared by an analogous procedure using N-((2-(aminomethyl)cyclohexa-
1,4-dien-1-yl)methyl)-N,N-diethylamine (10) (0.9 g, 4.9 mmol), 4,7-dichloroquinoline (11)
(5.0 g, 25 mmol), K2CO3 (1.0 g, 7.25 mmol), anhydrous triethylamine (5.0 mL, 36 mmol) and
anhydrous NMP (7 mL). The product was isolated as a white crystalline solid. Yield 50%. 1H
NMR (CDCl3): δ 8.45 (d, J = 2.2 Hz, 1H), 7.87 (d, J = 2.2 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.25
(dd, J = 8.9 Hz, J’ = 2.1 Hz, 1H), 6.52 (s, NH), 6.36 (d, J = 5.50 Hz, 1H), 5.65 (d, J = 1.24 Hz,
2H), 3.78 (d, J = 4.24 Hz, 2H), 2.98 (s, 2H), 2.80 (m, 4H), 2.50 (q, J = 7.1 Hz, 4H), 0.954 (t,
J = 7.1 Hz, 6H). 13C NMR (CDCl3): δ 152.1, 150.5, 149.3, 134.7, 132.2, 129.8, 128.7, 124.8,
124.5, 123.9, 121.8, 117.7, 99.0, 55.1, 46.8, 45.5, 32.3, 31.7, 11.1. Anal. Calcd for C21H26N3Cl: C,
70.87; H, 7.36; N, 11.81.Found: C, 70.71; H, 7.39; N, 11.70. ESI-MS (M+H+) = 356.1815 (calc),
356.1877 (found).

Biological Assays
Antimalarial Activity Measurements. The following strains of Plasmodium falciparum

were used in this study: F32 (Tanzania), Dd2 (SE Asia), K1 (SE Asia), FcB1 (Colombia), K14
(Cambodia) and 3D7 (Africa). In the routine culture conditions of laboratory A (Marseille),
that is in an incubator with a fixed atmosphere of 5% CO2, 10% O2 and 85% N2 at 37°C, strain
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3D7 was CQ-sensitive (IC50 < 100 nM), whereas Dd2, K1 and K14 were CQ-resistant (IC50 >

100 nM). In the routine culture conditions of laboratory B (Paris), that is in a candle jar with
an atmosphere of approximately 17% O2, 3% CO2 and 80% N2 at 37°C, 3D7, F32 and Dd2
were CQ-sensitive, whereas K1, K14 and FcB1 were CQ-resistant. Cultures were grown in com-
plete medium consisting of RPMI 1640 (Life Technologies Inc.) supplemented with 11 mM
glucose, 27.5 mM NaHCO3, 100 UI/mL penicillin, 100 μg/mL streptomycin, and 8–10% heat-
inactivated human serum, following the procedure of Trager and Jensen [32]. Parasites at the
ring stage (laboratory A) or asynchronous parasites (laboratory B) were grown in human A
+ or O+ red blood cells at a 1.5% (laboratory A) or 2% (laboratory B) haematocrit and a 0.8–
1% parasitaemia. Synchronization of the parasites was performed by sorbitol treatment [33].

Stock solutions (1 mM) of compounds 1–5 were prepared in DMSO and stored frozen at
-20°C. Further dilutions were in complete culture medium. The complexes were tested for their
inhibitory effect toward P. falciparum intraerythrocytic development. Decreasing concentra-
tions of the compounds and CQ or AQ were established by twofold serial dilutions (maximum
DMSO concentration was 0.5% v/v) and distributed (100 μL/well) in a 96 well microplate;
DMSO was distributed as a control. 100 μL from a culture at a 3% (laboratory A) or 4% (labo-
ratory B) hematocrit in complete medium was added per well. At time zero (laboratory A) or
after 24 h of the incubation (laboratory B), 1.0 μCi (laboratory A) or 0.5 μCi (laboratory B) of
3H-hypoxanthine was added per well. Then the culture proceeded until the parasite cycle was
completed (i.e. to 42 h or 48 h according to the strain). Plates were freeze-thawed and harvested
on filters. Dried filters were moistened in scintillation liquid mixture (OptiScint, Hisafe) and
counted in a 1450 Microbeta counter (Wallac, PerkinElmer). The percentage of growth inhibi-
tion was calculated from the parasite-associated radioactivity. 100% 3H-hypoxanthine incorpo-
ration was determined from a control grown in the absence of drug or test compound.
Antimalarial activity was determined as the concentration of drug inducing 50% of growth
inhibition (IC50) according to Desjardin et al. [34] or by nonlinear regression analysis from the
dose-response relationship as fitted by Riasmart software (Packard).

Cytotoxicity measurements. The rat L-6 and human MRC-5 cell lines were routinely
grown in RPMI 1640 supplemented with 11 mM glucose, 27.5 mM NaHCO3, 100 UI/mL peni-
cillin, 100 μg/mL streptomycin and 10% fetal calf serum (RPMI-FCS), in a 5% CO2 incubator
at 37°C. For cytotoxicity assays, 100 μL per well of a 2×104 cells/mL suspension in RPMI-FCS
were deposited in a 96-well microplate and incubated overnight in culture conditions. Then
decreasing concentrations of the compounds to test were established by twofold serial dilutions
in RPMI-FCS and distributed at a rate of 100 μL per well and the microplate was put back in
the incubator for an additional three (L-6) or five (MRC-5) day period. Then the supernatant
in each well was discarded and replaced by 100 μL of MTT 1 mg/mL in RPMI-FCS. The micro-
plate was re-incubated in culture conditions for three hours, then 100 μL of 10% SDS was
added by well. The cells were left overnight in the incubator then the OD at 540nm was mea-
sured with the Bio-Tek FL600™microplate reader equipped with the KC4™ software. Cytotoxic
activity was expressed as the concentration of drug inducing 50% of growth arrest (CC50), with
100% growth being determined from cells grown in the absence of test compounds. The selec-
tivity of each compound to P. falciparum was assessed through the selectivity index (SI),
defined as CC50 (to L6 or MRC5 cells) / IC50 (to P. falciparum).

In vitromicrosomal metabolic stability measurements. The evaluation of microsomal
stability was performed by Cyprotex US, LLC, Watertown, MA. Samples were analyzed by LC/
MS/MS using an Agilent 6410 mass spectrometer coupled with an Agilent 1200 HPLC and a
CTC PAL chilled autosampler, all controlled by MassHunter software (Agilent). After separa-
tion on an HILIC HPLC colum (Sepax HILIC 3 μM 2.1 x 30 mm) using an acetonitrile-water
gradient system, peaks were analyzed by mass spectrometry (MS) using ESI ionization in
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MRMmode. The signal was optimized for each compound by ESI positive or negative ioniza-
tion mode. An MS2 scan or an SIM scan was used to optimize the fragmenter voltage and a
product ion analysis was used to identify the best fragment for analysis, and the collision energy
was optimized using a product ion or MRM scan. An ionization ranking was assigned indicat-
ing the compound’s ease of ionization.

Each test compound (1 μM) was incubated in duplicate with human liver microsomes at
37°C. The reaction contains microsomal protein (0.3 mg/mL) in 100 nM potassium phosphate,
2 mM NADPH, 3 mMMgCl2, pH 7.4. A control reaction omitting NADPH was performed for
each compound in order to detect any NADPH-independent degradation. Aliquots were
removed at 0, 10, 20, 40, and 60 min and mixed with an equal volume of ice-cold Stop Solution
(methanol containing haloperidol, diclofenac, or other internal standard). The stopped reac-
tions were further incubated for at least 10 min at -20°C, and an additional volume of water
was added. The samples were centrifuged to remove precipitated protein, and the supernatants
were analyzed by LC/MS/MS to quantify the remaining parent. Data were converted to %
remaining by dividing by the time zero concentration value, and fitted to a first-order decay
model to determine half-life values. Intrinsic clearance values were calculated from the half-life
and protein concentrations by using the equation CLint = ln 2 / t1/2 [microsomal protein].

Computational details
All electronic structure calculations were performed at the B3LYP level of theory in combina-
tion with 6-31G(d) basis set as implemented in the Gaussian09 suite of quantum chemical pro-
grams [35–38]. An ultrafine grid was used for all calculations. The effect of solvation was
modeled using a polarizable continuum model and atomic radii form Truhlar and co-workers
in both water and 1-Octanol continuum [39]. All structures were confirmed to be minima via
frequency calculations in both gas- and solvent-phases. We optimized the neutral, monoproto-
nated, and diprotonated forms of all molecules. Molecular orbital surfaces are generated for gas
phase optimized geometry using an iso-surface value of 0.02. All molecular docking simula-
tions were performed with Autodock4.2.11 [40], with default force field, which includes
parameters for heme Fe, as well as for C/H/N/O/Cl. The structure of monomeric heme used
was from CYP51 (PDB ID: 4H6O; http://www.rcsb.org/pdb/explore/explore.do?structureId=
4H6O), and heme dimers from Pagola et al. [41]. For the ligands, the B3LYP/6-31G(d) opti-
mized geometries of the diprotonated molecules (AQ, CQ, 1–5) were used as starting points
for all docking simulations. All acyclic bonds in the ligands were rotatable for docking calcula-
tions. A grid box with a spacing of 0.375Å, size of 60 x 60 x 60, and centered at the rigid heme
receptor was used to generate atomistic grid by AutoGrid4.2. Molecular docking was per-
formed using Lamarckian genetic algorithm (LGA) with search parameters set for 156 GA
runs, with a population size of 200, a maximum number of 2.5 × 105 energy evaluations, a max-
imum number of 2.7 × 104 generations, a mutation rate of 0.02, and a crossover rate of 0.8.
Other docking parameters were set to default. The docked conformations were clustered into
groups of similar binding modes using a root mean square deviation clustering tolerance of
2.0Å.

Supporting Information
S1 Fig. Docked poses of all molecules studied on a heme receptor. The aminoquinoline mol-
ecules were employed in the diprotonated form. Only polar hydrogens were shown for
improved clarity. Atom color code: white: H, brown: C, blue: N, red: O, and gold: Fe.
(TIF)
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S2 Fig. HOMO and LUMO plots of all the systems. Computed at the B3LYP/6-31G(d) level
at isosurface value of 0.02.
(TIF)

S1 Table. Additional Antiplasmodial Activity Data from Lab. B.
(DOCX)

S2 Table. B3LYP/6-31G� optimized geometry and energy (in Hartrees) of all molecules
studied.
(DOCX)

Acknowledgments
We thank Ms. Victoria Medialdea (Brooklyn College) for assistance in the preparation of the
manuscript.

Author Contributions
Conceived and designed the experiments: CD VS JS RAS-D. Performed the experiments: CR
ML CD VS CL DR. Analyzed the data: CR ML CD VS CL DR JS RAS-D. Wrote the paper: CR
CD VS DR JS RAS-D.

References
1. WHO (2014) World Malaria Report 2014. Available: www.who.int/malaria/publications/world_malaria_

report_2014/wmr-2014-no-profiles.pdf. Accessed 24 Aug 2015.

2. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin in the fight against malaria. Parasitology
Research 105: 609–627. doi: 10.1007/s00436-009-1524-8 PMID: 19593586

3. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193: 673–675.
PMID: 781840

4. Gemma S, Camodeca C, Brindisi M, Brogi S, Kukreja G, et al. (2012) Mimicking the intramolecular
hydrogen bond: synthesis, biological evaluation, and molecular modeling of benzoxazines and quina-
zolines as potential antimalarial agents. Journal of Medicinal Chemistry 55: 10387–10404. doi: 10.
1021/jm300831b PMID: 23145816

5. O'Neill PM, Mukhtar A, Stocks PA, Randle LE, Hindley S, Ward SA, et al. (2003) Isoquine and Related
Amodiaquine Analogues: A New Generation of Improved 4-Aminoquinoline Antimalarials. J Med Chem
46: 4933–4945. PMID: 14584944

6. O'Neill PM, Park BK, Shone AE, Maggs JL, Roberts P, Stocks PA, et al. (2009) Candidate Selection
and Preclinical Evaluation of N-tert-Butyl Isoquine (GSK369796), An Affordable and Effective 4-Amino-
quinoline Antimalarial for the 21st Century. J Med Chem 52: 1408–1415. doi: 10.1021/jm8012618
PMID: 19222165

7. O'Neill PM, Shone AE, Stanford D, Nixon G, Asadollahy E, Park BK, et al. (2009) Synthesis, Antimalar-
ial Activity, and Preclinical Pharmacology of a Novel Series of 4'-Fluoro and 4'-Chloro Analogues of
Amodiaquine. Identification of a Suitable "Back-Up" Compound for N-tert-Butyl Isoquine. J Med Chem
52: 1828–1844. doi: 10.1021/jm8012757 PMID: 19284751

8. O'Neill PM, Willock DJ, Hawley SR, Bray PG, Storr RC, Ward SA, et al. (1997) Synthesis, antimalarial
activity, and molecular modeling of tebuquine analogues. Journal of Medicinal Chemistry 40: 437–448.
PMID: 9046333

9. Okombo J, Kiara SM, Abdirahman A, Mwai L, Ohuma E, Borrmann S et al. (2013) Antimalarial activity
of isoquine against Kenyan Plasmodium falciparum clinical isolates and association with polymor-
phisms in pfcrt and pfmdr1 genes. The Journal of antimicrobial chemotherapy 68: 786–788. doi: 10.
1093/jac/dks471 PMID: 23169890

10. Casagrande M, Barteselli A, Basilico N, Parapini S, Taramelli D, Sparatore A (2012) Synthesis and anti-
plasmodial activity of new heteroaryl derivatives of 7-chloro-4-aminoquinoline. Bioorganic & Medicinal
Chemistry 20: 5965–5979.

11. Casagrande M, Basilico N, Parapini S, Romeo S, Taramelli D, Sparatore A (2008) Novel amodiaquine
congeners as potent antimalarial agents. Bioorganic & Medicinal Chemistry 16: 6813–6823.

New 4-Aminoquinoline Antimalarials

PLOS ONE | DOI:10.1371/journal.pone.0140878 October 16, 2015 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140878.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140878.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140878.s004
http://www.who.int/malaria/publications/world_malaria_report_2014/wmr-2014-no-profiles.pdf
http://www.who.int/malaria/publications/world_malaria_report_2014/wmr-2014-no-profiles.pdf
http://dx.doi.org/10.1007/s00436-009-1524-8
http://www.ncbi.nlm.nih.gov/pubmed/19593586
http://www.ncbi.nlm.nih.gov/pubmed/781840
http://dx.doi.org/10.1021/jm300831b
http://dx.doi.org/10.1021/jm300831b
http://www.ncbi.nlm.nih.gov/pubmed/23145816
http://www.ncbi.nlm.nih.gov/pubmed/14584944
http://dx.doi.org/10.1021/jm8012618
http://www.ncbi.nlm.nih.gov/pubmed/19222165
http://dx.doi.org/10.1021/jm8012757
http://www.ncbi.nlm.nih.gov/pubmed/19284751
http://www.ncbi.nlm.nih.gov/pubmed/9046333
http://dx.doi.org/10.1093/jac/dks471
http://dx.doi.org/10.1093/jac/dks471
http://www.ncbi.nlm.nih.gov/pubmed/23169890


12. Casagrande M, Basilico N, Rusconi C, Taramelli D, Sparatore A (2010) Synthesis, antimalarial activity,
and cellular toxicity of new arylpyrrolylaminoquinolines. Bioorganic & Medicinal Chemistry 18: 6625–
6633.

13. O'Neill PM, Harrison AC, Storr RC, Hawley SR, Ward SA, Park BK (1994) The effect of fluorine substitu-
tion on the metabolism and antimalarial activity of amodiaquine. Journal of Medicinal Chemistry 37:
1362–1370. PMID: 8176713

14. Raynes KJ, Stocks PA, O'Neill PM, Park BK, Ward SA (1999) New 4-aminoquinoline Mannich base
antimalarials. 1. Effect of an alkyl substituent in the 5'-position of the 4'-hydroxyanilino side chain. Jour-
nal of Medicinal Chemistry 42: 2747–2751. PMID: 10425085

15. Wenzel NI, Chavain N, Wang Y, Friebolin W, Maes L, Pradines B, et al. (2010) Antimalarial versus
Cytotoxic Properties of Dual Drugs Derived From 4-Aminoquinolines and Mannich Bases: Interaction
with DNA. Journal of Medicinal Chemistry 53: 3214–3226. doi: 10.1021/jm9018383 PMID: 20329733

16. Navarro M, Castro W, Biot C (2012) Bioorganometallic Compounds with Antimalarial Targets: Inhibiting
Hemozoin Formation. Organometallics 31: 5715–5727.

17. Blackie MAL, Yardley V, Chibale K (2010) Synthesis and evaluation of phenylequine for antimalarial
activity in vitro and in vivo. Bioorganic & Medicinal Chemistry Letters 20: 1078–1080.

18. Tukulula M, Njoroge M, Abay ET, Mugumbate G, Wiesner L, Taylor D, et al. (2013) Synthesis, in vitro
and in vivo pharmacological evaluation of new 4-aminoquinoline-based compounds. ACSMedicinal
Chemistry Letters 4: 1198–1202. doi: 10.1021/ml400311r PMID: 24900630

19. Rodrigues T, da Cruz FP, Lafuente-Monasterio MJ, Gonçalves D, Ressurreiçao AS, Sitoe AR, et al.
(2013) Quinolin-4(1H)-imines are Potent Antiplasmodial Drugs Targeting the Liver Stage of Malaria.
Journal of Medicinal Chemistry 56: 4811–4815. doi: 10.1021/jm400246e PMID: 23701465

20. Kumar A, Srivastava K, Raja Kumar S, Puri SK, Chauhan PMS (2010) Synthesis of new 4-aminoquino-
lines and quinoline-acridine hybrids as antimalarial agents. Bioorganic & Medicinal Chemistry Letters
20: 7059–7063.

21. Shiraki H, Kozar MP, Melendez V, Hudson TH, Ohrt C, Magill AJ, et al. (2010) Antimalarial Activity of
Novel 5-Aryl-8-Aminoquinoline Derivatives. Journal of Medicinal Chemistry 54: 131–142. doi: 10.1021/
jm100911f PMID: 21141892

22. Zishiri VK, Joshi MC, Hunter R, Chibale K, Smith PJ, Summers RL, et al. (2011) Quinoline Antimalarials
Containing a Dibemethin Group Are Active against Chloroquinone-Resistant Plasmodium falciparum
and Inhibit Chloroquine Transport via the P. falciparum Chloroquine-Resistance Transporter (PfCRT).
Journal of Medicinal Chemistry 54: 6956–6968. doi: 10.1021/jm2009698 PMID: 21875063

23. Joshi MC, Wicht KJ, Taylor D, Hunter R, Smith PJ, Egan TJ (2013) In vitro antimalarial activity, beta-
haematin inhibition and structure-activity relationships in a series of quinoline triazoles. European Jour-
nal of Medicinal Chemistry 69: 338–347. PMID: 24077524

24. Aguiar ACC, Santos RdM, Figueiredo FJB, Cortopassi WA, Pimentel AS, França TC, et al. (2012) Anti-
malarial Activity and Mechanisms of Action of Two Novel 4-Aminoquinolines against Chloroquine-
Resistant Parasites. PLoS ONE 7: e37259. doi: 10.1371/journal.pone.0037259 PMID: 22649514

25. Navarro M, Vásquez F, Sánchez-Delgado RA, Pérez H, Sinou V, Schrével J (2004) Toward a novel
metal-based chemotherapy against tropical diseases. 7. Synthesis and in vitro antimalarial activity of
new gold-chloroquine complexes. Journal of Medicinal Chemistry 47: 5204–5209. PMID: 15456263

26. Rajapakse CS, Martinez A, Naoulou B, Jarzecki AA, Suarez L, Deregnaucourt C, et al. (2009) Synthe-
sis, characterization, and in vitro antimalarial and antitumor activity of new ruthenium(II) complexes of
chloroquine. Inorg Chem 48: 1122–1131. doi: 10.1021/ic802220w PMID: 19119867

27. Glans L, Ehnbom A, de Kock C, Martínez A, Estrada J, Smith PJ, et al. (2012) Ruthenium(II) arene
complexes with chelating chloroquine analogue ligands: synthesis, characterization and in vitro antima-
larial activity. Dalton Transactions 41: 2764–2773. doi: 10.1039/c2dt12083f PMID: 22249579

28. Basco LK (2004) Molecular Epidemiology of Malaria in Cameroon. XX. Experimental Studies on Vari-
ous Factors of in Vitro Drug Sensitivity Assays Using Fresh Isolates of Plasmodium falciparum. The
American Journal of Tropical Medicine and Hygiene 70: 474–480. PMID: 15155978

29. Briolant S, Parola P, Fusai T, Madamet-Torrentino M, Baret E, Mosnier J, et al. (2007) Influence of oxy-
gen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of
a standardized in vitro assay. Malaria Journal 6: 44. PMID: 17437625

30. Ducharme J, Farinotti R (1996) Clinical pharmacokinetics and metabolism of chloroquine. Focus on
recent advancements. Clinical pharmacokinetics 31: 257–274. PMID: 8896943

31. Li XQ, Bjorkman A, Andersson TB, RidderstromM, Masimirembwa CM (2002) Amodiaquine clearance
and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover
enzyme-specific probe substrate. The Journal of pharmacology and experimental therapeutics 300:
399–407. PMID: 11805197

New 4-Aminoquinoline Antimalarials

PLOS ONE | DOI:10.1371/journal.pone.0140878 October 16, 2015 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/8176713
http://www.ncbi.nlm.nih.gov/pubmed/10425085
http://dx.doi.org/10.1021/jm9018383
http://www.ncbi.nlm.nih.gov/pubmed/20329733
http://dx.doi.org/10.1021/ml400311r
http://www.ncbi.nlm.nih.gov/pubmed/24900630
http://dx.doi.org/10.1021/jm400246e
http://www.ncbi.nlm.nih.gov/pubmed/23701465
http://dx.doi.org/10.1021/jm100911f
http://dx.doi.org/10.1021/jm100911f
http://www.ncbi.nlm.nih.gov/pubmed/21141892
http://dx.doi.org/10.1021/jm2009698
http://www.ncbi.nlm.nih.gov/pubmed/21875063
http://www.ncbi.nlm.nih.gov/pubmed/24077524
http://dx.doi.org/10.1371/journal.pone.0037259
http://www.ncbi.nlm.nih.gov/pubmed/22649514
http://www.ncbi.nlm.nih.gov/pubmed/15456263
http://dx.doi.org/10.1021/ic802220w
http://www.ncbi.nlm.nih.gov/pubmed/19119867
http://dx.doi.org/10.1039/c2dt12083f
http://www.ncbi.nlm.nih.gov/pubmed/22249579
http://www.ncbi.nlm.nih.gov/pubmed/15155978
http://www.ncbi.nlm.nih.gov/pubmed/17437625
http://www.ncbi.nlm.nih.gov/pubmed/8896943
http://www.ncbi.nlm.nih.gov/pubmed/11805197


32. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976 Aug 20; 193
(4254):673–5. PMID: 781840

33. Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J
Parasitol. 1979 Jun; 65(3):418–20. PMID: 383936

34. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in
vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec; 16
(6):710–8. PMID: 394674

35. Lee C, YangW, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional
of the electron density. Phys Rev B: Condens Matter. 1988; 37:785–9.

36. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;
98:5648–52.

37. Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. Extended Gaussian-
type basis for molecular-orbital studies of organic molecules. J Chem Phys. 1971; 54:724–8.

38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revi-
sion C.01, Gaussian, Inc. Wallingford, CT.2010.

39. Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on Solute Electron Density
and on a ContinuumModel of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface
Tensions. J Phys Chem B. 2009; 113:6378–96. doi: 10.1021/jp810292n PMID: 19366259

40. Morris GM, Huey R, LindstromW, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and Auto-
DockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec; 30
(16):2785–91. doi: 10.1002/jcc.21256 PMID: 19399780

41. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK. The structure of malaria pigment beta-hae-
matin. Nature. 2000 Mar 16; 404(6775):307–10. PMID: 10749217

New 4-Aminoquinoline Antimalarials

PLOS ONE | DOI:10.1371/journal.pone.0140878 October 16, 2015 15 / 15

http://www.ncbi.nlm.nih.gov/pubmed/781840
http://www.ncbi.nlm.nih.gov/pubmed/383936
http://www.ncbi.nlm.nih.gov/pubmed/394674
http://dx.doi.org/10.1021/jp810292n
http://www.ncbi.nlm.nih.gov/pubmed/19366259
http://dx.doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pubmed/19399780
http://www.ncbi.nlm.nih.gov/pubmed/10749217

