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comprehensive visualization of multiple
Gene Set Enrichment Analyses
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Abstract

Background: Recent advances in the analysis of high-throughput expression data have led to the development of tools
that scaled-up their focus from single-gene to gene set level. For example, the popular Gene Set Enrichment Analysis
(GSEA) algorithm can detect moderate but coordinated expression changes of groups of presumably related genes
between pairs of experimental conditions. This considerably improves extraction of information from high-throughput
gene expression data. However, although many gene sets covering a large panel of biological fields are available in
public databases, the ability to generate home-made gene sets relevant to one’s biological question is crucial but remains
a substantial challenge to most biologists lacking statistic or bioinformatic expertise. This is all the more the case when
attempting to define a gene set specific of one condition compared to many other ones. Thus, there is a crucial need for
an easy-to-use software for generation of relevant home-made gene sets from complex datasets, their use in GSEA, and
the correction of the results when applied to multiple comparisons of many experimental conditions.

Result: We developed BubbleGUM (GSEA Unlimited Map), a tool that allows to automatically extract molecular
signatures from transcriptomic data and perform exhaustive GSEA with multiple testing correction. One original feature
of BubbleGUM notably resides in its capacity to integrate and compare numerous GSEA results into an easy-to-grasp
graphical representation. We applied our method to generate transcriptomic fingerprints for murine cell types and to
assess their enrichments in human cell types. This analysis allowed us to confirm homologies between mouse and
human immunocytes.

Conclusions: BubbleGUM is an open-source software that allows to automatically generate molecular signatures out of
complex expression datasets and to assess directly their enrichment by GSEA on independent datasets. Enrichments are
displayed in a graphical output that helps interpreting the results. This innovative methodology has recently been used
to answer important questions in functional genomics, such as the degree of similarities between microarray datasets
from different laboratories or with different experimental models or clinical cohorts. BubbleGUM is executable through
an intuitive interface so that both bioinformaticians and biologists can use it. It is available at http://www.ciml.univ-mrs.fr/
applications/BubbleGUM/index.html.
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Background
Conventional analyses of high-throughput expression data
such as microarray data have long been focusing on the
few most regulated genes, with the aim to correlate indi-
vidual genes with a phenotype of interest. Recent bio-
logical discoveries have suggested that many diseases,
rather than being the consequence of the strong regula-
tion of a few individual genes, rely on the coordinated
regulation of sets of genes contributing to the same bio-
logical process [1]. Importantly, moderate but consistent
changes in the expression of a significant proportion of
genes contributing to a common biological process can
lead to a meaningful modification in its activity. Conven-
tional data analyses based on gene-by-gene statistical
evaluation of differential expression can often miss this
type of informative coordinated regulation of relevant sets
of genes, because the fraction of genes individually satisfy-
ing the stringent threshold set to define statistically signifi-
cant changes in expression is too low. Several methods
have been designed to solve this issue. One of the most
commonly used is the Gene Set Enrichment Analysis
(GSEA), which allows statistical assessment of coordinated
expression changes of a pre-defined set of genes between
pairs of phenotypic conditions [1, 2]. An additional
strength of GSEA is that it allows better exploiting the
ever increasing knowledge on gene networks and their
relationships with biological processes, not only docu-
mented contribution to a given biological function as
allowed by gene ontology or pathway analyses but also
co-expression across a variety of conditions, predicted
regulation by a common set of transcription factors, or
association with specific diseases as informed by gen-
ome wide association studies. Thousands of such gene
sets have been carefully curated and regrouped in pub-
lic databases such as the Molecular Signatures database
(MsigDB) [3, 4] or the Stanford Microarray Database
(SMD) [5]. Additionally, when comparing results com-
ing from different laboratories or generated on different
platforms, the biological and technical variability makes
the reproducibility in the regulation of a gene set more
robust than in the regulation of a single gene [6–13].
Gene set analyses also allow to better align cell types
[14] and physiopathological processes across different
species when compared to gene-by-gene analyses, con-
tributing to enable refinement of animal experimenta-
tion for advancing the understanding of the cellular
and molecular processes at play in human diseases
through identification of the model that best represents
the targeted human phenotype [15–21]. However,
GSEA method is not adapted when one wants to com-
pare gene set enrichment results across multiple pair-
wise comparisons. Moreover, when GSEA is applied to
multiple pairwise comparisons, statistical significance
of the enrichments requires to be corrected for multiple

testing. Such restriction limits the possibility of inter-
preting the results in a global context, especially when
one deals with many different conditions in a single
study, a situation that requires running serially GSEA
on all possible pairwise comparisons. Beyond the issues
of the time consumed by such large analyses and of the
error risk when running many analyses manually, the
main difficulty then is to integrate all results together,
by inferring “neighbor-to-neighbor” relationships, in
order to extract simple and relevant interpretations
from the vast amount of enrichments obtained. More-
over, the interpretation of the results being dependent
on the biological relevance of the tested gene sets, it is
crucial to be able to generate home-made gene sets
allowing to rigorously test working hypotheses, for
example by being able through the same software suite
of extracting relevant, custom gene sets from a first
dataset and then of automatically using them for
enrichment analysis on a second, independent, dataset.
Generation, integrated interpretation and graphical rep-
resentation in a simple and intuitive way of multiple
GSEA is an innovative methodology that has recently
been shown to be critical to help rigorously answer
important questions in functional genomics. It allowed
to better assess the degree of similarities between com-
plex microarray datasets generated in different labora-
tories or with different experimental models or clinical
cohorts [7, 17, 22, 23]. It also facilitated comparison of
datasets across microarray platforms, including for
identifying homologous cell types across species as we
have pioneered [14, 24–28]. However, this approach has
been limited so far to only a few research groups having
a dual expertise both in a specific area of biology and
in bioinformatics. The lack of a computational tool
allowing to easily and rigorously perform multiple
GSEA without minimal knowledge in bioinformatics
and statistics has limited the use of this methodology
by biologists. To fill this gap, we have developed and
present here a stand-alone program freely download-
able and named Bubble GSEA Unlimited Map or
BubbleGUM. It encompasses two modules. The first
module, named GeneSign, allows automatically extract-
ing the molecular signature associated to sets of spe-
cific biological conditions as compared to one another,
consisting in the lists of genes more highly expressed in
phenotypes of interest as compared to reference pheno-
types, out of a microarray-based expression dataset,
using various statistical methods. Examples of molecu-
lar signatures are the list of genes which are specifically
expressed to higher levels in a given cell type, cell state
or disease as compared to many other ones. GeneSign
automatically computes molecular signatures and pro-
vides the associated heatmaps, through an intuitive
easy-to-use interface. The second module allows
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performing and mining multiple GSEA on all possible pair-
wise comparisons of an expression dataset. It generates a
comprehensive figure called a “BubbleMap”, which pro-
vides a transversal comparative point of view of all
enrichments, in order to gain insight in the interpretation
of multiple inter-connected enrichment plots. Inter-
connection of the comparisons is intrinsic to the fact that
one deals with multiple conditions that are compared to
each other in a pairwise manner. In other words, if gene
set X is enriched in condition B when compared to condi-
tion A and in condition C when compared to condition B,
thus X is enriched in condition C when compared to con-
dition A. Hence, this second module displays these
neighbor-to-neighbor relationships through an intuitive
schematic representation and therefore allows to better
interpret multiple pairwise-limited GSEA results by simpli-
fying their visualization. The two modules can be used
either separately or as a suite, since BubbleMap can dir-
ectly use as gene sets the signatures generated with Gene-
Sign. Finally, BubbleGUM can also be used more broadly
to facilitate multi-Omics analyses, since it basically esti-
mates the degree of correlation between lists of molecules
associated with intensity signals of any kind, not only
including from mRNA hybridization experiments (micro-
arrays) but also from sequencing assays encompassing epi-
genetic and RNAseq data as well as mass spectrometry data
for proteomics, and it should be applicable to metabolomics.

Methods
Expression data
All transcriptomic data used in this paper were previously
published and were retrieved from public databases, as
detailed below. The corresponding experiments were con-
ducted in accordance to ethical rules for experimentation
with animals or with human materials, according to the
papers where the data were first described [29–31].

Murine expression data
For mouse immune cell types, our own gene expression
dataset was used which included CD8α+ cDC (conven-
tional dendritic cells), CD11b+ cDC, pDC (plasmacytoïd
dendritic cells), B cells, NK (Natural Killer) cells and CD8+

T cells, all purified from steady state mouse spleen [29].
The hybridization was performed on Affymetrix mouse
430 2.0 gene chips. Two to three independent replicates
were made for each cell type. This dataset was deposited in
the Gene Expression Omnibus (GEO) database under
reference number GSE9810 [32]. Quality control of the
array hybridization was performed through Bioconductor
(2.14) [33] in the R statistical environment (version 3.1.0)
using the affyPLM package. The raw data was normalized
using the RMA (Robust Multichip Average) algorithm
using the affy package [34].

Human expression data
For human immune cell types, a gene expression dataset
was compiled from different public sources as previously
described [29], in order to include all the cell types
known or proposed to be homolog to the mouse cell
types under study, namely CD141+ cDC, CD1c+ cDC,
pDC, B cells, NK cells and CD8+ T cells, as well as neu-
trophils as a negative control. These data can be
retrieved from ArrayExpress (accession number E-
TABM-34 for the DC data) and GEO (accession number
GSE72642 for the other cells) [32, 35]. The hybridization
was performed on Affymetrix Human Genome U133
Plus 2.0 gene chips. Quality control of the array data
was performed through Bioconductor (2.14) in the R
statistical environment (version 3.1.0) using the affyPLM
package [33]. The raw data was normalized using the
RMA algorithm using the oligo package [34].

Statistical computation of the signature genes by
GeneSign
When applicable depending on the method chosen for
extraction of the gene signature specific of a phenotype
of interest, for each gene present in the expression data
file, GeneSign computes a p-value evaluating the risk of
being incorrect when declaring that the gene is signifi-
cantly more highly expressed in the Test population(s)
as compared to the Reference population(s). Since
GeneSign performs that test over many genes (usually
thousands of genes), the probability to declare that a
gene is significant, whereas it is not, increases (multiple
testing effect).
In order to control this risk, GeneSign applies a mul-

tiple testing correction procedure that controls the False
Discovery Rate (FDR), i.e. the rate of genes that will be
declared significant whereas they are not, compared to
the total number of genes declared significant. Specific-
ally, in a first step, the p-values in GeneSign are calcu-
lated by computing of a null hypothesis distribution
obtained by permutation of the samples. In a second
step, these p-values are corrected by using a previously
published method [36]. This correction is required
because in most cases, the limited number of samples
restricts the number of distinct permutations performed,
thus leading to the incorrect attribution of 0 values to
the estimation of certain p-values. Finally, in a third step,
an additional correction is applied, with the Benjamini-
Hochberg (B-H) procedure when absence of correlations
between values can be assumed, or with the Benjamini-
Yekutieli (B-Y) procedure when correlation between
values must be assumed [37, 38].
Note that there is one mandatory hypothesis to

apply the B-H or the B-Y procedure, which is the
uniformity of the p-value distribution under the null
hypothesis. We have evaluated the validity of this
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hypothesis by performing analyses on several cases and
several methods used in GeneSign. All those analyses
showed that this hypothesis is valid for our methods (data
not shown), thus allowing us to apply the B-H and B-Y
procedures.

Correction of multiple testing in the significance of the
enrichments in the BubbleMaps
BubbleMap performs several GSEA pairwise comparisons
in a row and displays the results as an integrative represen-
tation where all the enrichments can be compared to each
other. Hence, the risk of false positive detection due to
multiple testing effects must be controlled by correcting
the p-values of all enrichments across all gene sets and all
pairwise comparisons. This type of correction is imple-
mented in GSEA but is limited to the enrichments of gene
sets within a pairwise comparison since GSEA performs a
single pairwise comparison at a time. In the case of Bubble-
Map, an additional multiple testing effect occurs, linked to
the multiple pairwise comparisons that are performed. To
control the FDR on the entire BubbleMap, we apply a
Benjamini-Yekutieli (B-Y) procedure to the p-values associ-
ated to the normalized enrichment scores (NES) computed
by GSEA [38]. These p-values are calculated based on a
null hypothesis distribution built from the permutations of
either the gene sets or the samples across all the pairwise
comparisons performed by BubbleMap. However, since all
possible permutations cannot be performed for a matter of
computation time, only an estimation of the exact p-value
is computed. Like in GeneSign, to better estimate the p-
values, BubbleMap applies a correction on the p-value esti-
mations by using a previously published method, before
applying the B-Y procedure [36].

Implementation
BubbleGUM is a stand-alone program developed in
Java 1.6. The two modules of BubbleGUM, GeneSign
and BubbleMap, can be used either in an independent
manner or as a workflow of analyses to assess the
enrichment of home-made gene sets and not only of
publicly available gene sets. BubbleMap implements the
original GSEA algorithm. The file formats used by
BubbleGUM and GSEA are fully compatible.

GeneSign: Generating phenotype signatures from a
microarray-based expression dataset
Starting from a pre-processed normalized expression
dataset coming from any type of microarray platform,
the user can automatically extract the molecular signa-
tures of samples (cell populations, treatments, pheno-
types…) of interest as compared to reference samples,
using various statistics (see Additional file 1). In this
context, a molecular signature is defined as the list of
genes that are more highly expressed in the samples of

interest (test samples) as compared to the reference
samples, according to user’s defined criteria such as
the fold change and/or the FDR when applicable (see
Additional file 1). GeneSign can extract absolute signa-
tures, using as reference populations all cell samples but
the ones for which the signature is computed. Alterna-
tively, GeneSign can extract relative signatures, using as
reference populations a set of samples selected by the
user. This is interesting when one wants to characterize a
population as compared to another one, or when the
absolute signature of a population of interest is empty
because no gene is specific of the population of interest
when compared to all the other populations. In this situ-
ation, one can still characterize the population of interest
by extracting the genes more highly expressed in that
population when compared to a subset of the remaining
populations.
GeneSign allows generating transcriptomic signatures

by using various statistical methods. The “Min(test) vs
Max(ref )” method is applicable to datasets with low rep-
licate numbers, and fast to compute because no permu-
tation procedure is necessary. It is very stringent and
yields robust transcriptomic signatures. Therefore, it
stands out as a good alternative to permutation-based
methods which are less stringent, and which require
ideally at least 3 replicates per condition and consume
more computing time because they calculate for each
gene a p-value and a FDR based on sample permutation.
GeneSign proposes several types of permutation-based
methods. The first method calculates the ratios of the
means: “Mean(test) vs Mean(ref )” method. The second
method is more stringent since it calculates the minimal
mean ratio among all possible pairwise comparisons of
conditions: “Minimal (Pairwise [Mean(test) vs Mean(-
ref )])” method (see Additional file 1 for an extensive de-
scription and comparison of the methods). The third
method calculates the signal to noise ratio, defined as
the difference of means divided by the sum of the stand-
ard deviation of the populations compared: "Signal To
Noise". The fourth method computes the minimal signal
to noise ratio among all possible pairwise comparisons
of conditions: "Minimal pairwise (Signal To Noise)". Re-
sults of GeneSign consist in a table with, for each signa-
ture gene, the fold change (or signal to noise ratio)
calculated according to the method that was chosen, the
p-value and FDR if applicable, the number of replicates
among the Test populations and among the Reference
populations. Each signature that has been generated is
displayed in a separate tab. GeneSign also generates a 5-
color gene expression heatmap where the genes can be
filtered based on their gene symbols or identifiers. The
table and the heatmap can be respectively exported as a
text file and as a high quality image. Export of the signa-
ture gene lists includes the normalized expression data
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to permit their direct use into third-party programs such
as Gene-E or MeV for hierarchical clustering or Principal
Component Analysis (PCA) [39]. Alternatively, all signa-
tures can easily be saved into a cart as gene sets and then
saved into a proper format to directly assess their enrich-
ment by running classical pairwise GSEA or BubbleMap.

BubbleMap: Performing multiple GSEA and displaying
enrichment patterns
BubbleMap performs GSEA on all possible pairwise
comparisons in an expression dataset of interest with
the gene sets uploaded by the user, either generated by
GeneSign or downloaded from public databases such as
MsigDB [3, 4] or SMD [5].
The results are displayed as a figure with colored bub-

bles of various sizes and color intensities (BubbleMap)
(Fig. 1). Each bubble is a GSEA result and summarizes
the information from the corresponding enrichment
plot. The color of the bubble corresponds to the condi-
tion from the pairwise comparison in which the gene set
is enriched. The bubble area is proportional to the nor-
malized enrichment score (NES) calculated by GSEA.
The intensity of the color corresponds to the statistical
significance of the enrichment, calculated through the

computation of a permutation-based p-value that is cor-
rected for multiple testing across the various pairwise
comparisons. Thus, in addition to the simplicity of per-
forming multiple GSEA in an automatic fashion, Bubble-
Map optimizes the interpretation of enrichments by
allowing the user to compare the results across the pair-
wise analyses, something which was not possible so far.
This is eased by the BubbleMap representation which
allows grabbing at a glance on a single computer screen
an overview of multiple enrichments across tens of sam-
ples and tens of gene sets. The possibility to directly
select on the BubbleMap the gene sets and pairwise
comparisons of interest, and to reorganize their order,
allows to draw focused BubbleMaps for efficient and
simple illustration of informative gene set enrichment
patterns out of the high amount of information gener-
ated by a single analysis. The analyses can be saved as
XML files. The BubbleMaps can be exported in high
definition images for publication.

Results and discussion
We illustrate the functioning of BubbleGUM in a work-
flow successively using GeneSign and BubbleMap to
seek for homologies between mouse and human

Fig. 1 Integrating multiple GSEA into a BubbleMap. GSEA output is a bar code (1) corresponding to the projection of the gene set on the
blue-to-red gradient representing all the genes of the chip ranked from high expression in the population on the left to high expression in
the population on the right. The more the gene set is regulated, the more the bar code is shifted to one side. This is measured by two parameters.
The normalized enrichment score (NES) integrates the number and differential expression intensity of the assessed genes. NES > 0: the gene set is
enriched in the population on the left. NES < 0: it is enriched in the population on the right. The FDR is the likelihood that the gene set enrichment
represents a false-positive finding (2). Here, the FDR is different from the one calculated by GSEA, because it is corrected for multiple testing across the
gene sets and across the pairwise comparisons, thus allowing the user to compare all the bubbles in a BubbleMap. Each enrichment is summarized as
a bubble, bigger and darker as the enrichment was stronger and more significant, in a color matching the population in which the gene set was
enriched (3). Final output is a BubbleMap (4) with legend (5). Gene sets are either generated by GeneSign or retrieved from public gene set
databases (6)
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immune cell types based on their sharing of specific mo-
lecular signatures/transcriptomic fingerprints [29, 40]. In
brief, we use GeneSign to identify the transcriptomic fin-
gerprints of murine immune cell types and we subse-
quently use these home-made gene sets in BubbleMap
to assess their enrichments in human immune cell types
(see the online User guide for a detailed step-by-step
procedure of how to repeat this data analysis workflow).
Cross-species transcriptomic analysis represents a com-
plex challenge due to the fact that the experimental
material implies the use of different protocols, platforms,
probesets and technologies, therefore leading to the
accumulation of multiple sources of variations that are
difficult to remove by cross-normalization procedures
without adding noise or removing important informa-
tion. Because it uses the GSEA algorithm, BubbleMap
does not require any cross-normalization procedure and
is thus very relevant and potent in the context of cross-
species transcriptomic comparison.

Generation of transcriptomic fingerprints specific for
murine immune cell types
In the proposed case study, we use a public microarray
gene expression dataset for immune cell types purified
from mouse spleen and encompassing CD8α+ conven-
tional dendritic cells (cDC), CD11b+ cDC, plasmacytoid
DC (pDC), B cells, NK cells and CD8+ T cells [29]. After
having normalized this dataset, we used GeneSign to
extract the absolute transcriptomic fingerprints of each
of the murine immune cell types. We generated 3 different
absolute fingerprints for each murine immune cell type:
one corresponding to the “Min(test) vs Max(ref) > 1.5x”
method, one based on the “Mean(test) vs Mean(ref) > 2x”
method with FDR < 0.05 and one based on the “Minimal
(Pairwise [Mean(test) vs Mean(ref)]) > 2x” method with
FDR < 0.05 using the Benjamini-Yekutieli (B-Y) correction
for multiple testing (Additional file 2). It took few seconds
to generate all cell-specific transcriptomic fingerprints
based on the “Min(test) vs Max(ref)” method, while it
took about 2 h to generate all the fingerprints using the
“Mean(test) vs Mean(ref)” method based on 1000 permu-
tations, on a personal computer having a 2.4 GHz dual
core i7 processor and 8 GB of RAM memory allocated.
GeneSign is multi-threaded, the number of cores available
impacts on the speed of the analysis. In the murine B cell
fingerprints, we found, among the most significant and
differentially expressed genes, CD19, CD79A, EBF1, PAX5
and FCER2A, previously reported as involved in the devel-
opment and functions of B cells. CD19 and CD79A are
used as membrane markers to sort this cell population
and PAX5 is a master regulator of the B cell lineage differ-
entiation [41]. In the murine CD8α+c DC fingerprints, we
found, among the most significant, genes involved in the
functions of CD8α+c DC such as XCR1,TLR3, CXCL9 and

CADM1 already reported as being specific of CD8α+c DC
[29] (Additional file 2). These results thus show that our
statistical methods can reliably extract transcriptomic sig-
natures out of an expression dataset.

Assessing enrichments of the murine immune cell
type-specific transcriptomic fingerprints on expression
data from human immune cell types
We applied BubbleMap to test the enrichments of the
transcriptomic fingerprints of murine immune cell types
(Additional file 2) on expression data from human im-
mune cell types encompassing CD8+ T cells, B cells, NK
cells, neutrophils, CD1c(BDCA1)+ cDC, CD141(BDCA3)+

cDC and pDC (see Materials and Methods). Since the aim
was to test the enrichment of these murine fingerprints
on human expression data, the murine fingerprint gene
symbols were converted into those of their human ortho-
logs, using the BioMart tool from ENSembl [42]. In order
to test the statistical significance of the enrichments
obtained with BubbleMap, the GSEA algorithm performs
permutations either of the samples or of the gene sets.
The human expression dataset is composed of cell types
profiled in triplicates, which is not sufficient to perform a
sample permutation test as it requires at the very least 5
replicates. Hence, we performed the analysis using the
gene set permutation option. The p-values of each enrich-
ment were corrected for multiple testing, to generate FDR
values and thus allow for the first time rigorously compar-
ing all the results with each other for many GSEA across
multiple pairs of conditions, and hence to allow globally
interpreting the BubbleMap (See Materials and Methods).
The BubbleMap analysis can be performed with a
restricted list of gene sets, as far as most of these genes
sets are not expected to be significantly enriched in most
GSEA, and over a thousand gene set permutations are
performed. However, in order to allow proper functioning
of the multiple testing correction procedure, the analysis
must include additional gene sets, ideally to be chosen
randomly, if a majority of the gene sets is expected to be
significantly regulated in most pairwise comparisons. In-
deed, the correction for multiple testing is a conservative
procedure aiming at decreasing the number of false posi-
tives and tending to increase the number of false negatives
(see Material and Methods). If it is applied when using
only gene sets that are expected to be enriched in all
GSEA, this procedure will under-estimate the real number
of significantly enriched gene sets. Good sources of add-
itional gene sets can be curated public databases such as
MSigDB or SMD [3–5]. In this case study, we added twice
the number of the starting gene sets by randomly picking
gene sets from collection c3.all.v4.0 from MSigDB. To se-
lect all possibly interesting enrichments as a discovery
strategy to increase likelihood of discovering novel infor-
mation, GSEA developers recommend to set the FDR

Spinelli et al. BMC Genomics  (2015) 16:814 Page 6 of 11



evaluating the statistical significance of the enrichments to
a maximal threshold of 0.25 [1]. In our specific study case
which is distinct from a discovery strategy but rather a
confirmation study where the aim is to identify cell type
equivalence relationships that have already been demon-
strated in order to validate the relevance of our method,
we chose a more stringent 0.10 as the threshold for the
FDR. Hence, enrichments with a FDR > 0.10 were consid-
ered non-significant and displayed as empty circles. It took
about 1 h and 15 min to run the BubbleMap analysis
(5000 gene set based permutations) using the murine
transcriptomic fingerprints obtained from GeneSign
merged together with the randomly picked gene sets (68
gene sets in total), applied to the expression dataset of
human immune cell types composed of 21 arrays repre-
senting 7 phenotypes (42 pairwise comparisons), on a per-
sonal computer with a 2.4 GHz i7 processor and 8 GB of
RAM memory allocated (see Additional file 3: Table S1
for an estimation of the computational costs of Bubble-
Map analyses).
Once the analysis has been performed and the results

displayed as a BubbleMap, we used the filtering tools for
selecting the gene sets and pairwise comparisons of
interest. Concretely, out of the entire list of 68 gene sets,
we focused on the murine cell-specific transcriptomic
fingerprints by typing part of their names (“humS”, for
“human symbol”, had been inserted into their names to
distinguish the murine fingerprints from the randomly

added gene sets) in the dedicated « Geneset filter » field
(Fig. 2). Then, we used a simple drag and drop of the
gene sets to reorganize the BubbleMap in order to allow
easy visualization of enrichment patterns with regards to
the hypothesis of conserved expression of molecular sig-
natures between mouse and human immune cell types.
Specifically, we grouped together the different finger-
prints corresponding to the same murine immune cell
type but obtained from GeneSign by using different stat-
istical methods. This selection led to the rapid identifica-
tion of repetitive patterns of enrichments (Fig. 3),
corresponding to the significant enrichments of the cell
type-specific murine transcriptomic fingerprints into
specific human immune cell types, irrespective of the
statistical method used to generate the mouse finger-
prints. The murine CD8+ T cell fingerprints were found
systematically enriched in the human CD8+ T cells when
compared to any other cell types. Similarly, the murine
B cell and NK cell fingerprints were found systematically
enriched in the human B cells and NK cells, respectively.
As recently demonstrated by our group through a differ-
ent method [29], the fingerprints of murine CD8α+ cDC
and CD11b+ cDC were found systematically enriched in
the human CD141+ cDC and CD1c+ cDC respectively,
and the murine pDC fingerprints were found enriched
in the human pDC. In contrast, as a negative control, no
remarkable enrichment patterns were observed when
examining expression of murine cell type-specific

Fig. 2 Filtering the gene sets and pairwise comparisons of interest to optimize the BubbleMap: The BubbleMap can be adjusted to focus on
significantly enriched (FDR threshold = 0.10) murine signatures. The murine signatures were labeled in GeneSign with “humS” in their names so that
they can be retrieved by filtering the entire gene set list by typing “humS” in the dedicated research field. Gene sets and pairwise comparisons of
interest are selected by clicking on the + button, then by clicking on “Apply selection”
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Fig. 3 Discovering enrichment patterns from a reorganized BubbleMap. The selection of the gene sets and pairwise comparisons of interest, as
well as the re-organization of the gene sets, reveal repetitive bubble enrichment patterns (green boxes)
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fingerprints on human neutrophils as compared to other
human immune cell types (Fig. 4). Thus, human neutro-
phils were not found to be homologous to any of the
mouse immune cell types used in our analyses, in
consistency with the lack of neutrophils in the mouse
dataset used. However, the murine CD11b+ cDC finger-
print was found significantly enriched in human neutro-
phils as compared to all other human cell populations
examined except CD1c+ cDC. This enrichment pattern
may reflect the strong myeloid signature of mouse CD11b
+ cDC and human CD1c+ cDC, which is well documented
and can make difficult the discrimination between these
cells and monocyte-derived DC.
Altogether, these results confirm in the case of

immune cells the existence of evolutionary conserved
molecular signatures specific to cell types [40], and dem-
onstrate how our analysis workflow using BubbleGUM
powerfully enables researchers to exploit these signa-
tures for identifying homologous cell types in different
species. Moreover, BubbleGUM can also be used as a
specific quality control for analysis of expression data
from purified cell types, to assess a posteriori the risk of
cell type cross-contamination and thus, in case of insuf-
ficient purity, to prevent erroneous interpretation of the
results and to inform the researcher of the necessity to
refine the cell sorting strategy.

Conclusion
The combined use of GeneSign and BubbleMap allowed
us in a very simple way to generate transcriptomic fin-
gerprints for murine steady state splenic immune cell

types and to assess their enrichments in human blood
immune cell types. This analysis showed that the tran-
scriptomic fingerprints for a specific murine immune
cell type are systematically enriched in the human
immune cell type previously shown/proposed to be its
homolog whatever other immune cell type this popula-
tion was compared to. Hence, we developed a dedicated
BubbleGUM bioinformatics tool in order to implement,
in a processive, rigorous and easy to interpret way, a
strategy for in-depth Omics data mining based on i)
transcriptomic signature generation and ii) integration
and visual comparison of multiple GSEA. We illustrated
the functioning and utility of this strategy and software
through their use to confirm homologies between mouse
and human immune cell types. In addition, this type of
strategy has also been used to identify among several
experimental animal models available those that best
mimic human pathologies [16–19, 21]. The spectrum of
questions to which BubbleGUM can contribute to an-
swer is even considerably larger, since its use can be
extended to comparing different types of Omics data, for
example to compare mRNA and protein expression in a
simple but informative manner, or to examine correla-
tions between mRNA expression and epigenetic modifi-
cations at a global scale (unpublished data). Hence, our
BubbleGUM software should considerably facilitate inte-
grative analysis of Omics data in many research areas.

Availability and requirements
Project Name: BubbleGUM
Project home page: http://www.ciml.univ-mrs.fr/appli

cations/BubbleGUM/index.html

Fig. 4 No correlation between the murine cell-specific signatures and the transcriptome of human neutrophils. The BubbleMap of human neutrophils
compared to other human immune cell types, using the murine cell-specific signatures, does not reveal any consistent enrichment pattern
that is systematically enriched in the neutrophils

Spinelli et al. BMC Genomics  (2015) 16:814 Page 9 of 11

http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html
http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html


Operating system(s): Linux, Mac, Windows
Programming language: Java
Other requirements: Java 7.x (or Java 1.7.x for Linux)

or higher (64-bit); a minimum of 4GB of dedicated
RAM memory.
License: European Union Public Licence (1.1)
Any restrictions to use by non-academics: written

permission from the authors needed.

Additional files

Additional file 1: It provides technical information about the
methods used in BubbleGUM and is complementary with the online
User Guide (http://www.ciml.univ-mrs.fr/applications/BubbleGUM/
index.html) which is dedicated to provide practical description of
the tool. (PDF 1362 kb)

Additional file 2: List of the transcriptomic fingerprints for murine
splenic immune cell types. (XLSX 317 kb)

Additional file 3: Table S1. Computational cost of BubbleMap.
(DOCX 15 kb)

Abbreviations
GSEA: Gene Set Enrichment Analysis; BubbleGUM: Bubble GSEA Unlimited
Map; MSigDB: Molecular Signature Database; SMD: Stanford Microarray
Database; cDC: conventional dendritic cells; pDC: plasmacytoïd dendritic
cells; NK: Natural Killer cells; FDR: False Discovery Rate; RMA: Robust
MultiChip Average.

Competing interests
None declared.

Authors’ contributions
TPVM directed the project. LS developed BubbleGUM with inputs from SC
and FMS. LS and TPVM wrote the user guide. LS, MD and TPVM wrote the
manuscript. MD and TPVM designed the case study. All authors have read
and approved the manuscript.

Acknowledgements
We thank the GSEA team for allowing us to use their code, as well as A.
Baudot, E. Pollet, R. Chelbi, M. Masse and A. Fries for fruitful discussions
and/or intensive tests or feedbacks. This work was supported by the
European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007–2013 Grant Agreement number 281225
to MD for the SystemsDendritic project). SC is partly funded by ANR grant
n° ANR-11-DPBS-0002.

Author details
1Centre d’Immunologie, de Marseille-Luminy, Aix Marseille University UM2,
Inserm, U1104, CNRS UMR7280, F-13288, Marseille Cedex 09, France.
2Mi-mAbs (C/O CIML), F-13009, Marseille, France.

Received: 26 March 2015 Accepted: 7 October 2015

References
1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,

et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A.
2005;102(43):15545–50.

2. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop
application for Gene Set Enrichment Analysis. Bioinformatics.
2007;23(23):3251–3.

3. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P,
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics.
2011;27(12):1739–40.

4. Liberzon A. A description of the Molecular Signatures Database (MSigDB)
Web site. Methods Mol Biol. 2014;1150:153–60.

5. Hubble J, Demeter J, Jin H, Mao M, Nitzberg M, Reddy TB, et al.
Implementation of GenePattern within the Stanford Microarray Database.
Nucleic Acids Res. 2009;37(Database issue):D898–901.

6. Efron B, Tibshirani R. On Testing the Significance of Sets of Genes. Ann
Appl Stat. 2007;1(1):107–29.

7. Suarez-Farinas M, Arbeit R, Jiang W, Ortenzio FS, Sullivan T, Krueger JG.
Suppression of molecular inflammatory pathways by Toll-like receptor 7,
8, and 9 antagonists in a model of IL-23-induced skin inflammation. PLoS
One. 2013;8(12):e84634.

8. Beltrame L, Rizzetto L, Paola R, Rocca-Serra P, Gambineri L, Battaglia C, et al.
Using pathway signatures as means of identifying similarities among
microarray experiments. PLoS One. 2009;4(1):e4128.

9. Chaussabel D, Baldwin N. Democratizing systems immunology with modular
transcriptional repertoire analyses. Nat Rev Immunol. 2014;14(4):271–80.

10. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al.
PGC-1alpha-responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

11. Raddatz BB, Hansmann F, Spitzbarth I, Kalkuhl A, Deschl U, Baumgartner W,
et al. Transcriptomic meta-analysis of multiple sclerosis and its experimental
models. PLoS One. 2014;9(1):e86643.

12. Shi Z, Derow CK, Zhang B. Co-expression module analysis reveals biological
processes, genomic gain, and regulatory mechanisms associated with
breast cancer progression. BMC Syst Biol. 2010;4:74.

13. Wong DJ, Chang HY. Learning more from microarrays: insights from
modules and networks. J Invest Dermatol. 2005;125(2):175–82.

14. Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, et al.
Comparative genomics as a tool to reveal functional equivalences between
human and mouse dendritic cell subsets. Immunol Rev. 2010;234(1):177–98.

15. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, et al. The XC
chemokine receptor 1 is a conserved selective marker of mammalian cells
homologous to mouse CD8alpha + dendritic cells. J Exp Med.
2010;207(6):1283–92.

16. Gentile LF, Nacionales DC, Lopez MC, Vanzant E, Cuenca A, Cuenca AG,
et al. A better understanding of why murine models of trauma do not
recapitulate the human syndrome. Crit Care Med. 2014;42(6):1406–13.

17. Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of psoriasis. Annu
Rev Immunol. 2014;32:227–55.

18. Messaris E, Sun S. Genetic correlations between murine and human trauma:
time to focus only on highly selected genetic pathways. Crit Care Med.
2014;42(6):1552–3.

19. O’Garra A. Systems approach to understand the immune response in
tuberculosis: an iterative process between mouse models and human
disease. Cold Spring Harb Symp Quant Biol. 2013;78:173–7.

20. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al.
Genomic responses in mouse models poorly mimic human inflammatory
diseases. Proc Natl Acad Sci U S A. 2013;110(9):3507–12.

21. Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic
human inflammatory diseases. Proc Natl Acad Sci U S A. 2015;112(4):1167–72.

22. Baranek T, Manh TP, Alexandre Y, Maqbool MA, Cabeza JZ, Tomasello E,
et al. Differential responses of immune cells to type I interferon contribute
to host resistance to viral infection. Cell Host Microbe. 2012;12(4):571–84.

23. Chiricozzi A, Nograles KE, Johnson-Huang LM, Fuentes-Duculan J,
Cardinale I, Bonifacio KM, et al. IL-17 induces an expanded range of
downstream genes in reconstituted human epidermis model. PLoS One.
2014;9(2):e90284.

24. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human
tissues contain CD141hi cross-presenting dendritic cells with functional
homology to mouse CD103+ nonlymphoid dendritic cells. Immunity.
2012;37(1):60–73.

25. McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E, et al. Human
dermal CD14(+) cells are a transient population of monocyte-derived
macrophages. Immunity. 2014;41(3):465–77.

26. Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A,
et al. Human inflammatory dendritic cells induce Th17 cell differentiation.
Immunity. 2013;38(2):336–48.

27. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D,
Malosse C, et al. Origins and functional specialization of macrophages and
of conventional and monocyte-derived dendritic cells in mouse skin.
Immunity. 2013;39(5):925–38.

Spinelli et al. BMC Genomics  (2015) 16:814 Page 10 of 11

dx.doi.org/10.1186/s12864-015-2012-4
http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html
http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html
dx.doi.org/10.1186/s12864-015-2012-4
dx.doi.org/10.1186/s12864-015-2012-4


28. Vu Manh TP, Marty H, Sibille P, Le Vern Y, Kaspers B, Dalod M, et al.
Existence of conventional dendritic cells in Gallus gallus revealed by
comparative gene expression profiling. J Immunol. 2014;192(10):4510–7.

29. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, et al.
Novel insights into the relationships between dendritic cell subsets in
human and mouse revealed by genome-wide expression profiling.
Genome Biol. 2008;9(1):R17.

30. Du X, Tang Y, Xu H, Lit L, Walker W, Ashwood P, et al. Genomic profiles for
human peripheral blood T cells, B cells, natural killer cells, monocytes, and
polymorphonuclear cells: comparisons to ischemic stroke, migraine, and
Tourette syndrome. Genomics. 2006;87(6):693–703.

31. Lindstedt M, Lundberg K, Borrebaeck CA. Gene family clustering identifies
functionally associated subsets of human in vivo blood and tonsillar
dendritic cells. J Immunol. 2005;175(8):4839–46.

32. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, et al. NCBI
GEO: mining millions of expression profiles–database and tools. Nucleic
Acids Res. 2005;33(Database issue):D562–566.

33. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.
Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol. 2004;5(10):R80.

34. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.
Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics. 2003;4(2):249–64.

35. Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, et al.
ArrayExpress update–trends in database growth and links to data analysis
tools. Nucleic Acids Res. 2013;41(Database issue):D987–990.

36. Phipson B, Smyth GK. Permutation P-values Should Never Be Zero:
Calculating Exact P-values When Permutations Are Randomly Drawn. Stat
Appl Genet Mol. 2010;9(1):Article39.

37. Hochberg Y, Benjamini Y. More powerful procedures for multiple
significance testing. Statistics in Medicine. 1990;9(7):811–8.

38. Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes
using false discovery rate controlling procedures. Bioinformatics.
2003;19(3):368–75.

39. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free,
open-source system for microarray data management and analysis.
Biotechniques. 2003;34(2):374–8.

40. Arendt D. The evolution of cell types in animals: emerging principles from
molecular studies. Nature Reviews Genetics. 2008;9(11):868–82.

41. Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, et al. Loss of
Pax5 promotes plasma cell differentiation. Immunity. 2006;24(3):283–93.

42. Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, et al. BioMart
Central Portal: an open database network for the biological community.
Database (Oxford). 2011;2011:bar041.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Spinelli et al. BMC Genomics  (2015) 16:814 Page 11 of 11


	Abstract
	Background
	Result
	Conclusions

	Background
	Methods
	Expression data
	Murine expression data
	Human expression data
	Statistical computation of the signature genes by GeneSign
	Correction of multiple testing in the significance of the enrichments in the BubbleMaps

	Implementation
	GeneSign: Generating phenotype signatures from a microarray-based expression dataset
	BubbleMap: Performing multiple GSEA and displaying enrichment patterns

	Results and discussion
	Generation of transcriptomic fingerprints specific for murine immune cell types
	Assessing enrichments of the murine immune cell �type-specific transcriptomic fingerprints on expression data from human immune cell types

	Conclusion
	Availability and requirements
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



