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We compare three alternative methods for eliciting retrospective confidence in the
context of a simple perceptual task: the Simple Confidence Rating (a direct report on a
numerical scale), the Quadratic Scoring Rule (a post-wagering procedure), and the Matching
Probability (MP; a generalization of the no-loss gambling method). We systematically
compare the results obtained with these three rules to the theoretical confidence levels
that can be inferred from performance in the perceptual task using Signal DetectionTheory
(SDT). We find that the MP provides better results in that respect. We conclude that MP is
particularly well suited for studies of confidence that use SDT as a theoretical framework.
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INTRODUCTION
Humans and animals are able to retrospectively evaluate whether
they have or have not made the right decision (e.g., in per-
ceptual, learning, or memory tasks). This metacognitive ability
plays an important role in learning and planning future decisions
(Dunlosky and Metcalfe, 2008). For instance, humans are not only
able to decide whether a visual stimulus did appear or not, but also
to say how confident they are in their answer. Such retrospective
judgements are often labeled “Type 2 tasks,” as opposed to “Type 1
tasks” which consist of discriminating between perceptual stimuli.
In the last few years, considerable progresses had been made in
the understanding of behavioral (Smith et al., 2003) and neuronal
(Fleming and Dolan, 2012) properties of retrospective confidence.
These progressions, rely to a large extent, on the revival of what
is known as “Type 2 signal detection analyses” (Clarke et al., 1959;
Green and Swets, 1966; Galvin et al., 2003; Maniscalco and Lau,
2012).

Since Green and Swets’s (1966) classical book, Signal Detec-
tion Theory (SDT) has been routinely and successfully used in
experimental psychology to study simple perceptual decisions. It
is postulated that decisions are computed by sensory systems on
the basis of noisy signals. The Type 1 task thus reduces to deciding,
on the basis of the observation of a signal and some random noise
(on some internal axis), whether this observation is due to noise
or to the presence of the stimulus.

In the most typical case, it can be shown that the optimal
strategy (in the sense of maximizing the likelihood of giving
a correct answer) for the subject consists in reporting that the
stimulus is present whenever her internal signal is greater than a

given threshold. This model thus allows the value of the (non-
observable) internal signal used by individuals to make their
decisions to be deduced from the observation of their choices.

This reasoning can be pushed one step further to infer con-
fidence, defined as the probability of having made the correct
decision (Clarke et al., 1959; Galvin et al., 2003). Indeed, the prob-
ability of having made the correct decision can be computed from
the value of the perceived signal, through Bayes’ formula. Let us
call this model the SDT2 model. A crucial feature of this model is
that it allows predictions of retrospective confidence levels based
on the observation of Type 1 decisions. This makes it possible,
for instance, to measure individuals’ ability to make retrospective
confidence judgments by comparing their actual confidence to that
predicted by the model (Galvin et al., 2003; Maniscalco and Lau,
2012). Thus, while Type I analyses allow objective performance
in perceptual tasks to be assessed, Type II analyses can be used to
measure the accuracy of retrospective confidence (see “SDT for
Perceptual Tasks” and “SDT for Confidence” below for a more
detailed exposition of these models). It is not entirely obvious,
however, how confidence judgments should be elicited exper-
imentally. Indeed, experimental studies of consciousness have
shown that different methods for eliciting confidence yield dif-
ferent results (Overgaard and Sandberg, 2012)1. Thus, the choice
of the elicitation method matters. Hence we ask the following
question: what is the best way to measure confidence, if we want to
measure the sort of confidence described by the SDT2 model? The

1The question whether confidence ratings are appropriate measures of conscious-
ness is hotly debated in and of itself (Sandberg et al., 2010).
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methods that have been used and discussed in previous studies
are of three sorts. The simplest method consists in asking indi-
vidual to explicitly report their confidence (Simple Confidence
Rating, SCR; see Dienes, 2007). A more sophisticated approach,
designed to provide individuals incentives to report their “true”
confidence, consists in measuring their willingness to bet on the
quality of their answer (post-decision wagering procedure; see Per-
saud et al., 2007). Finally, a third approach consists in measuring
individuals’ willingness to trade a gamble based on the correctness
of their answer against a lottery with known probabilities (no-loss
gambling; see Dienes and Seth, 2010). The aim of this study is to
compare confidence judgments elicited with three different rules
that belong to each of these categories with the predictions of the
SDT2 model.

Interestingly, the data collected with these different methods
can be analyzed with the same tools. Using Type 2 SDT, one can for
instance quantify the sensitivity of the Type 2 judgments by means
of a Type 2 receiver operating characteristics (ROC) curve. The
Type 2 ROC curve is obtained by using confidence to classify trials
into successes and errors, and then reporting the corresponding
hits (i.e., trials correctly classified as a success) and false alarm (i.e.,
trials erroneously classified as errors) rates. The ROC curve can
be used to compute the area under Type 2 ROC curve (AU2ROC),
which can be interpreted as follows. Consider a situation in which
trials are already correctly classified into two groups (success and
failure) and randomly pick a pair of trials, one from each group.
The probability that the trial with the higher confidence comes
from the success group is equal to the AU2ROC. If an elicita-
tion rule leads individuals to report confidence levels in line with
the SDT2 model, then subjects should report confidence levels
close to those predicted by SDT. Therefore, the distribution of
elicited confidence and the elicited Type 2 ROC should be close
to that predicted by SDT. Moreover, elicited Type 2 ROC could
never be better than the one predicted, i.e., the elicited AU2ROC
should not be greater than the one predicted. Indeed, predicted
confidence levels are those of a perfect Bayesian observer, and the
subject could therefore not do better (provided the SDT2 model
holds, naturally). Furthermore, if a subject is a good (respectively,
bad) assessor of her own confidence, then both the distribution
of elicited confidence and the Type 2 ROC should be close to
(respectively, distant from) the predicted ones. Thus, distances
to predicted distribution of confidence and predicted AU2ROC
should be positively correlated. Finally, because confidence and the
perceptual task are based on the same signals one should observe
a positive correlation between performance in the perceptual task
and elicited AU2ROC. Studies in humans (Maniscalco and Lau,
2012), rhesus monkeys (Kiani and Shalden, 2009) and rats (Kepecs
et al., 2008) indeed found such a relationship, although it has also
been shown that, in some circumstances (e.g., subliminal stimuli)
Type 1 and Type 2 performances might be disconnected (see, e.g.,
Kanai et al., 2010; Scott et al., 2014).

We summarize these predictions for future reference. An
elicitation rule of confidence in line with the SDT2 model should
provide:

- Prediction 1: an elicited confidence close to that predicted by
SDT2 model;

- Prediction 2: an elicited AU2ROC close to the predicted one;
- Prediction 3: an elicited AU2ROC not greater than the predicted

one;
- Prediction 4: the closer the elicited confidence distribution is

to the predicted confidence distribution, the closer the elicited
AU2ROC is to the predicted one;

- Prediction 5: a positive correlation between performance in
perceptual task and elicited AU2ROC.

MATERIALS AND METHODS
ELICITATION RULES
The main objective of our experiment is to compare three elici-
tation rules (see Figure 1): the SCR, the Quadratic Scoring Rule
(QSR), and the Matching Probability (MP). The SCR is a direct
report on a numerical scale. The QSR is a fine-grained version of
the post-wagering procedure. The MP is a multi-level extension of
the no-loss gambling method proposed by Dienes and Seth (2010).
This section is devoted to the presentation of these rules, discus-
sion of their main theoretical properties, and the presentation of
their experimental implementation.

Simple Confidence Rating
The SCR rule just requires the subject to report her confidence on
a numerical scale, without any monetary consequence. Nothing is
done to provide incentives. The main advantage of such a rule is
of course its simplicity.

We implement the SCR as follows. Subjects have to choose
a level of confidence between 0 and 100 (with steps of 5) on

FIGURE 1 | Elicitation mechanisms for confidence judgments.

(A) Represents the Simple Confidence Rating (SCR), (B) the Quadratic
Scoring Rule (QSR), and (C) the mechanism of the Matching Probability
(MP).
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a scale (see Figure 1A). They are told they are free to use the
scale as they want, either by trying to express their confidence
level in terms of chance percentages or simply by being consis-
tent in their report with small values for low confidence and high
values for high confidence. Payments are independent of elicited
probabilities.

Quadratic Scoring Rule
The SCR is straightforward and easy to use. Yet, it had been argued
that it could yield biased reports, as individuals have no incentive
to reveal their “true” confidence, which might require an effort.
It has thus been proposed to use an indirect method, called post-
decision wagering, based on individual willingness to bet on the
quality of their answers (Persaud et al., 2007). For instance, after
having made her Type 1 decision, the subject is asked whether
she is ready to bet €10, €20, or €50 on being right. The idea is
that subjects will choose higher stakes when their confidence is
higher. Such a method provides incentives, and can be used for
non-humans (Middlebrooks and Sommer, 2011).

The QSR has been introduced in the 1950’s (Brier, 1950) and is
extensively used in experimental economics (Nyarko and Schot-
ter, 2002; Palfrey and Wang, 2009) and meteorology (Palmer and
Hagedorn, 2006) among others. It is a generalization of the Post-
Decision Wagering described above. Assume a subject reports a
confidence level equal to p. She will then win a−b(1−p2) € if
her answer is accurate, and a−b (1−(1−p)2) € otherwise, where
a and b are positive constants. The QSR, like the Post-Wagering
Method, provides incentives to reveal ones’ true confidence (see
Gneiting and Raftery, 2007, for a review of proper scoring
rules).

In our experiment, QSR is implemented as follows. We
ask subjects to choose among different levels of remunerations
(Figure 1B). Each letter corresponds to a payment scheme (x, y),
that yields x if their answer is correct and y otherwise. These pay-
ments are generated using a QSR with parameters a =b = 10, and
a 0.05 step (i.e., A corresponds to p = 1, B corresponds to p = 0.95
and so on). If, for instance, the subject enters K, she will obtain a
sure payment of 7.5, which is the optimal choice if she maximizes
her expected income and believes that she has an equal probability
of being correct or not. The unit used for payments are euro cents.
Note that there is no explicit reference to probabilities in this pro-
cedure. Subjects are not told that payment schemes are linked to
confidence levels.

Matching probability
Post-decision wagering in general and QSR in particular, could
lead to erroneous measures, insofar as variations in confidence
measured by such method could to some extent reveal hetero-
geneity in attitude towards risk or loss, and not in confidence
(see Offerman et al., 2009 and Dienes and Seth, 2010). Dienes and
Seth (2010) proposed a method, called “no-loss gambling,” that
provides incentive and is immune to risk aversion. It consists in
asking individuals whether they prefer to be paid according to the
correctness of their answer or according to a specified lottery. For
instance, individuals are asked whether they prefer to receive €10
in case of success and get nothing otherwise, or to toss a coin and
receive €10 if it turns Heads and nothing otherwise. The idea here

is that if a subject prefers to be paid according to the correctness
of her answer, it indicates that her confidence in her decision is
higher than 50%.

The matching probability (MP) is a variant of the Becker-
DeGroot-Marshak mechanism (Becker et al., 1964), and gener-
alizes the no loss gambling method proposed by Dienes and
Seth (2010). To elicit a subject’s subjective probability about an
event E, the subject is asked to provide the probability p that
makes her indifferent between a lottery L(E) that gives a posi-
tive reward x if E happens, and 0 otherwise and a lottery L(p) that
yields a positive reward x with probability p, and 0 with proba-
bility (1–p). A random number q is then drawn in the interval
[0,1]. If q is smaller than p, the subject is paid according to the
lottery L(E). Otherwise, the subject is paid according to a lot-
tery L(q) that yields x with probability q and 0 with probability
(1–q).

The no-loss gambling method proposed by Dienes and Seth
(2010) is a particular case of the MP. Dienes and Seth (2010) were
interested in deciding whether subject’s confidence is equal to, or
higher than, 50%. The method they propose essentially works as
follows. If the subject provides a probability higher than 50%,
she is paid according to her answer within the Type 1 task. If
she reports a probability equal or smaller than 50%, she is paid
according to a 50–50 lottery. This corresponds exactly to the MP
under the following two conditions: (i) the subject can only report
two confidence levels: “low” (i.e., 50% or below) or “high” (i.e.,
higher than 50%), and (ii) q is fixed at 0.5 such that the lottery
L(q) has a 50% chance of reward. In the general case, q needs to
be random to prevent subjects overstating their confidence. This
is not needed in the no-loss gambling method as it only allows
binary answers.

The MP procedure provides incentives for subjects to reveal
their subjective probability truthfully. To make this clear, suppose
that the subject thinks her probability of success is p but reports a
probability r �= p. First consider the case where r < p. The lotteries
according to which the subject (given her subjective probability p)
is paid are represented in the following Table 1, as a function of
the random value q.

Note that whenever r < q < p, L(p) yields a higher payment than
L(q). Thus, the subject’s expected payoff is higher when reporting
p than when reporting r < p.

Similarly, assume that the subject reports r > p. Her payments
(according to her subjective probability p) are described in the
following Table 2.

Note that whenever p < q < r, L(q) yields a higher payment than
L(p). Thus, the subject’s expected payoff is higher when reporting
p than when reporting r > p.

A major advantage of the MP is that it provides the sub-
ject incentives to reveal her subjective probabilities truthfully,

Table 1 | Incentives of the MP against an unde-report of confidence.

q < r < p r < q < p r < p < q

Reports r < p L(p) L(q) L(q)

Reports p L(p) L(p) L(q)
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Table 2 | Incentives of the MP against an over-report of confidence.

q < p < r p < q < r p < r < q

Reports r > p L(p) L(p) L(q)

Reports p L(p) L(q) L(q)

while not being contaminated by her attitude towards risk (see
Dienes and Seth, 2010). The MP mechanism might seem com-
plicated. It is thus of interest to investigate whether individuals
are able to efficiently use it. As we will see, such is actually the
case.

In practice the MP is implemented using a scale of 0–100, with
steps of 5 (see Figure 1C). After having completed the perceptual
task, subjects are told that they are entitled to a ticket for a lottery
based on their answers’ accuracy. This lottery gives them €0.10
if their answer is correct, and 0 otherwise. Subjects have then
to report on a scale ranging from 0–100 the minimal percentage
of chance p they require to accept in an exchange between their
lottery ticket and a lottery ticket that gives p chances of winning
€0.10. A number l1 is drawn according to a uniform distribution
between 40 and 100. If l1 is smaller than p, subjects keep their
initial lottery ticket. If l1 is higher than p, they are paid according
to a lottery that gives them l1 chances of winning. In this case, a
random draw determines the payment: a number l2 is determined
using a uniform distribution between 0 and 100, the lottery leads
to a win if l1 is higher than l2.

EXPERIMENTAL PROCEDURE
Participants
The experiment took place in June and October 2009 at the
Laboratory of Experimental Economics in Paris (LEEP). One hun-
dred and thirteen subjects were recruited using ORSEE (Online
Recruitment System for Experimental Economics) and the LEEP’s
database. They were students from all fields. Participants were
tested in groups of 15–20 at once. We ran two sessions for each
rule, resulting in 35–40 subjects for each rule2. In each ses-
sion, subjects were randomly affected to a workstation and they
answer anonymously to several demographic questions (age, sex,
domain of study) at the beginning of the experiment. There
was no matching between the data collected anonymously dur-
ing the experiment and the information contained in the LEEP’s
database. We received from the LEEP only the experimental data.
Because no nominative information was collected and no medical
or physical act was involved, under French regulatory ethics no
approval by an IRB was needed3. We just asked subjects to pro-
vide a written informed consent. Subjects were informed that the
experiment was fully anonymous and will be only used for the
purposes of scientific research. The experiments last for about
90 min and they were paid on a performance basis (€19 on
average).

2These experiments were part of Sébastien Massoni’s Master’s thesis (see Massoni,
2009).
3Note that all authors worked at the University of Paris 1 during the collection of
the data.

Stimuli
This computer-based experiment uses MATLAB with the Psy-
chophysics Toolbox version 3 (Brainard, 1997) and was conducted
on computers with 1024 × 768 screens.

The perceptual task we use is a two-alternative forced choice,
which is known to be a convenient paradigm for SDT analysis (see,
e.g., Bogacz et al., 2006). Subjects have to compare the number of
dots contained in two circles (see Figure 2A).

First two outline circles are displayed with fixation crosses at
their center. The subjects initiate the trial by pressing the “space”
key on standard computer keyboard. The two circles (diameter
5.1◦) appears immediately at eccentricities of ±8.9◦ with variable
number of dots (diameter 0.4◦) displayed inside the circles for
700 ms overall. Subjects have to tell which circle contains the higher
number of dots without a time limit. They are asked to respond left
or right by pressing the “f” or “j” keys, respectively. We allow the
difficulty of the task to vary, by changing the spread of the number
of dots between the two circles. One of the two circles always con-
tains 50 dots. Its position (to the left or the right of the screen) is
randomly chosen for each trial. The other circle contains 50 ± αj

dots, where αj is randomly chosen for each trial in the set {α0, α1,
α2, α3, α4}; for all subjects, α0 = 0 and α4 = 25. The intermediate
difficulty levels are adapted to each participant, in order to control
for differences in individual abilities. During a training part of
the experiment, α2 is adjusted so that the subject succeeds in 71%
of the cases at that level of difficulty. This calibration is done by
using a one-up two-down psychophysics staircase with 30 reversals
(Levitt, 1971). The two other parameters α1 and α2 are then given
by α3 = 2.α2 and α1 = α2/2 if α2 is even, and α1 = (α2 + 1)/2 if
α2 is odd. The subjects are aware that there is an equal prob-
ability for each circle to be the one with the largest number
of dots.

This task was completed by a quiz with questions related to
logic and general knowledge that is not used in the present study.

Procedure
In a given experimental session, a single elicitation rule (the same
for all subjects) is used. Thus, our study is based on a between-
subjects analysis with a simple 3 × 1 design4. After presentation of
the instructions (that include a detailed presentation of the elici-
tation rule with explanations of the underlying mechanisms and
various examples of ratings strategies5) and a short questionnaire,
the experiment is divided in three parts.

In the first part of the experiment, subjects have to answer a
randomly chosen quiz (logic or general knowledge) and to provide
their confidence for each answer. They are given no feedback on
their answers.

During the second part of the experiment, subjects have to
perform the perceptual task. They begin with a training phase
during which the difficulty of the task is calibrated. Confidence is
not elicited during this first phase, and they get feedback on their

4Pilot experiments have shown that subjects get confused when asked to use different
elicitation rules in the same experimental session.
5Note that the scales can be used on a full scale basis (0–100) but we explain during
the instructions that the incentives are based on half scale (50–100) except in the
case of error detection. In practice levels of confidence under 50% are scarce (2.37%
overall).
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FIGURE 2 | SDT framework. (A) Presents an example of stimuli used for the task and details how the visual signal are coded by SDT. (B) Defines the optimal
criterion of the type 1 decision, while (C) extends SDT to type 2 decision with the computation of confidence.

success after each trial. Subjects then perform overall 100 trials of
the perceptual task (20 trials by difficulty levels with randomized
order), and provide their confidence in their answer for each trial.
Both answers are done without a time constraint. They get feed-
back on their success in the task and the accuracy of their reported
confidence. Furthermore, for every 10 trials, subjects receive a
summary of their performance in the last ten trials in terms of
success rate and cumulated gains.

The last part of the experiment is similar to the first one, except
that subjects have to answer the quiz that has not been selected in
the first part.

At the end of the experiment, participants receive their pay-
ments. There is a show-up fee of €5. Subjects are paid for each
trial. For groups using the QSR or the matching probability, each
100 trials of the perceptual task is rewarded according to the elicita-
tion rule used, with a maximum payment of €0.10 and a minimum
of €0. Subjects in the group using the SCR are paid €0.10 for each
correct answer. Subjects are also paid for the quiz task, but this
payment is completely independent.

ANALYSIS
SDT for perceptual tasks
Since Green and Swets’s (1966) classical book, SDT has been
routinely and successfully used in experimental psychology to
study individual decisions in perceptual tasks. Let us apply it to

simple perception we used in our experiment (see Stimuli). The
two circles are only displayed for a short fraction of time, 700 ms,
so that it is not possible to count the dots. However, the subject is
aware that a circle can only contain 54 or 50 dots, and that there is
an equal probability for each circle to be the one with the largest
number of dots.

It is postulated that stimuli are perceived as noisy signals by
the sensory system. Here, we are interested in the numerosity of
the circles, i.e., the number of dots they contain. It is assumed
that, when presented with a circle that contains x dots, the sensory
system actually observes the realization x̂ of a random signal X(x,
σi) that is distributed according to a Gaussian law, with mean ln(x)
and variance σi

2, where σi is a parameter describing the degree
of precision of the internal representation of numerosity in the
brain (see Nieder and Miller (2004), Piazza et al. (2004), Pica et al.
(2004), and Nieder (2005) for behavioral, neurophysiological, and
neuroimaging justifications of this model, and in particular for
the use of a logarithmic scale). When observing two circles with
respectively xL and xR dots (where L and R stand for left and right,
respectively), the subject thus actually observes the realizations
x̂R and x̂L of two random signals X(xR, σi) and X(xL, σi) (see
Figure 2A). Because the subject has to decide which circle contains
the largest number of dots, the relevant information is actually
the difference between the two signals. We thus assume that, when
presented with the circles and asked which one contains the largest
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number of dots, the subject’s decision is based on a noisy signal
Y(xR,xL) = X(xR, σi) – X(xL, σi) (Y thus also depends on σi, but
we omit this variable for notational simplicity). For a given trial,
the subject thus perceives a signal ŷ and has to decide whether it
has been generated by Y (54,50; i.e., there are 54 dots in the right
circle, and 50 in the left one), or by Y (50,54; i.e., there are 50 dots
in the right circle, and 54 in the left one). Let f (y|xR′xL) be the
density function of Y conditional to X(xR, σi) and X(xL, σi). Since
she is aware that there is an equal chance for any circle to be the
one containing the largest number of dots, her optimal strategy
(in the sense of Neyman-Pearson) is based on the likelihood ratio
and consists in answering “Right” whenever ŷ ≥ 0, and “Left”
otherwise (see Figure 2B; Green and Swets, 1966).

SDT for confidence
The Bayesian reasoning can be pushed further (see Galvin et al.,
2003; Fleming and Dolan, 2010; Rounis et al., 2010; Maniscalco
and Lau, 2012; Barett et al., 2013) to model how subjects make
confidence judgments in terms of probabilities about their deci-
sions in a perceptual task. Such judgments are known as “Type 2
tasks” (Clarke et al., 1959; Pollack, 1959), as opposed to “Type 1
tasks” which consist of discriminating between perceptual stim-
uli. Consider a trial where the subject perceives a positive signal
ŷ, and therefore answers “Right.” Based on the SDT model pre-
sented above, one can easily deduce the probability that she gives
the correct answer. According to the Bayes rule, it is equal to

P(Y (54, 50)|ŷ) = f (ŷ|Y (54,50))

f (ŷ|Y (54,50))+f (ŷ|Y (50,54))
(see Figure 2C). This

confidence based on signal detection will be called SD-confidence
(where “SD” stands for “Signal Detection”) in the sequel.

Since we control for the difficulty levels of the stimuli used in the
perceptual task, we can use SDT to estimate subjects’ perceptual
sensitivity from behavioral data (i.e., using success rates). This
leads to an estimation of the distribution of the internal signal
used by the subject when performing the perceptual task. With
this in hand, the SDT model provides precise predictions about
the SD-confidence levels of an ideal (i.e., optimal and Bayesian)
observer who receives the same internal signals as the subject.
First we can compute the distribution of SD-confidence. Indeed,
SDT predicts the SD-confidence level associated to each level of
the internal signal (Figure 2C). It also provides the probability to
reach any confidence level. Given a probability p, ŷp is such that
P(Y (54, 50)|ŷp) = p. The probability of observing a confidence
level above p is

∫ ∞
ŷp

(0.5.f (ŷ|Y (54, 50)) + 0.5.f (ŷ|Y (50, 54)))dŷ. In

our experiment where the confidence scale is discrete with 5%
increments, we can thus deduce the probability distribution of
SD-confidence (Figure 3A).

One drawback of the distribution of SD-confidence is that
it does not keep track of the trial-by-trial relationship between
SD-confidence and success in the perceptual task. This link can
be represented by a ROC curve (Green and Swets, 1966). Con-
sider a given level of SD-confidence, say 70%. Assume that one
uses this confidence level to decide whether the answer was cor-
rect or not. Thus, all trials for which the SD-confidence is higher
than 70% will be classified as correct, whereas the others will be
classified as incorrect. This classification is of course imperfect.
But we can compute the false alarm rate (i.e., the proportion of

trials that would be wrongly classified as correct) and the hit rate
(i.e., the proportion of trials that would be correctly classified
as correct). Thus, for each SD-confidence level, we can associate
a point on a graph with hit rates on the vertical axis, and false
alarm rates on the horizontal axis. The curve that relates all the
points obtained by varying the SD-confidence level is the type
2 ROC curve. To measure how accurate confidence is predictive
of success, one usually computes the area under this ROC curve
(AU2ROC) which has the following statistical meaning. Consider
a situation in which trials are already correctly classified into two
groups (success and failure) and randomly pick a pair of trials,
one from each group. The probability that the trial with the
higher confidence comes from the success group is equal to the
AU2ROC.

The above analysis can be readily extended to the case where
the task difficulty varies across trials, as is the case in our experi-
ment, by assuming that the ideal observer has correct priors about
the distribution of difficulty levels. To illustrate this method, we
computed the distribution of elicited confidence and predicted
SD-confidence (Figure 3B) for a subject in our experiment. It
can be observed that the data fits SDT predictions nicely. We also
computed, for the same subject, the observed and predicted Type
2 ROC curve (Figure 3C). The predicted AU2ROC is equal to 0.75,
which is very close to the observed AU2ROC (equal to 0.72). Note
that the shape of confidence distribution for this subject differs
from that shown in Figure 3A. This is due to the fact that Figure 3A
has been drawn under the assumption of a unique difficulty level,
while predicted SD confidence and Type 2 ROC in Figure 3 have
been computed using the actual distribution of difficulty levels in
our experiment.

Statistical tools
The relationships between different measures were analyzed with
Pearson’s product-moment correlations. Comparisons of their
means were conducted using paired t-tests. Multiple compar-
isons of means were based on post hoc tests after one-way
ANOVA. We used Fisher-Hayter pairwise comparison as this
method handles well unequal cell sizes and provides a powerful
test based on studentized range distribution. Comparisons of cor-
relations were based on Fisher’s z transformation tests. We use
two goodness-of-fit tests: the Chi-Square test, that measures the
distance between empirical and predicted density functions, the
Kolmogorov–Smirnov test, which measures the distance between
empirical and predicted cumulative distribution functions (see
Zar, 2010).

Finally, in order to measure the distances between observed
and predicted distributions of confidence we construct a measure,
called below ROC_distance, as follows:

ROC distance =|Predicted AU2ROC − Observed AU2ROC|
Predicted AU2ROC − 0.5

This measure captures the percentage of change of observed
metacognitive performances relative to the predicted one. We
use it to measure the relationship between the distances of con-
fidence distributions and AU2ROC for observed and predicted
confidence.
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FIGURE 3 | Predictions of confidence. (A) is the predicted distribution of SD-confidence. (B,C) are respectively the observed and predicted confidence
distribution and AU2ROC for a specific subject.

RESULTS
ELICITED CONFIDENCE: DESCRIPTIVE ANALYSIS
We start by presenting some basic facts concerning elicited con-
fidence. First, we observe that while the cumulative distributions
of elicited confidence obtained by the SCR and the MP are sim-
ilar, the one corresponding to the QSR differs substantially (see
Figure 4A). The difference is mainly due to the fact that the confi-
dence levels elicited by the QSR are strongly concentrated on two
values, 50 and 100%. Almost two thirds of elicited probabilities
are either equal to 50% (25.5%) or 100% (39.8%) when the QSR
is used, which is twice as much as for the two other rules (MP:
3.8% on 50% and 22.6% on 100%: SCR: 7.5% on 50% and 25.0%
on 100%).

Let us next examine how the subjects’ stated confidence is
related to their actual success rate (see Figure 4B). An initial
observation is that, whatever the elicitation rule used, subjects are
generally overconfident. Moreover, the difference between stated
confidence and observed success rates increases with stated confi-
dence. If we consider all trials for which subjects reported a 100%
probability of success, we observe an actual success rate of 86.9%

only. On the other hand, low confidence levels (50%) correspond
to actual success rates that are slightly higher than 50% (57.8%).
In terms of guessing criterion only the QSR provides a significant
performance above baseline while reporting 50% of confidence6

(mean 0.5889, SD 0.13, t(30) = 3.5675, P = 0.0013 while the MP
gives a mean 0.5668, SD 0.29, t(29) = 1.2265, P = 0.2302 and
the SCR a mean 0.5325, SD 0.30, t(22) = 0.4932, P = 0.6270).
But we cannot find any significant differences between the mean
performances at 50% of confidence for the three rules (One-
way ANOVA: F(2,81) = 0.32, P = 0.7285). Finally, we note
that none of the elicitation rules provides a strictly increasing
relationship between stated confidence and the actual success
rate.

The QSR and the MP are cognitively demanding and we expect
their performances to increase with practice. Our experiment is
designed so as to offer subjects the opportunity of learning by
using feedback. During the second part of the experiment, the

6Note that some subjects never used the 50% level of confidence: respectively 9, 14,
and 5 for the MP, the SCR and the QSR.
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FIGURE 4 | Stated values of confidence. (A) Shows the cumulative probability distribution of stated confidence levels for the three rules. (B) Represents the
link between stated confidence and mean level of accuracy for the three rules with 95% confidence intervals.

subjects used the elicitation rule with feedback a 100 times. Thus
they could have learnt to use the elicitation rule during this stage.
We can therefore measure learning effects by comparing results
for the first half (first 50 trials) and the second half (50 last trials)
of the perceptual task. Overall we observe a learning effect for
discrimination ability: the AU2ROC is systematically higher in the
second part (mean 0.6573, SD 0.09) than in the first part (mean
0.6729, SD 0.09, t(113) = −1.8472, P = 0.0337). Nevertheless
this learning effect is too weak to be observed at the rule level
(for MP: t(40) = 0.8814, P = 0.1918; for QSR: t(35) = 1.3079,
P = 0.0998; and for SCR: t(38) = 0.9935, P = 0.1635). Since
the increase is quite similar for the three rules, it is possible that
this learning effect reflects more of an increase in metacognitive
abilities than an increase in the understanding of the QSR and
the MP.

Finally we can check whether our paradigm is validated by the
data. We observe that the range of value of α2 (i.e., the number
of dots leading to 71% of accuracy according to the staircase pro-
cedure) goes from 1 to 7 with the following distribution among
subjects: 3 subjects with 1 dot of difference, 29 subjects with 2,
49 subjects with 3, 21 subjects with 4, 9 subjects with 5, 1 subject
with 6, and 1 subject with 7. As expected the mean performances
follow the level of difficulty with a performance not statistically
significant different from the chance for α0 i.e. no difference of
dots between circles (mean 0.5042 SD 0.50, t(113) = 1.8378,
P = 0.0687); an almost perfect accuracy for α4, i.e., 25 dots
of difference (mean 0.9974 SD 0.05); and an increase perfor-
mance for respectively α1 = α2/2, α2 and α3 = 2.α2 (α1: mean
0.5971 SD 0.49; α2: mean 0.6758 SD 0.46; α3: mean 0.8050 SD
0.39)

ELICITED CONFIDENCE AND SDT PREDICTIONS
We now consider to what extent elicitation rules lead individuals
to report confidence levels that are close to those predicted by
the SDT2 model. The first thing we need is to compute predicted
confidence in the perceptual task.

We proceed by examining in turn each of the predictions
1–5 listed at the end of the introduction. Let us start with

prediction 1, which states that elicited confidence should be close
to predicted confidence. An initial answer is provided by com-
paring elicited confidence and predicted confidence distributions.
Figure 5 reports the elicited confidence and predicted confidence
distributions and cumulative distribution for each elicitation rule
(data is pooled across all levels of difficulty and all subjects). The
MP seems to be the rule that leads to the best fit. The SCR is
plagued by the large proportion of elicited confidence levels equal
to 75%, which is the pre-filled value of the scale7. Confidence
levels elicited with the QSR are those that differs the most from
predicted confidence. There is a peak at a 50% confidence level,
which is expected because of risk aversion. But we also observe a
high peak at the 100% value (with 39.9% of the answers), which
cannot be explained by risk aversion, and which does not corre-
spond to predictions of SDT (only 18% of the answer should take
this value according to SDT).

To confirm the visual impression that MP leads to the best
fit between elicited confidence and predicted confidence, we com-
puted the Chi-Square distance between the elicited confidence and
predicted confidence distributions, and the Kolmogorov–Smirnov
(KS) distance between the elicited confidence and predicted con-
fidence cumulative distributions. We report the two distances
for the three rules (with SD in brackets) in Figure 6. One-way
ANOVA shows that there is a difference of distances between
group: Chi-Square distance: F(2,113) = 6.98, P = 0.0014): KS
distance: F(2,113) = 3.13, P = 0.0476). Furthermore Fisher-
Hayter post hoc tests show that the two distances are significantly
lower for the MP (Chi-Square distance: mean 0.5152, SD 0.37;
KS distance: mean 0.3252, SD 0.15) than for the QSR (Chi-
Square distance: mean 0.8621, SD 0.42, FH-test(73) = –4.8182,
P = 0.0001; KS distance: mean 0.4182, SD 0.20, FH-test(73) =
–3.0158, P = 0.04) and the SCR (Chi-Square distance: mean
0.8129, SD 0.52, FH-test(75) = –4.1952, P = 0.003; the

7We do not observe such a result for the MP that is also based on a scale with a
pre-filled level of confidence at 75%. We suspect that this is due to the fact that no
incentive is provided in the SCR, and that this might lead subjects simply not to
make the effort to change this value in many cases. Indeed we observe that 30.8% of
the elicited values are on 75% with the SCR while it is only 14.2% with the MP.
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FIGURE 5 | Observed and predicted distribution and cumulative distribution of confidence. (A,C,E) are respectively the observed and predicted
distribution of confidence for MP, SCR, and QSR while (B,D,F) are the cumulative distribution of confidence for MP, SCR, and QSR.

FIGURE 6 | Distance between confidence distributions. (A) Presents the Kolmogorov–Smirnov distance between the cumulative distribution of stated and
predicted confidence for the three rules. (B) Shows the Chi-Square distance between observed and predicted confidence distribution of the three rules.

KS distance: mean 0.4158, SD 0.22, FH-test(75) = –3.0659,
P = 0.04) while there are no significant differences between
QSR and SCR (Chi-Square distance: FH-test(70) = 0.6713,
P = 0.36; KS distance: FH-test(71) = 0.0150, P = 1.000). We
also found that the two distances are strongly correlated (r = 0.85,
P < 0.00001).

The second prediction states that elicited AU2ROC should be
close to predicted ones. Figures 7A–C displays the corresponding
data for each rule. The correlation between observed and pre-
dicted AU2ROC is positive and statistically significant only for the
MP (Figure 7A, r = 0.36, P = 0.0232) while it is not statistically
significant for the QSR (Figure 7C, r = 0.06, P = 0.7233) and
only marginally significant for the SCR (Figure 7B, r = 0.29,
P = 0.0741). The differences between these coefficients of

correlations are marginally statistically significant for the MP
against the QSR (Fisher-z = 1.31, P = 0.0951) but not against
the SCR (Fisher-z = 0.33, P = 0.3707) and not between the SCR
and the QSR (Fisher-z = 0.98, P = 0.1635).Our third predic-
tion is that observed AU2ROC should not be greater than the
predicted one. This is actually the case for 34 out of 40 subjects
(85%) in the MP group, 28 out of 38 (74%) in the SCR group
and 26 out of 35 (74%) in the QSR group. On average each rule
provides a mean observed AU2ROC lower than the predicted one
(MP: mean –0.0738, SD 0.08, t(40) = –5.8448, P < 0.0001; QSR:
mean = –0.0635, SD 0.08, t(35) = –4.6750, P < 0.0001; SCR:
mean = –0.0629, SD 0.10, t(37) = –3.8229, P = 0.0002).

If elicited confidence corresponds to the confidence predicted
by the SDT2 model, then a good (respectively, bad) elicitation rule
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FIGURE 7 | Correlations between AU2ROC and accuracy. (A–C) Show respectively the correlations between observed and predicted AU2ROC for the three
rules; while (D–F) present respectively the correlations between observed AU2ROC and mean levels of accuracy for the three rules.

should be good (respectively, bad), for both the distribution of
confidence and the type 2 ROC (in the sense of giving results close
to those predicted by SDT). This is our fourth prediction. In other
words, we should observe a positive correlation between the dis-
tances observed and predicted confidence distributions on the one

hand, and the distance between observed and predicted AU2ROC
on the other hand. As an indicator of distance between observed
and predicted AU2ROC we use the variable ROC_distance. The
correlations are positive and significant for the MP (with the Chi-
square distance: r = 0.48, P = 0.0016; with the KS distance:
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r = 0.52, P = 0.0007) and the SCR (with the Chi-square dis-
tance: r = 0.60, P = 0.0001; with the KS distance: r = 0.36,
P = 0.0289). In contrast, the results are less conclusive for the
QSR, for which we observe a correlation between distances mea-
sured by the KS metric (r = 0.49, P = 0.0030) but not by the
Chi-square metric (r = 0.19, P = 0.2828). Note that in terms
of the differences of correlations we find a marginally signifi-
cant difference for the MP against the QSR (Fisher-z = 1.59,
P = 0.0559) and a significant difference for the SCR against
the QSR (Fisher-z = 2.05, P = 0.0202) in terms of Chi-square
metric.

Our last prediction concerning confidence is that we should
observe a positive correlation between the mean success rate in
the Type 1 task and the observed AU2ROC. We report these cor-
relations in Figures 7D–F. We found that performances in Type 1
and Type 2 tasks are strongly correlated when confidence is elicited
with MP (Figure 7D, r = 0.41, P = 0.0086). The correlation is still
positive, but not significant for the SCR (Figure 7E, r = 0.25,
P = 0.1271). More strikingly, we found no correlation between
performances in Type 1 and Type 2 tasks when the QSR is used
(Figure 7F, r = –0.04, P = 0.8004). The only significant difference
of correlations is between the MP and the QSR (Fisher-z = 1.97,
P = 0.0244).

Taken together, our results suggest that elicitation rules differ
strongly in the kind of confidence they convey. Whereas confidence
levels reported using MP are globally compatible with predicted
confidence, those obtained through QSR can hardly be explained
by the classical SDT model. The results concerning the SCR are
less conclusive. Our conclusion at this point should be that MP
seems a good rule (compared to the other ones), if one seeks to
elicit confidence in line with the SDT2 model.

To summarize all these results we recall our five predictions and
show for each of them whether the observed confidence matches
the predicted one and how the three rules can be ranked according
to their fit to the predictions.

- Prediction 1: an elicited confidence close to that predicted by
SDT2 model;

- Prediction 2: an elicited AU2ROC close to the predicted one;
- Prediction 3: an elicited AU2ROC not greater than the predicted

one;
- Prediction 4: the closer the elicited confidence distribution is

to the predicted confidence distribution, the closer the elicited
AU2ROC is to the predicted one;

- Prediction 5: a positive correlation between performance in
perceptual task and elicited AU2ROC.

This Table 3 clearly shows that the MP outperforms the other
rules: it is the only one that leads to confidence data respecting all
the predictions and it performs as the best rule for four of the five
predictions. On the contrary the QSR gives the worst results with
almost three predictions not matched.

DISCUSSION
Dienes and Seth (2010) compared three methods for measuring
consciousness: verbal report, post-wagering method, and an orig-
inal “no-loss gambling” procedure. They found that, in an implicit
learning task (artificial grammar), the no-loss gambling method

Table 3 | Summary of the performances of the three rules according to

their fit to the predictions and their relative ranking for each

prediction.

MP SCR QSR

Match Rank Match Rank Match Rank

Prediction 1 Yes 1 Yes 2 Yes 3

Prediction 2 Yes 1 Part No 2 No 3

Prediction 3 Yes 1 Yes 3 Yes 2

Prediction 4 Yes 2 Yes 1 Part No 3

Prediction 5 Yes 1 Yes 2 No 3

proved to be no less sensitive than the two other ones, while being
immune to subjects’ attitude towards risk.

The purpose of this study was similar in spirit. Our aim was to
compare different method to measure confidence. We compared
three elicitation methods for retrospective confidence judgements
in a perceptual task with respect to their ability to fit SDT predic-
tions. We found that the MP (which is a fine-grained version of the
no-loss gambling method) outperforms the SCR (a direct report
on a numerical scale) and the QSR (a post-wagering method).
These results thus show that the choice of the method for confi-
dence measurement matters greatly, and provide support for the
use of the MP in studies of confidence judgements that are based
on SDT analysis.

A possible explanation for these results could be as follows.
First, it is known that QSR is plagued with individuals’risk aversion
(see Schurger and Sher, 2008; Dienes and Seth, 2010; Fleming and
Dolan, 2010). Furthermore, it is expressed in terms of stakes, and
not in terms of probabilities or confidence levels. It might be that
this simple fact requires some “translations” (from probabilities
to stakes) that distort individuals’ reports. By contrast, both SCR
and MP are directly expressed in terms of confidence rating, and
are immune to risk aversion. Moreover, MP provides incentives to
truthfully report one’s confidence, which is not the case of SCR.
This might explain that MP performs better. Finally we cannot
exclude that the weak performances of the QSR and the SCR are
not linked to the misunderstanding by our subjects on how to use
these scales.

Incidentally, if one is willing to interpret confidence as a degree
of consciousness, our results can also be read as a confirma-
tion of those of Dienes and Seth (2010) for perceptual tasks,
fine-grained measurement methods, and using a different com-
parison criterion (proximity to the prediction of an ideal Bayesian
observer).

This study presents some limitations. First we use the most
basic SDT model in order to predict confidence. Even if our
results are robust enough to draw some conclusion about the
ability of the MP to fit SDT predictions, it could be interesting
to confirm these results by using SDT in a more sophisti-
cated way. Remaining in a static framework, one could refine
the SDT model in order to take into account possible posi-
tion bias and unequal variance of signals (Wickens, 2002). If we
were to extend our analysis to a dynamic setting, the diffusion
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model seems to be a powerful tool to understand Type 1 (see
Ratcliff and McKoon, 2008, for a review) and Type 2 (Ratcliff and
Starns, 2009; Pleskac and Busemeyer, 2010) decisions. Unfortu-
nately our data does not allow these two refinements of SDT.
The second drawback of this study comes from our experimen-
tal design. Our analysis is based on between-subjects comparison:
each individual only uses one of the three elicitation rules. As
metacognitive ability is known to be very heterogeneous between
subjects (Fleming et al., 2010) and as a switch of rules dur-
ing an experimental session has proved to be too confusing, a
proper protocol could be to ask subjects to come for several ses-
sions, spaced out by time, with the use of a new rule at each
session.

Recent studies on metacognition have mainly focussed on the
measure of metacognitive ability and its variation across individu-
als or across tasks, using SDT analysis as a theoretical framework.
In the present study we take another point of view by trying to
identify which elicitation method is the most appropriate to mea-
sure confidence in line with SDT framework. Our results support
the idea that the choice of elicitation rules matters and provide
evidence that experiments which use SDT as a theoretical basis
should elicit confidence by the MP mechanism.
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