
HAL Id: hal-01243109
https://amu.hal.science/hal-01243109

Submitted on 14 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polo kinase regulates the localization and activity of the
chromosomal passenger complex in meiosis and mitosis

in Drosophila melanogaster
Mar Carmena, Miguel Ortiz-Lombardía, Hiromi Ogawa, William C. Earnshaw

To cite this version:
Mar Carmena, Miguel Ortiz-Lombardía, Hiromi Ogawa, William C. Earnshaw. Polo kinase reg-
ulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis
in Drosophila melanogaster. Open Biology, 2014, 4 (UNSP 140162 ), �10.1098/rsob.140162�. �hal-
01243109�

https://amu.hal.science/hal-01243109
https://hal.archives-ouvertes.fr


 on December 14, 2015http://rsob.royalsocietypublishing.org/Downloaded from 
rsob.royalsocietypublishing.org
Research
Cite this article: Carmena M, Lombardia MO,

Ogawa H, Earnshaw WC. 2014 Polo kinase

regulates the localization and activity of the

chromosomal passenger complex in meiosis

and mitosis in Drosophila melanogaster. Open

Biol. 4: 140162.

http://dx.doi.org/10.1098/rsob.140162
Received: 3 September 2014

Accepted: 8 October 2014
Subject Area:
cellular biology/genetics/molecular biology/

structural biology

Keywords:
chromosomal passenger complex, Aurora

kinases, Polo-like kinases, mitosis,

meiosis, Drosophila
Authors for correspondence:
Mar Carmena

e-mail: mar.carmena@ed.ac.uk

William C. Earnshaw

e-mail: bill.earnshaw@ed.ac.uk
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsob.140162.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Polo kinase regulates the localization and
activity of the chromosomal passenger
complex in meiosis and mitosis in
Drosophila melanogaster

Mar Carmena1, Miguel Ortiz Lombardia2, Hiromi Ogawa1

and William C. Earnshaw1

1The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh,
Edinburgh EH9 3JR, UK
2Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB,
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1. Summary
Cell cycle progression is regulated by members of the cyclin-dependent kinase

(CDK), Polo and Aurora families of protein kinases. The levels of expression and

localization of the key regulatory kinases are themselves subject to very tight con-

trol. There is increasing evidence that crosstalk between the mitotic kinases

provides for an additional level of regulation. We have previously shown that

Aurora B activates Polo kinase at the centromere in mitosis, and that the interaction

between Polo and the chromosomal passenger complex (CPC) component

INCENP is essential in this activation. In this report, we show that Polo kinase

is required for the correct localization and activity of the CPC in meiosis and mito-

sis. Study of the phenotype of different polo allele combinations compared to the

effect of chemical inhibition revealed significant differences in the localization

and activity of the CPC in diploid tissues. Our results shed new light on the

mechanisms that control the activity of Aurora B in meiosis and mitosis.
2. Introduction
Cell cycle progression is regulated by reversible phosphorylation [1]. Protein

kinases and phosphatases control the correct levels of phosphorylation of key sub-

strates to ensure smooth progression of the cell cycle [1,2]. Frequently, these

substrates are themselves kinases or phosphatases that form part of complex regu-

latory networks involving multiple feedback loops [1]. A group of highly

conserved protein kinases is responsible for the overall control of these regulatory

networks. This group includes the families of cyclin-dependent kinases (CDKs) [3],

Aurora kinases [4,5] and Polo-like kinases (Plks) [6]. Misexpression of these protein

kinases is linked to aneuploidy and carcinogenesis, making them very attractive

targets for the development of new anti-cancer therapies [7–10]. The levels and

activity of the master regulatory kinases must therefore be very tightly regulated.

Regulation of the mitotic kinases occurs at multiple levels including modu-

lation of their expression, proteolysis and targeting to different subcellular

locations. Additionally, their enzymatic activity is regulated by specific cofactors

and by the level of phosphorylation of activation segments—either by autophos-

phorylation or by the action of other kinases and phosphatases (for reviews,

see [5,6,11]). There is increasing evidence of crossregulation among CDKs,

Polo-like and Aurora kinases. Polo-like kinase 1 (Plk1) modulates CDK1 activity

through phosphorylation of several CDK1 regulators: promoting accumulation in

the nucleus of Cdc25C [12], the degradation of Wee1 [13] and inhibition of Myt1

[14]. CDK1 acts as a priming kinase regulating the docking of Plk1 to its substrates
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(i.e. Bub1 [15] and BubR1 [16]). Aurora A and its interactor Bora

are responsible for the activation of Plk1 at the centrosome at the

G2–M transition [17,18] and in human cells contribute to its acti-

vation later in mitosis [19]. CDK1 phosphorylation of Bora

enhances binding to Plk1 [20,21] and therefore promotes acti-

vation by Aurora A. Conversely, Plk1 regulates degradation of

both Bora [18,21] and Aurora A [22]. We recently demonstrated

that Aurora B is the kinase responsible for the activation of Polo

kinase at the centromere [23] in mitosis, and that the chromoso-

mal passenger complex (CPC) component INCENP is essential

for this activation. Importantly, we showed that this regulatory

mechanism plays an essential role in diploid tissues in vivo and

not only in cultured aneuploid cell lines.

In this study, we have analysed the regulation of the CPC

by Polo kinase in meiosis and mitosis in Drosophila. Using

different combinations of polo mutant alleles, we show that

Polo kinase is required for the correct localization and activity

of the CPC at all stages of male meiosis as well as in larval

neuroblast mitoses. This analysis reveals differences in the

regulation of the centromeric localization of the CPC by Polo

kinase between the two meiotic divisions. In addition, we

show that chemical inhibition of Polo kinase activity in neuro-

blasts phenocopies the CPC defects in localization and activity

observed in polo mutants. Interestingly, analysis of the neuro-

blast mitoses revealed significant differences between the

phenotypes resulting from the depletion of Polo kinase protein

in comparison with the inhibition of its kinase activity.
3. Material and methods
3.1. Drosophila strains
Fly strains were grown at 258C in standard Drosophila medium.

The following stocks were used: Canton-S. polo1/TM6C. w;
polo9/TM6C. w; polo10/TM6C. Immunostaining of testes and

third instar larval neuroblasts was performed as described

previously [24]. For drug treatment, larval neuroblasts

were dissected and treated with either dimethylsulfoxide

(DMSO) or 100 nM BI 2536 for 2 h before being processed for

immunostaining as described previously [23].

3.2. Antibodies
Primary antibodies and dilutions for immunofluorescence

analysis were as follows: mouse monoclonal B512 anti-aTubulin

(SIGMA, 1 : 2000); rabbit polyclonal anti-INCENP Rb-801,

Rb-803 [25], 1 : 500; mouse monoclonal anti- Plk1T210Ph (Abcam

ab39068, 1 : 100) and rabbit polyclonal anti-Histone3Ser10Ph

(Upstate, 1 : 500). Secondary antibodies were obtained from

Jackson Immunoresearch.

3.3. Drosophila cell culture, drug treatment and
immunofluorescence

Drosophila cell lines were grown in Express-Five medium

(GIBCO). The AC5-Polo-GFP cell line was described pre-

viously [26]. Cells exponentially growing were seeded on

Con-A treated coverslips and treated with either DMSO or

100 nM BI 2536 for 2 h before being processed for immuno-

staining as described previously [23,25]. Imaging was

performed using an Olympus IX-71 microscope controlled

by Delta Vision SoftWorx (Applied Precision, Issequa, WA,
USA). Image stacks were deconvolved, quick-projected, and

saved as tiff images to be processed using Adobe PHOTOSHOP.

Signal intensities were measured using the SOFTWORX

Data Inspector tool; average background was subtracted;

data were plotted using PRISM software.
4. Results
4.1. Polo kinase is required for the correct localization of

the chromosomal passenger complex in meiosis I
In order to investigate the role of Polo kinase in the regulation

of the CPC in meiosis, we decided to study the distribution of

the CPC component INCENP in Drosophila spermatogenesis in

different polo mutant allelic combinations. In prometaphase

and in metaphase I wild-type spermatocytes, the CPC con-

centrates at centromeres (figure 1a,b). The centromeric levels

of the complex in metaphase I appear considerably reduced

compared to prometaphase I.

In polo mutants, we observe the following patterns of CPC

localization (figure 1c–f): INCENP is found either normally

concentrated at centromeres (figure 1c), slightly dispersed on

the region surrounding the centromeres (figure 1d), completely

dispersed all over the chromatin (figure 1e) or highly reduced/

absent from chromatin (figure 1f). These phenotypic categories

were quantified in different allelic combinations of polo
mutations that result in a decrease of either the levels or the

activity of the kinase.

The original polo1 mutation is a point mutation result-

ing in a substitution of valine 242 in the kinase domain by

glutamic acid (figure 1g, left panel, arrow). Mapping this

mutation in the structure of human PLK1 kinase domain

(PDB code 2OWB; figure 1g, left, arrow) shows that this sub-

stitution would disrupt hydrophobic contacts with the first

helix of kinase subdomain XI. We predict that such disrup-

tion may alter the relative positions of subdomains X,

where valine 242 sits, and IX, which in turn would affect

the substrate-binding groove, formed by subdomains VIII

and IX (figure 1g, right, arrow). Subdomain VIII is also

important for the stability of the kinase domain: first, via a

nearly invariant ion pair with subdomain XI, secondly, by

its direct interaction with the activation loop (figure 1g, left,

arrowhead). As a result of this substitution, the Polo1

mutant kinase is predicted to have reduced enzymatic

activity and be compromised in its substrate recognition.

The expression levels of the mutant kinase are similar to

wild-type [27]. By contrast, the polo9 and polo10 mutations

are P-element insertions in the upstream regulatory region

of the gene that result in a dramatic reduction of Polo

expression levels [28].

Our analysis shows that the reduction in kinase activity

caused by the polo1 mutation results in CPC localization

defects (figure 1h). However in over 50% of homozygous

polo1 mutant spermatocytes, the CPC appears normally loca-

lized at centromeres (in some instances even when bivalents

are missegregating, figure 1c). A further reduction of protein

levels in the polo1/polo10 (and polo1/polo9, data not shown) results

in a significant increase in the percentage of spermatocytes

showing abnormal CPC localization (figure 1h).

A considerable proportion (31%) of homozygous polo1

mutant cysts undergoing meiosis I shows defects in late ana-

phase and cytokinesis [24]. These include defects in the

http://rsob.royalsocietypublishing.org/


0

normal abnormal

polo1/polo10
polo1/polo1

WT
polo1/+

a–
c d e f

CPC centromeric localization

50

fr
eq

ue
nc

y 
(%

)

100

polopolo

polo

wild-type wild-typeINCENP INCENP

polo

(a)

(c)

(e)

(g) (h)

(b)

( f )

(d)

Figure 1. The CPC is mislocalized in polo mutant meiosis I. In wild-type spermatocytes the CPC concentrates at the centromeres in prometaphase I (a) and meta-
phase I (b). In all polo mutant combinations, we observe differences in the CPC localization in spermatocytes. The different phenotypic categories observed are
shown in (c – f ). These phenotypes range from normal localization (c), slight dispersion to surrounding heterochromatin (d ), diffuse localization all over the chro-
matin (e) or reduction/absence of CPC signal ( f ). Green, a-tubulin; red, INCENP; blue, DNA; scale bars, 1 mm. (g) Predicted effect of the polo1 mutation on kinase
function. Left, structure of human Plk1 kinase domain (PDB code 2OWB). Arrowhead points to the T-loop; arrow points to the residue mutated in polo1 (valine 242).
Right, surface view of the kinase domain. Long arrow points to substrate-binding groove, formed by subdomains VIII and IX. (h) Quantification of the percentages of
each phenotypic category (as shown in c – f ) in the different polo mutant allelic combinations studied.
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formation of both the spindle midzone and the contractile

ring. As the CPC is critically involved in the regulation of

events in late mitosis and cytokinesis, we wanted to find

out if the phenotypes found in polo1 mutants are at least in
part a consequence of a disruption of CPC localization or

function. The dynamic localization of the CPC shows impor-

tant differences in meiosis: at the metaphase I to anaphase I

transition part of the CPC transfers to the central spindle as

http://rsob.royalsocietypublishing.org/
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Figure 2. The CPC is mislocalized in late meiosis I in polo1 mutants. (a) Wild-type telophase I spermatocyte showing correct transfer of the CPC to the central
spindle. (b,c) polo1/polo1mutant spermatocyte showing defective CPC transfer to the midzone in the presence (b) or the absence (c) of normal central spindle. Green,
tubulin; red, INCENP; blue, DNA; scale bars, 5 mm.
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it does in mitosis, but a subset of the CPC remains associated

with chromatin ([29] and figure 2). Analysis of late stages of

meiosis I in polo1 mutants revealed that the CPC does not trans-

fer to microtubules correctly at the metaphase to anaphase

transition (figure 2b,c). This defective CPC localization is inde-

pendent of the degree of disruption of the spindle midzone, as

visualized by staining for microtubules (cf. figure 2b,c).
4.2. Polo kinase function is required for the correct
localization of the chromosomal passenger
complex in meiosis II

A small percentage of homozygous polo1 mutant sper-

matocytes complete meiosis I and proceed to meiosis II.

Spermatocytes that fail cytokinesis in meiosis I form multipolar

spindles in meiosis II (figure 3c,d). In wild-type spermatocytes,

the localization of the CPC in prometaphase and metaphase II

resembles that in the first meiotic division, with the CPC

concentrating at centromeres (figure 3a). As spermatocytes

within each cyst undergo meiosis in a slightly asynchronous

way, we are able to observe consecutive stages of the meiotic

division side by side in single cysts. In polo1 mutant cysts in pro-

metaphase II, the CPC localizes properly to the centromeres of

unaligned chromosomes (figure 3c, white arrows), but it is vir-

tually undetectable on chromosomes aligned at the equatorial

plate (figure 3c, red arrows). In these cells, once the spermato-

cytes reach metaphase II, the CPC is virtually undetectable on

chromosomes (figure 3b). We conclude that Polo kinase activity
is not required for the initial targeting and concentration of the

CPC to the centromeres in meiosis II, but it is required for

the stable localization of the complex, possibly in a tension-

dependent manner. In some instances, we also observe the

CPC dispersed all over the chromatin in prometaphase and

metaphase II, similarly to what occurs in meiosis I (figure 3d).
4.3. Polo kinase is required for the correct localization
and activity of the chromosomal passenger
complex in Drosophila larval neuroblast mitoses

In order to analyse the consequences of further depletion of

the Polo kinase protein levels in CPC function, we studied

mitosis in polo9/polo10mutants. Flies carrying this allelic combi-

nation are late larval lethal. Thus, it is not possible to study

meiotic phenotypes, since the testes are not yet mature. Instead

we studied the mitotic phenotypes in third instar larval

neuroblasts in polo mutants. Wild-type neuroblasts are actively

dividing, with a mitotic index of 1.8+0.21% (n ¼ 1000 per

experiment). The mitotic index is significantly higher in polo9/
polo10and polo1/polo10 neuroblasts (26.7+1.9% and 8.6+
0.26%, respectively, n ¼ 1000 per experiment). In most mitotic

figures analysed, the CPC shows an abnormal pattern of local-

ization and is dispersed all over the chromatin (figure 4b,d;

electronic supplementary material, figure S1).

Analysis of the distribution of mitotic phases shows a

significant increase in the proportion of neuroblasts in prometa-

phase. This is accompanied by a decrease in the frequency of

http://rsob.royalsocietypublishing.org/
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Figure 3. Tension-dependent CPC mislocalization in polo mutant meiosis II. In wild-type spermatocytes, the CPC concentrates at the centromeres in metaphase II (a).
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cells in later mitotic stages (up to 10 times less from 38% in wild-

type to 3.9% in polo9/polo10, figure 4e). This distribution is a con-

sequence of the characteristic prometaphase delay in polo
mutants. Defects in CPC localization are observed in all stages

of mitosis with high frequency, especially in polo9/polo10 where

95% of cells in mitosis show abnormal INCENP distribution

(figure 4f). Compared to in polo9/polo10, in polo1/polo10 mutants

there is a slightly higher frequency of neuroblasts in anaphase

(figure 4e). In these cells, the CPC remains associated with

segregating chromatids and does not transfer normally to the

central spindle microtubules (electronic supplementary material,

figure S1d), similarly to what we observe in meiosis I. These

abnormal mitoses exhibit totally depleted or barely undetectable

levels of PoloPh-Thr182, the active form of the kinase (electronic

supplementary material, figure S2).

We next questioned whether the observed defects in CPC

localization had an impact on the activity of Aurora B kinase.

We monitored this by quantification of the levels of phosphoryl-

ation of the Aurora B substrate Histone3 Serine10—H3Ser10Ph

(and H3Ser28Ph, data not shown). In order to assess the difference

between the effects of depleting Polo protein levels in polo
mutants versus those resulting from inhibition of its kinase

activity (in which the protein is still present), we compared the

levels of H3Ser10Ph in wild-type neuroblasts treated with the

Plk1 inhibitor BI 2536 with those observed in neuroblasts from

various combinations of polo mutants (figures 5 and 6; electronic

supplementary material, figures S3 and S4). BI 2536 treatment

of wild-type neuroblasts results in an elevated mitotic index

compared to wild-type (18+1.2%; n ¼ 1000 per experiment).

Drug treatment also phenocopies the CPC mislocalization

phenotypes observed in polo mutants (figure 5). Thus, the phe-

notype observed after treatment with inhibitor has a much

higher penetrance than that observed in polo1/polo1 neuroblasts

(data not shown). This is most probably explained by the

residual enzymatic activity in the Polo1 mutant kinase.

Although in all experimental conditions we observe a

reduction of H3Ser10Ph levels compared to the levels of the

wild-type (figure 6f ), the biggest reduction is found in

the polo9/polo10mutant (figure 6b). Interestingly, the level of

phosphorylation in polo9/polo10 mutant neuroblasts is signi-

ficantly lower than that in the BI 2536-treated neuroblasts

( p ¼ 0.0003, figure 6f; electronic supplementary material,

http://rsob.royalsocietypublishing.org/
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figure S4). Thus, as far as the activity of Aurora B is concerned,

the reduction of Polo protein levels in the mutant neuroblasts

has a stronger effect than inhibition of Polo kinase activity.
4.4. Polo does not require its own kinase activity for
localization to centromeres in Drosophila

In order to understand better the different effects observed as

a consequence of either lowering the levels of Polo or inhibit-

ing its kinase activity, we analysed the localization of the

kinase in DMel2 cultured cells treated with the BI 2536 inhibi-

tor. Similarly to what we observed in dividing neuroblasts,

the distribution of the CPC is abnormal in inhibitor-treated

cells (figure 7). Interestingly, and in contrast to what has
been described in human cells, Polo kinase localizes normally

to the kinetochore in DMel2 cells (figure 7b,c).
5. Discussion
Members of the CDK, Polo and Aurora kinase families are

frequently involved in the regulation of the same cell cycle

events, and even act upon the same substrates. Coordination

of the activities of these highly conserved kinases is therefore

essential for the smooth progression of cell division. One way

that the cell accomplishes this coordination is by making the

activity of one key regulatory kinase dependent on another

one. For example, activation of CDK1 is accomplished by a

bistable system that depends on feedback loops that both acti-

vate CDC25 and inactivate WEE1 (reviewed in [30]). Plk1 is

http://rsob.royalsocietypublishing.org/


DMSO

BI 2536

INCENP tubulin DNA(a)

(b)

Figure 5. Treatment with Plk1 inhibitor BI 2536 phenocopies polo mutant phenotype in neuroblast mitoses. (a) Control (DMSO-treated) third instar larval neuro-
blasts show normal localization of the CPC, whereas BI 2536-treated ones (b) show CPC mislocalization phenotypes similar to those observed in polo mutants. Green,
a-tubulin; red, INCENP; blue, DNA; scale bars, 5 mm.

rsob.royalsocietypublishing.org
Open

Biol.4:140162

7

 on December 14, 2015http://rsob.royalsocietypublishing.org/Downloaded from 
responsible for the activation of this bistable switch [31].

In turn, CDK1 is frequently the priming kinase that allows

binding of Plk1 to its substrates in mitosis through its polo-

box domain [32]. In addition, the activation of Plk1 at the

G2–M transition depends on Aurora A-Bora [17,18]. In a

recent study, we reported that the activation of Polo kinase

at the centromere depends on Aurora B kinase activity and

is mediated by the CPC component INCENP [23].

Here, we show that the localization and activity of the

CPC depends on Polo kinase in male meiosis and neuroblast

mitosis in Drosophila. A similar dependence was reported pre-

viously in tissue culture cells [33]. Here for the first time, we

were able to study the regulation of the CPC by Polo kinase

in all phases of male meiosis. This was made possible thanks

to the use of the weaker polo1 allele (either homozygous or in

combination with stronger polo alleles). A recent study exam-

ining the effect of chemical inhibition of Polo kinase in

Drosophila spermatocytes showed a much stronger phenotype

than that of polo1 mutants [34]. In that study, BI 2536-treated

spermatocytes were blocked in a prometaphase-like state

with condensed bivalents that did not divide. Our analysis

showed that Polo is essential not only for the correct centro-

meric localization of the CPC in both meiotic divisions but

also for transfer of the CPC to the central spindle in anaphase.

Similar phenotypes were also observed in neuroblast mitoses

(figure 4; electronic supplementary material, figure S1).

Analysis of different combinations of polo alleles allowed

us to compare the effect of depletion of Polo protein levels

versus inhibition of its kinase activity on CPC localization

and activity. Quantification of the different CPC localiza-

tion phenotypes in meiosis I revealed that partial inhibition

of the kinase activity in polo1 homozygotes resulted in a

majority of spermatocytes showing mild (figure 1d ) or no

defects (figure 1c). Further decreasing the level of Polo

kinase ( polo1/polo10) resulted in a significant increase in the

proportion of cells showing the most extreme CPC
mislocalization phenotype, with the complex spread all

over the chromatin. It is tempting to predict that if we

could analyse the CPC meiotic localization in polo9 and

polo10 mutants we would find an even higher proportion of

this extreme phenotype. This was indeed the case when we

analysed the mitotic phenotype in polo9/polo10 neuroblasts

(see below).

Contrary to what was described for BI 2536-treated

human cells [35], where cells are delayed in prophase with

monopolar spindles, inhibitor-treated and polo mutant

Drosophila neuroblasts form bipolar spindles but exhibit a

prometaphase delay. This is true for all allelic combinations

studied and also for BI 2536-treated neuroblasts (figure 5

and data not shown).

Altogether these results indicate a significant difference

between the kinase inhibition and depletion phenotypes.

Additionally, in Polo kinase depleted ( polo9/polo10) neuroblasts

95% of the mitotic cells show the CPC dispersed all over the

chromatin, a much higher proportion than is found in BI 2536-

treated neuroblasts. As we have shown that inactive Polo

kinase retains the ability to target to the centromere in Drosophila
(figure 7), we propose that the mutant kinase could also retain

some capacity to dock the CPC, thereby resulting in a relatively

more stable centromeric localization of the complex.

Cytokinesis requires both Polo and Aurora B kinase

function [6,11,36,37]. Plk1 is required for the regulation of cyto-

kinesis in all species studied [11,24,38,39]. It has been proposed

that Plk1 inhibitory phosphorylation of PRC1 prevents prema-

ture midzone assembly [40]. Although Plk1 is known to act in

part through the activation of the GTPase RhoA at the acto-

myosin ring [39,41,42], the roles and substrates of Plk1 in

cytokinesis are not completely characterized. The CPC regu-

lates abscission, the last stage of cytokinesis [43–45]. Our

results show that the CPC does not transfer to the central spin-

dle normally in anaphase in both mitosis and meiosis of polo
mutants. In flies and human cells, subito/MKLP2 binds to
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Aurora B and INCENP and is required for the correct localiz-

ation of the CPC to the central spindle microtubules in

anaphase [46,47]. Plk1 binds and phosphorylates MKLP2,

negatively regulating its microtubule bundling activity.
However, phosphorylation by Plk1 is not required for the local-

ization of MKLP2 to the spindle midzone [46–48]. Our results

indicate that if the CPC depends on Polo for its correct position-

ing at the spindle midzone, this must occur through an
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alternative pathway. Additionally, our results suggest that at

least part of the Polo requirement in cytokinesis could

be explained by its role in CPC localization and function.

However, at this point we cannot exclude that the CPC mislo-

calization phenotype might be a secondary consequence of

central spindle defects in the polo mutants.

The intricate web of interactions between CDK1, Polo and

the CPC is critical throughout mitosis. Here, we have shown

that not only do these kinases regulate one another by adjust-

ing their activity levels, but they also have a role in regulating
mitotic progression by ensuring that the kinases are active in

the right place at the right time.
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