W. Palm and . De-lange, How Shelterin Protects Mammalian Telomeres, Annual Review of Genetics, vol.42, issue.1, pp.301-334, 2008.
DOI : 10.1146/annurev.genet.41.110306.130350

B. Pardo and S. Marcand, Rap1 prevents telomere fusions by nonhomologous end joining, The EMBO Journal, vol.12, issue.17, pp.3117-3127, 2005.
DOI : 10.1038/sj.emboj.7600778

D. Bonetti, M. Martina, M. Clerici, G. Lucchini, and M. Longhese, Multiple Pathways Regulate 39 Overhang Generation at S. cerevisiae Telomeres, pp.70-81, 2009.

Y. Xue, M. Rushton, and L. Maringele, A Novel Checkpoint and RPA Inhibitory Pathway Regulated by Rif1, PLoS Genetics, vol.197, issue.12, 2011.
DOI : 10.1371/journal.pgen.1002417.s002

C. Ribeyre and D. Shore, Anticheckpoint pathways at telomeres in yeast, Nature Structural & Molecular Biology, vol.13, issue.3, 2012.
DOI : 10.4161/cc.7.4.5323

D. Churikov, Y. Corda, P. Luciano, and V. Géli, Cdc13 at a crossroads of telomerase action, Frontiers in Oncology, vol.3, 2013.
DOI : 10.3389/fonc.2013.00039

A. Ijpma and C. Greider, Short Telomeres Induce a DNA Damage Response in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.14, issue.3, pp.987-100102, 2003.
DOI : 10.1091/mbc.02-04-0057

P. Abdallah, P. Luciano, K. Runge, M. Lisby, and V. Géli, A two-step model for senescence triggered by a single critically short telomere, pp.988-993, 1911.

R. Hector, A. Ray, B. Chen, R. Shtofman, and K. Berkner, Mec1p associates with functionally compromised telomeres, Chromosoma, vol.24, issue.3, pp.277-290, 2012.
DOI : 10.1007/s00412-011-0359-0

V. Lundblad and E. Blackburn, An alternative pathway for yeast telomere maintenance rescues est1??? senescence, Cell, vol.73, issue.2, pp.347-60, 1993.
DOI : 10.1016/0092-8674(93)90234-H

S. Teng and V. Zakian, Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae, Molecular and cellular biology, 1999.

S. Teng and V. Zakian, Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae, pp.8083-8093, 1999.

Q. Chen, A. Ijpma, and C. Greider, Two Survivor Pathways That Allow Growth in the Absence of Telomerase Are Generated by Distinct Telomere Recombination Events, Molecular and Cellular Biology, vol.21, issue.5, pp.1819-1827, 2001.
DOI : 10.1128/MCB.21.5.1819-1827.2001

S. Teng, J. Chang, B. Mccowan, and V. Zakian, Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rifinhibited recombinational process, pp.947-952, 2000.

P. Huang, F. Pryde, D. Lester, R. Maddison, and R. Borts, SGS1 is required for telomere elongation in the absence of telomerase, Current Biology, vol.11, issue.2, pp.125-129, 2001.
DOI : 10.1016/S0960-9822(01)00021-5

F. Johnson, R. Marciniak, M. Mcvey, S. Stewart, and W. Hahn, The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase, The EMBO Journal, vol.20, issue.4, pp.905-913, 2001.
DOI : 10.1093/emboj/20.4.905

M. Mceachern and J. Haber, Break-Induced Replication and Recombinational Telomere Elongation in Yeast, Annual Review of Biochemistry, vol.75, issue.1, pp.111-135, 2006.
DOI : 10.1146/annurev.biochem.74.082803.133234

J. Lydeard, S. Jain, M. Yamaguchi, and J. Haber, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, vol.408, issue.7155, pp.820-823, 2007.
DOI : 10.1016/S1097-2765(03)00269-7

Y. Hu, H. Tang, N. Liu, X. Tong, and W. Dang, Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators, PLoS Genetics, vol.37, issue.1, 2013.
DOI : 10.1371/journal.pgen.1003208.s009

URL : http://doi.org/10.1371/journal.pgen.1003208

M. Mceachern and S. Iyer, Short Telomeres in Yeast Are Highly Recombinogenic, Molecular Cell, vol.7, issue.4, pp.695-704, 2001.
DOI : 10.1016/S1097-2765(01)00215-5

M. Chang, J. Dittmar, and R. Rothstein, Long telomeres are preferentially extended during recombination-mediated telomere maintenance, Nature Structural & Molecular Biology, vol.63, issue.4, pp.451-456, 2011.
DOI : 10.1073/pnas.93.24.13902

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071861

X. Fu, Y. Duan, Y. Liu, C. Cai, and F. Meng, Telomere Recombination Preferentially Occurs at Short Telomeres in Telomerase-Null Type II Survivors, PLoS ONE, vol.75, issue.3, 2014.
DOI : 10.1371/journal.pone.0090644.s005

B. Dunn, P. Szauter, M. Pardue, and J. Szostak, Transfer of yeast telomeres to linear plasmids by recombination, Cell, vol.39, issue.1, pp.191-201, 1984.
DOI : 10.1016/0092-8674(84)90205-8

E. Louis and J. Haber, The structure and evolution of subtelomeric Y9 repeats in Saccharomyces cerevisiae, Genetics, vol.131, pp.559-74, 1992.

E. Louis, E. Naumova, A. Lee, and G. Naumov, The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics, Genetics, 1994.

B. Khadaroo, M. Teixeira, P. Luciano, N. Eckert-boulet, and S. Germann, The DNA damage response at eroded telomeres and tethering to the nuclear pore complex, Nature Cell Biology, vol.13, issue.8, pp.980-987, 1910.
DOI : 10.1093/nar/28.14.2690

T. Morrish and C. Greider, Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells, PLoS Genetics, vol.14, issue.1, 2009.
DOI : 10.1371/journal.pgen.1000357.s004

E. Fallet, P. Jolivet, J. Soudet, M. Lisby, and E. Gilson, Length-dependent processing of telomeres in the absence of telomerase, Nucleic Acids Research, vol.42, issue.6, 2014.
DOI : 10.1093/nar/gkt1328

URL : https://hal.archives-ouvertes.fr/hal-01332608

S. Le, J. Moore, J. Haber, and C. Greider, RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase, pp.143-152, 1999.

L. Sandell and V. Zakian, Loss of a yeast telomere: Arrest, recovery, and chromosome loss, Cell, vol.75, issue.4, pp.729-739, 1993.
DOI : 10.1016/0092-8674(93)90493-A

A. Bianchi and D. Shore, Early Replication of Short Telomeres in Budding Yeast, Cell, vol.128, issue.6, pp.1051-1062, 2007.
DOI : 10.1016/j.cell.2007.01.041

S. Marcand, V. Brevet, and E. Gilson, Progressive cis-inhibition of telomerase upon telomere elongation, The EMBO Journal, vol.18, issue.12, pp.3509-3519, 1999.
DOI : 10.1093/emboj/18.12.3509

H. Cohen and D. Sinclair, Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase, Proceedings of the National Academy of Sciences, vol.98, issue.6, pp.3174-3179, 2001.
DOI : 10.1073/pnas.061579598

J. Shampay and E. Blackburn, Generation of telomere-length heterogeneity in Saccharomyces cerevisiae., Proceedings of the National Academy of Sciences, vol.85, issue.2, pp.534-538, 1988.
DOI : 10.1073/pnas.85.2.534

K. Förstemann, M. Höss, and J. Lingner, Telomerase-dependent repeat divergence at the 39 ends of yeast telomeres, pp.2690-2694, 2000.

N. Sugawara, G. Ira, and J. Haber, DNA length dependence of the singlestrand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair, pp.5300-5309, 2000.

B. Llorente, C. Smith, and L. Symington, Break-induced replication: What is it and what is it for?, Cell Cycle, vol.7, issue.7, pp.859-864, 2008.
DOI : 10.4161/cc.7.7.5613

M. Wilson, Y. Kwon, Y. Xu, W. Chung, and P. Chi, Pif1 helicase and Pold promote recombination-coupled DNA synthesis via bubble migration, pp.393-396, 2013.
DOI : 10.1038/nature12585

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915060

P. Watt, I. Hickson, R. Borts, and E. Louis, SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae, Genetics, vol.144, pp.935-980, 1996.

S. Enomoto, L. Glowczewski, and J. Berman, MEC3, MEC1, and DDC2 Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.13, issue.8, pp.2626-2664, 2002.
DOI : 10.1091/mbc.02-02-0012

Y. Tsai, S. Tseng, S. Chang, C. Lin, and S. Teng, Involvement of Replicative Polymerases, Tel1p, Mec1p, Cdc13p, and the Ku Complex in Telomere-Telomere Recombination, Molecular and Cellular Biology, vol.22, issue.16, pp.5679-87, 2002.
DOI : 10.1128/MCB.22.16.5679-5687.2002

R. Wellinger and V. Zakian, Everything You Ever Wanted to Know About Saccharomyces cerevisiae Telomeres: Beginning to End, Genetics, vol.191, issue.4, pp.1073-1105, 2012.
DOI : 10.1534/genetics.111.137851

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415994

G. Ira and J. Haber, Characterization of RAD51-Independent Break-Induced Replication That Acts Preferentially with Short Homologous Sequences, Molecular and Cellular Biology, vol.22, issue.18, pp.6384-6392, 2002.
DOI : 10.1128/MCB.22.18.6384-6392.2002

E. Louis and J. Haber, Mitotic recombination among subtelomeric Y9 repeats in Saccharomyces cerevisiae, Genetics, vol.124, pp.547-59, 1990.

C. Mott and L. Symington, RAD51-independent inverted-repeat recombination by a strand-annealing mechanism, DNA Repair, vol.10, issue.4, pp.408-415, 2011.
DOI : 10.1016/j.dnarep.2011.01.007

S. Makovets, I. Herskowitz, and E. Blackburn, Anatomy and Dynamics of DNA Replication Fork Movement in Yeast Telomeric Regions, Molecular and Cellular Biology, vol.24, issue.9, pp.4019-4031, 2004.
DOI : 10.1128/MCB.24.9.4019-4031.2004

W. Tham, J. Wyithe, K. Ferrigno, P. Silver, P. Zakian et al., Localization of Yeast Telomeres to the Nuclear Periphery Is Separable from Transcriptional Repression and Telomere Stability Functions, Molecular Cell, vol.8, issue.1, pp.189-199, 2001.
DOI : 10.1016/S1097-2765(01)00287-8

H. Ferreira, B. Luke, H. Schober, V. Kalck, and J. Lingner, The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding??yeast, Nature Cell Biology, vol.17, issue.7, pp.867-874, 2011.
DOI : 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U

S. Nagai, N. Davoodi, and S. Gasser, Nuclear organization in genome stability: SUMO connections, Cell Research, vol.13, issue.3, pp.474-485, 2011.
DOI : 10.1091/mbc.E10-05-0449

V. Lundblad, Telomere maintenance without telomerase, Oncogene, vol.25, issue.4, pp.522-531, 2002.
DOI : 10.1038/sj.onc.1205079

R. Spell and S. Jinks-robertson, Role of mismatch repair in the fidelity of RAD51-and RAD59-dependent recombination in Saccharomyces cerevisiae, pp.1733-1744, 2003.

A. Rizki and V. Lundblad, Defects in mismatch repair promote telomeraseindependent proliferation, pp.713-716, 2001.

S. Natarajan and M. Mceachern, Recombinational Telomere Elongation Promoted by DNA Circles, Molecular and Cellular Biology, vol.22, issue.13, pp.4512-4521, 2002.
DOI : 10.1128/MCB.22.13.4512-4521.2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC133910

B. Li and A. Lustig, A novel mechanism for telomere size control in Saccharomyces cerevisiae., Genes & Development, vol.10, issue.11, pp.1310-1326, 1996.
DOI : 10.1101/gad.10.11.1310

J. Platt, P. Ryvkin, J. Wanat, G. Donahue, and M. Ricketts, Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence, Genes & Development, vol.27, issue.12, pp.1406-1420, 2013.
DOI : 10.1101/gad.218776.113

C. Smith, D. Smith, J. Derisi, and E. Blackburn, Telomeric Protein Distributions and Remodeling Through the Cell Cycle in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.14, issue.2, pp.556-570, 2003.
DOI : 10.1091/mbc.E02-08-0457

H. Schober, V. Kalck, M. Vega-palas, G. Van-houwe, and D. Sage, Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast, Genome Research, vol.18, issue.2, pp.261-271, 2008.
DOI : 10.1101/gr.6687808

N. Agmon, B. Liefshitz, C. Zimmer, E. Fabre, and M. Kupiec, Effect of nuclear architecture on the efficiency of double-strand break repair, Nature Cell Biology, vol.15, issue.6, pp.694-699, 2013.
DOI : 10.1038/ncb2745

K. Bystricky, P. Heun, L. Gehlen, J. Langowski, and S. Gasser, Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques, Proceedings of the National Academy of Sciences, vol.101, issue.47, pp.16495-16500, 2004.
DOI : 10.1073/pnas.0402766101

E. Gilson, T. Müller, J. Sogo, T. Laroche, and S. Gasser, RAP1 stimulates single- to double-strand association of yeast telomeric DNA: implications for telomere - telomere interactions, Nucleic Acids Research, vol.22, issue.24, pp.5310-5320, 1994.
DOI : 10.1093/nar/22.24.5310

P. Luciano, S. Coulon, V. Faure, Y. Corda, and J. Bos, RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts, The EMBO Journal, vol.12, issue.8, pp.2034-2080, 2012.
DOI : 10.1038/emboj.2012.40