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Détresses Respiratoires et Infections Sévères, APHM, CHU Nord, Marseille, France, 3 Department of Biology, University of Massachusetts Dartmouth, Dartmouth,

Massachusetts, United States of America, 4 Department of Emergency Medicine, Alpert School of Medicine, Providence, Rhode Island, United States of America,

5 Weizmann Institute of Science, Biological Chemistry, Rehovot, Israel

Abstract

Rationale: The effectiveness of antibiotic molecules in treating Pseudomonas aeruginosa pneumonia is reduced as a result of
the dissemination of bacterial resistance. The existence of bacterial communication systems, such as quorum sensing, has
provided new opportunities of treatment. Lactonases efficiently quench acyl-homoserine lactone-based bacterial quorum
sensing, implicating these enzymes as potential new anti-Pseudomonas drugs that might be evaluated in pneumonia.

Objectives: The aim of the present study was to evaluate the ability of a lactonase called SsoPox-I to reduce the mortality of
a rat P. aeruginosa pneumonia.

Methods: To assess SsoPox-I-mediated quorum quenching, we first measured the activity of the virulence gene lasB, the
synthesis of pyocianin, the proteolytic activity of a bacterial suspension and the formation of biofilm of a PAO1 strain grown
in the presence of lactonase. In an acute lethal model of P. aeruginosa pneumonia in rats, we evaluated the effects of an
early or deferred intra-tracheal treatment with SsoPox-I on the mortality, lung bacterial count and lung damage.

Measurements and Primary Results: SsoPox-I decreased PAO1 lasB virulence gene activity, pyocianin synthesis, proteolytic
activity and biofilm formation. The early use of SsoPox-I reduced the mortality of rats with acute pneumonia from 75% to
20%. Histological lung damage was significantly reduced but the lung bacterial count was not modified by the treatment. A
delayed treatment was associated with a non-significant reduction of mortality.

Conclusion: These results demonstrate the protective effects of lactonase SsoPox-I in P. aeruginosa pneumonia and open
the way for a future therapeutic use.
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Introduction

The dramatic increase of antibiotic resistance in bacterial

isolates from intensive care unit (ICU) patients leads to an

important reduction of therapeutic arsenal [1][2,3][4,5]. Alterna-

tive approaches to combat multidrug-resistant strains are under

extensive research, especially using molecules that can reduce

bacterial expression of virulence factors [1–3][6].

Expression of virulent phenotypes of numerous pathogenic

bacteria is activated when the pathogen senses that a critical

population density has been reached. This ability relates to the

quorum sensing (QS) by which bacteria can sense messenger

molecules thus virulence genes are activated [7]. This communi-

cation ability enables the bacteria to coordinate bacterial

population behavior during the invasion of a host [8][9].

Acyl-Homoserine Lactones (AHLs) are QS molecule messen-

gers used by a large number of Gram-negative bacteria, including

Pseudomonas aeruginosa [10]. These bacteria are able to form

biofilms whose maturation is regulated through QS [11]. Biofilms

have been implicated in antibiotic resistance in chronic P.
aeruginosa infections, primarily through the limitation of the

diffusion of antibiotics into the bacterial colonies [12]. P.
aeruginosa possesses two different AHL-based QS systems: the

LasI/R and RhlI/R with their respective cognate 3-oxo-C12

AHLs and C4 AHLs messenger molecules [13].
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The inhibition of bacterial virulence by targeting QS mecha-

nism can be mediated by (i) the inhibition of the messenger

production, (ii) inhibition of its detection, both known as QS

inhibition/inhibitors [14,15][16], or (iii) the elimination of the

messenger known as quorum quencher (QQ) [17,18] thus

alteration of the P. aeruginosa QS system can attenuate its

virulence. In pneumonia, the efficacy of QS modulation has been

tested at the genomic level with reduction in lethality of infected

animals [9]. Therapeutic management of animals with pneumonia

has been tested with QS inhibitors such as furanones and patulin

showing that these molecules can increase the clearance of

bacteria in mice infected with P. aeruginosa [19,20][21]. Because

some in vitro studies suggest toxicity of furanones and patulin

[22][23], other QS inhibition options are under investigation [24]

among which the use of lactonases or acylases enzymes [10][25].

Lactonases efficiently decrease the production of virulence factors

and biofilm by P. aeruginosa in vitro [26][27], and may therefore

represent an alternative and promising strategy for reducing

bacterial virulence. The efficacy of lactonases to decrease bacterial

virulence has been reported in several hosts [28,29][30]. In a

recent in vivo study on mice with pneumonia [31], the use of a

lactonase-producing P. aeruginosa mutant showed reduced lung

injury and increased survival as compared to the wild strain. These

encouraging results would suggest that the use of lactonases as a

topic therapeutic agent could be effective in improving outcome in

P. aeruginosa pneumonia.

The aim of our work was to test the efficacy of inhaled lactonase

in improving survival of rats with acute P. aeruginosa pneumonia.

To do this, we used an engineered variant of the hyperthermo-

stable lactonase SsoPox (first isolated from the extremophilic

archaea Sulfolobus solfataricus) [32], SsoPox-I, exhibiting a high

stability and an improved ability to hydrolyze 3-oxo-C12 AHLs.

We first tested in vitro the ability of our molecule to reduce, in a

P.aeruginosa PAO1 strain, the virulence gene lasB activity, the

pyocianin synthesis, the proteolytic activity and the biofilm

formation. Thus, we evaluated the effect of SsoPox-I when

delivered early or late intra-tracheally to animals with lungs

infected with P. aeruginosa.

Material and Methods

Protein production & purification
The plasmid encoding SsoPox-I protein was commercially

obtained (GeneArt, Invitrogen; Germany). SsoPox-I protein was

synthesized in E. coli strain BL21(DE3)-pGro7/GroEL (TaKaRa)

in ZYP medium [33] containing 100 mg/ml ampicillin and 34 mg/

ml chloramphenicol as previously described [22]. The proteins

were purified as previously described [34]. Briefly, the culture was

incubated at 70uC for 30 minutes, followed by differential

ammonium sulfate precipitation, dialysis and exclusion size

chromatography. The proteins were quantified using a nanospec-

trophotometer (Nanodrop, ThermoFisher Scientific, France) and

the protein molar extinction coefficient was determined using the

protein primary sequence in PROT-PARAM (ExPASy tool

software) [35]. The protein yield was approximately 10 mg/L

for SsoPox-I, and the identity and purity of the purified protein

was assessed through sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) and mass spectrometry (Plateforme

Timone, Marseille, France). The enzymes were stored and used in

phosphate-buffered saline (PBS) (Biomerieux; France).

In vitro experiments
P. aeruginosa culture. P. aeruginosa (strain PA01 ATCC

15692) was grown at 37uC in Luria-Bertani (LB) medium (BD,

France) with shaking (200 rpm). When required, 1.5% bacto agar

was added to solidify the LB.

For in vivo experiments [36], aliquots containing P. aeruginosa
PAO1 strain were thawed and cultured on COS (Biomerieux,

France) (Columbia with 5% Sheep blood) agar plates. Ten fresh

PAO1 colonies were sampled and cultured at 37uC in tryptic soy

broth (TSB, Biomerieux, France) with continuous shaking until the

OD600 nm = 1. Serial dilutions were subsequently performed to

adjust the bacterial amount, and the precise concentrations were

confirmed after plating serial dilutions on the appropriate culture

medium and counting the resulting colonies.

LasB reporter system. A 50-ml aliquot from an 18-hour

culture of P. aeruginosa PAO1 carrying PlasB-luxCDABE (QS

reporter) was added to the wells of a 96-well plate. A ten-fold

dilution series from 50 mg to 0.05 mg of SsoPox-I was added to the

wells containing the P. aeruginosa reporter strain. LB was added

to each well to generate a final volume of 100 ml. The plates were

incubated at 37uC for 90 minutes, with shaking every 10 minutes,

and subsequently analyzed using a Varioskan Flash multimode

plate reader. The luminescence was measured every 10 minutes to

determine the QS reporter activity.

Quantification of pyocianin synthesis. Quantification of

pyocyanin was performed as previously described [37]. Briefly, P.
aeruginosa PAO1 strain was grown in 1 mL of Glycerol-alanine

(GA) minimum medium (10 mL.L21 glycerol, 6 g.L21 L-alanine,

2 g.L21 MgSO4, 0.1 g.L21 K2HPO4, 0.018 g.L21 FeSO4) with

and without 14 mM of filtered (0.2 mm pore) SsoPox-I enzyme

during 24 h at 37uC and 450 rpm shaking in 48-well plate

(Greiner Bio-One, Germany). Cells were centrifuged 15 min at

12.000 g and the supernatant was filtered (0.2 mm pore).

Extraction of pyocyanin was performed on 500 mL of supernatant

using 0.56 volume of chloroform and absorbance was subse-

quently measured at 690 nm. Blank assay was realized using

500 mL of culture medium with and without 14 mM of filtered

(0.2 mm pore) SsoPox-I enzyme.

Proteolytic activity. Measurement of the proteolytic activity

was made using azocasein enzymatic assay as previously described

[38]. Briefly, P. aeruginosa PAO1 strain was grown in 200 mL of

LB medium with and without 14 mM of filtered (0.2 mm) SsoPox-I

enzyme during 24 h at 37uC and 450 rpm shaking in 96-well

plate. The SsoPox-I enzyme stock solution being in PBS buffer,

control cultures were supplemented with equivalent PBS quantity.

Cells were centrifuged 15 min at 12.000 g. The reaction was

performed in 0.3 M TrisHCl buffer (pH 7.5) with 50 mL of

azocasein (Sigma, St. Louis, USA) (30 mg.mL21 dissolved in

water) and with 50 mL of culture’s supernatant for a final volume

of 1.5 mL. The reaction was incubated at 37uC for 1 h and

subsequently stopped by addition of 250 mL of 20% (w/v)

trichloroacetic acid (TCA). The blank assay was realized using

50 mL of culture medium with and without 14 mM of filtered

(0.2 mm pore) SsoPox-I enzyme. After centrifugation at 12.000 g
for 10 min, optical density was measured at 366 nm. The

proteolytic activity was defined as the increase in absorbance at

366 nm.h21 per number of cells (OD600).

Biofilm formation assays. Liquid cultures of P. aeruginosa
PAO1 were grown for 18 hours, and subsequently diluted 1:50 in

10% TSB. To examine biofilm susceptibility to SsoPox-I, 100 ml

aliquots were dispensed onto Calgary Biofilm Device 96-well

plates (MBEC Assay for Physiology & Genetics, Innovotech Inc.,

Edmonton, Alberta, Canada). A three-fold dilution series from

50 mg to 0.5 mg of SsoPox-I was added to the wells containing P.
aeruginosa. The plates were incubated for 4 hours with rocking at

120 Hz at 37uC, and subsequently, the MBEC device with

adherent P. aeruginosa biofilms was placed on a fresh 96-well
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plate containing 100 ml of 1% crystal violet dye in each well for

15 minutes. The MBEC device was subsequently washed three

times with 100 ml of water to remove excess dye and allowed to

dry. Crystal violet stain was solubilized from the biofilms after

placing the MBEC device on a 96-well plate with 100 ml of 100%

ethanol in each well. The solubilized crystal violet dye was

measured at 600 nm using a Varioskan Flash multimode plate

reader (Thermo). The optical density at 600 nm was also used to

assess P. aeruginosa PAO1 planktonic growth on the original 96-

well plate to determine the effect of SsoPox-I on P. aeruginosa
planktonic growth.

In vivo experiments
Ethics statement. The experiments and protocols were

performed in accordance with the European law and the French

version of this law details the statutory requirements for the live

animal experiments (articles R214-87 to R215-10 of Code Rural,

law #76–629 from July 10th, 1976/law #2001-464 from May

29th, 2001 (published in JORF on May 31st, 2001)). Consistent

with these laws, the experiments were performed under the direct

control of the researcher authorized through the Préfecture-des-

Bouches-du-Rhone Administration (authorization number: 13–

437). The animal experiments were performed in accordance with

‘Animal Research: Reporting In Vivo Experiments’ (ARRIVE

Guidelines http://www.nc3rs.org.uk) and the guidelines of the

Guide for the Care and Use of Laboratory Animals. All animal

experiments were authorized through the National Animal Ethics

Committee («Comité National de Réflexion Ethique sur l9Expér-

imentation Animale (Comité d9éthique de Marseille)»). The

experiments were performed in the Faculté de Pharmacie-Aix-

Marseille University.

The animals were euthanized with an intra-peritoneal injection

of a lethal dose of thiopental (Panpharma, France).

General procedures. Adult Sprague-Dawley male patho-

gen-free rats, weighing 250 to 300 g, were obtained from SAS

Janvier (Le-Genest-St-Isle, France) and housed in individual

plastic cages (4 animals per cage) in a ventilated pressurized

cabinet (A-BOX 160, Noroit, Rezé, France) with free access to

water and standard diet food. The rats were anesthetized with 5%

Sévoflurane (Abbott, Rungis, France) in 100% oxygen (anesthe-

tizing box, Harvard Apparatus, Les Ulis, France). The trachea was

exposed, and they were intubated using a 16-gauge catheter for

drug and/or bacterial administration. The awakened rats were

housed under the same conditions and weighed daily. At the end

of each experiment, the rats were euthanized with an intra-

peritoneal injection of a lethal dose of thiopental (Panpharma,

France).

Rat tolerance of inhaled SsoPox-I. The tolerance to intra-

tracheal treatment with SsoPox-I was examined in a preliminary

study on 3 groups of animals (n = 3 per group) receiving 250 ml of

SsoPox-I at a concentration of 0.1, 1 or 10 mg/ml and compared

with 5 control animals receiving 250 ml of PBS. After the

treatment, signs of bad tolerance of the molecule were investigated

i.e. shortness of breathing, prostration and atony or weight loss

above 10% from baseline. Spontaneous mortality was also

recorded. One animal from each group was sacrificed after 6,

24 and 48 hours. The remaining animals were sacrificed after

48 hours. Subsequently, the lungs were removed, macroscopically

examined, and preserved in formaldehyde for histological

assessment of lung damage.

Rat respiratory infection model and SsoPox-I

treatment. Three groups of 20 animals were infected through

intra-tracheal inoculation with 250 ml of a PBS solution containing

108 CFU/ml of P. aeruginosa PAO1.

Among the 3 groups of infected rats, one group received

immediately after infection 250 ml of PBS (non-treated group:

NT), while another group was treated with 250 ml of SsoPox-I at a

concentration of 1 mg/ml (immediate treatment group: IT). The

last group received 250 ml of 1 mg/ml SsoPox-I at 3 hours after

infection (deferred treatment group: DT). SsoPox-I and additional

PBS were delivered intra-tracheally using the same anesthetic

procedure as used for the infection.

Lung processing and blood or spleen samples. After

infection, the animals were observed for 2 days, and spontaneous

mortality was examined. Animals’ conditions and clinical status

were checked every 2 hours. Humane endpoints were used during

the survival study. If animals had one of the following signs, they

were anesthetized and euthanized with an intra-peritoneal

injection of a lethal dose of thiopental (Panpharma, France) to

avoid suffering:

– Major dyspnea with noisy breathing and head or neck

movements associated with breathing

– Prostration and atony

– Weight loss.20% of initial body weight.

The remaining rats were euthanized after 48 hours. Subse-

quently, the lungs were removed aseptically. The right lung was

homogenized in PBS for bacterial culture, and the left lung was

preserved for histological analysis. The blood and spleen were

sampled and cultured on agar plates to assess systemic diffusion of

the bacteria.

Histological severity score (HSS). Sections (3 mm thick)

were obtained from the upper, mid and lower parts of the lungs,

including the entire circumference. The sections were stained with

hematoxylin and eosin. A pathologist blinded to the group identity

(H. L.) examined the samples. The HSS was calculated based on

the number of bronchopneumonia lesions (0, no lesions; 1, 30

lesions/lung; 2, $30 lesions/lung; 3, confluent lesions of

bronchopneumonia), as previously reported [39,40].

Statistics
The number of studied animals (20 animals per group) was

calculated based on a mortality reduction from 80% in the NT

group infected with PAO1 to an expected mortality rate of 50% in

the treated groups, with 90% statistical power and a two-sided

alpha value of 0.05. The data were expressed as the means 6

standard deviation (SD) or median [inter-quartile range, IQR]

according to the distribution of the data. Student’s t-test or the

Mann-Whitney rank-sum test were used for inter-group compar-

isons. Kaplan-Meier analysis was performed to evaluate 48-h

mortality. Intergroup differences were evaluated using the log rank

test. The data analysis was performed with SPSS for Windows

(Chicago, IL), version 12.0. A value of p#0.05 was considered

statistically significant.

Results

Protein production & purification
See Fig. S1 in supplementary material.

In vitro experiments
We monitored the lasB activity in a P. aeruginosa PAO1 strain

carrying the PlasB-luxCDABE plasmid. We showed that the

addition of SsoPox-I significantly reduced the levels of lasB activity

(Fig. 1A). Moreover, this inhibition exhibited a dose-dependent

profile with a half inhibition concentration ([C1/2]) of the enzyme

of approximately 0.5 mg/ml (Fig. 1A).
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Pyocyanin secretion was affected by the presence of SsoPox-I

and presented a 4 fold drop in quantity as compared to the control

(Fig. 1B).

Cultures of PAO1 made in presence of 14 mM SsoPox-I showed

after 24 h a clear drop of protease activity followed using

azocasein assay. Protease activity in presence of SsoPox-I was

beyond detection limit (Fig. 1C).

The biofilm assay showed that SsoPox-I reduced biofilm

formation in a dose-dependent manner with a [C1/2],170 mg/

ml (Fig. 1D).

Interestingly, SsoPox-I did not significantly affect the rate of P.
aeruginosa growth. Indeed, even at the highest enzyme dose

(5 mg/ml), the optical density of the cell culture did not

significantly differ from that of the control experiment with no

treatment (Fig. S2).

In vivo experiments
Rat tolerance to inhaled SsoPox-I. The effects of SsoPox-I

treatment on rat tissues were investigated. On the 9 rats that

received SsoPox-I into the trachea, none exhibited any sign of bad

tolerance including in the group that received the highest dose.

The weight curve of treated rats was not different to control

animals and no animal loosed weight. There was no spontaneous

mortality after 48-hours observation in the treated group as well as

in the control group. After sacrifice, the lungs were harvested and

the macroscopic examination showed no signs of injury. Histo-

logical assessment showed that there was no sign of lung damage 6,

24 or 48 hours after the treatment including in the group receiving

the highest dose of SsoPox-I.

Rat respiratory infection model and SsoPox-I

treatment. The influence of SsoPox-I on pulmonary P.
aeruginosa infection was monitored in 3 groups of 20 rats. The

spontaneous mortality rate was 75% (15/20) in the non-treated

Figure 1. Effects of SsoPox-I on PAO1 virulence factors expression and biofilm formation. 1A: lasB activity. The chart shows the lasB
activity in treated cultures, expressed as the percentage of that in untreated controls (no SsoPox-I), and these data represent the average of three
independent experiments, each with three technical replicates. The error bars represent 95% confidence intervals. Student’s t test p,0.05 for SsoPox-
I. T tests were used for the comparison of baseline with the highest dose of enzyme. 1B: pyocianin synthesis. Pyocyanin quantification of P.
aeruginosa PAO1 strain after 24 h growth in GA medium was assessed in presence (black) or absence (gray) of 14 mM of SsoPox-I lactonase. Pyocyanin
quantity was followed at A690 as per number of cells (A600). 1C: proteolytic activity. Proteolytic activity of P. aeruginosa PAO1 strain after 24 h
growth in LB medium was assessed in presence (black) or absence (grey) of 14 mM of SsoPox-I lactonase. Proteolytic activity was measured by the
azocasein assay (A366.h21) as per number of cells (A600). ND stands for non-detected activity. 1D: biofilm formation. Biofilms were grown in an
MBEC device as described in the methods section. The dose-dependent inhibition of P. aeruginosa biofilm formation through SsoPox-I was observed
and analyzed using Student’s t test p = 0.05 for SsoPox-I.
doi:10.1371/journal.pone.0107125.g001
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group (NT). When the rats were treated with SsoPox-I (1 mg/ml)

immediately after infection (IT), the mortality rate was significantly

reduced to 20% (4/20) (p = 0.0001 vs. NT). The protective effect

of lactonase on mortality was less significant in the deferred

treatment (DT) group, where the treatment was administered at

3 hours after the infection (mortality rate of 50% (10/20) (p = ns

vs. NT) (Fig. 2). However, in the DT group, the mean delay of

mortality was significantly longer than that in the control group

(respectively 2669.5 vs. 1769.2 hours; p = 0.04).

In addition to death, other parameters were monitored during

the infection, including the weight of the animals. We observed

that the loss of body weight, measured from the day of infection

until the day of death, was significantly less important in the IT

group than in the NT group (11.3612 g vs. 20.469.3 g

respectively; p = 0.01). The DT group lost 25.661.82 g of body

weight (p = ns vs. NT group).

Notably, consistent with the increased survival rate observed in

the IT group, we also observed that compared with the NT group,

the damage to the lungs of the animals in the IT group was less

significant (Fig. 3), as revealed by a significantly lower HSS (HSS

IT group vs. NT group: 1.2760.6 vs. 2.6460.4; p = 0.005). In the

DT group, the mean HSS was not significantly different from that

in the NT group.

Moreover, we also investigated the potential effects of lactonase

treatment on the lung bacterial count, associated with the

increased survival observed in the IT group. We observed that

the lung bacterial count did not significantly differ between the 3

groups (CFU/g of lung in median [inter-quartile range]: 3.36105

[5.6610321.36106] in the NT group; 1.36105 [9.261032106] in

the IT group; and 105 [8.4610427.86105] in the DT group)

(Fig. 4).

Finally, there was no difference concerning the number of

animals with positive blood or spleen culture at the time of death

between the 3 groups (n/tot (%): 8/20 (40%) in the NT group; 7/

20 (35%) in the IT group; 10/20 (50%) in the DT group; p = NS).

Discussion and Conclusions

In the present study, we used both in vitro and in vivo
experiments to show that the lactonase SsoPox-I was able to

decrease the activity of lasB virulence gene, the synthesis of

Figure 2. Forty-eight-hour survival curves for the 3 groups of
animals after infection. The animals were infected with 108 CFU/ml
(2.56107 CFU/rat) of P. aeruginosa PAO1 in the following treatment
groups: non-treated (NT), immediate-treatment (IT) or deferred
treatment (DT) who received treatment with SsoPox-I at 3 hours after
infection.
doi:10.1371/journal.pone.0107125.g002

Figure 3. Lung histological examination after infection.
Pathological mapping of the lungs of non-treated (NT) (A), deferred-
treatment (DT) (B) and immediate-treatment (IT) (C) groups. Photomi-
crographs of the pathological Giemsa staining of the lung sections
(100X). Mean histological severity score (HSS) was 2.6460.4 (mean 6
SD) for the NT group, 1.2760.6 for the IT group (p = 0.005 vs. NT) and
2.3260.4 for the DT group (p = NS vs. NT).
doi:10.1371/journal.pone.0107125.g003
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pyocianin, the proteolytic activity and the biofilm formation of the

P. aeruginosa PAO1 strain. In addition, the treatment with

SsoPox-I was associated with an important improve in survival in a

rat model of highly lethal acute pneumonia.

Originally, this work focuses on the lactonase SsoPox-I QQ

activity with a design trying to approach clinical settings by giving

the enzyme as a therapeutic drug. Similarly, QS inhibitor

molecules such as furanones have been shown to increase the

bacterial clearance in animal models of P. aeruginosa pneumonia

but data on reduction of mortality are lacking [16] [19,20]. In one

study in mice using indirect demonstration of QQ effects of

lactonases in animal models of pneumonia [31], Migiyama et al.
showed a decrease in mortality and lung damage when animals

were infected with a lactonase-producing P. aeruginosa strain.

The main difference between Migiyama’s study and ours is that we

used a wild strain of P. aeruginosa for infections and we treated

the animals with a synthetic lactonase given after infection as a

therapeutic drug.

The catalytic efficiency and quenching activity of the QS

lactonase SsoPox-I against 3-oxo-C12 AHLs has been previously

improved through protein engineering [32]. While the QS activity

of the wild-type enzyme has been previously demonstrated in vitro
[26], the efficiency of this enzyme in vivo has not been explored.

SsoPox-I inhibits the lasB gene activity, a classical virulence factor

[41], at concentrations as low as 0.5 mg/ml. SsoPox-I is also able

to decrease the pyocianin synthesis as well as the proteolytic

activity of a P.aeruginosa PAO1 strain. Moreover, the effect of

SsoPox-I on P. aeruginosa goes beyond the inhibition of virulence-

associated genes. Indeed, SsoPox-I also inhibited biofilm forma-

tion, albeit at much higher concentrations (170 mg/ml). This

discrepancy in the active dose of the enzyme might reflect the

distinct regulation of biofilm formation and maturation [12] [42].

Indeed, multiple quorum sensing-regulated genes are modulated

without affecting lasRI, rhlRI or the production of N-acyl-L-

homoserine lactones. In particular, the transcriptional regulator

MvfR may contribute more to biofilm formation of P. aeruginosa.
This could explain why in our experiments SsoPox-I seemed to

have a better efficacy on lasB gene down regulation than on

decrease in biofilm formation [43,44].

We further investigated the potential consequences of the

observed in vitro effects. For this, we used an acute lethal model

of P. aeruginosa pneumonia. Our model was consistent with

previous ones showing a high and early lethality within the 24–48

first hours [45–47]. On histological analysis, the lungs of

untreated animals exhibited important and confluent lesions of

broncho-pneumonia arguing for the correlation between death

and severity of pneumonia. In addition, nearly one half of the

animals had bacteremia which probably contributed to the high

mortality rate. In this model, SsoPox-I significantly decreased the

mortality rate from 75% in the non-treated group to 20% in the

group treated immediately after infection. This observation is

consistent with the dramatic reduction in the lung damage

observed in the treated group. The results are also consistent with

previous studies showing that infections with QS-deleted strains

of P. aeruginosa were less severe in several infection models

[48][49].

SsoPox-I did not significantly reduce lung lesions and rat

mortality when administrated at 3 hours after the onset of

infection. This ineffectiveness might be due to the use of a highly

lethal model of infection (death in 48 hours). The preventive

action of SsoPox-I might be higher than its curative effect as

previously observed for QSI [22]. QS is indeed under a positive

retro-control regulation [50]: when the bacterial quorum is

reached, the inhibition of QS is more difficult because of the

self-stimulating properties of bacteria.

In our study, the innovative molecule SsoPox-I was adminis-

tered intra-tracheally within the 3 first hours of infection. This

design was chosen to approach clinical preventive therapeutic

methods used in patients at risk for P. aeruginosa infections, such

as ICU patients. However, our model did not totally mimic clinical

settings primarily because of the high amount of bacteria given in

one inoculation.

No difference in the lung bacterial burden was observed

between the control group and the 2 treated groups regardless the

time of administration of the molecule. While surprising, these

results are consistent with our in vitro findings on bacterial

cultures in which lactonase adjunction to the media did not

influence P. aeruginosa growth. These results agree with those of

Migiyama et al. [31] who showed similar bacterial count with

animals infected with wild-type P. aeruginosa and their

lactonase-producing mutant strain. It remains however unknown

whether the improved survival could be due to a less invasive

activity of the microorganism towards the lung parenchyma and/

or to change in the host-pathogen interaction regardless the

bacterial load.

In summary, SsoPox-I presents several properties that could

increase the therapeutic arsenal, particularly in the field of

nosocomial pneumonia. In contrast to antibiotics, quorum-

quenching strategies do not impose drastic selection pressure on

bacterial survival. Therefore, treatments with lactonases such as

SsoPox-I might not or only slightly, promote the emergence of

resistance [7][51]. Interestingly, due to their ability to reduce

biofilm formation, lactonases could restore susceptibility to

antibiotics in drug-resistant strains as previously observed with

tobramycin in animal models [52]. Because of its mechanisms of

action involving a modulation of the QS, azythromycin has been

recently shown in a randomized controlled trial to reduce the

incidence of ventilator-acquired pneumonia in pseudomonas

colonized patients [53] showing the growing interest of QS

inhibitors in clinics.

To conclude, our results open the way to further investigations

assessing SsoPox-I as a possible tool in antimicrobial strategy.

Figure 4. Lung bacterial count after infection. The lung bacterial
count was adjusted according to the lung weight. The box plots limits
represent the 25th and 75th percentiles, and the bars represent the 5th

and 95th percentiles. The median is represented as a horizontal line.
NT = non-treated group; IT = immediate treatment group; DT =
deferred treatment group.
doi:10.1371/journal.pone.0107125.g004
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Supporting Information

Figure S1 SDS-PAGE of SsoPox-I. Twenty-five mg of SsoPox-I

(left band) were deposited next to a Molecular weight Marker (MwM,

right panel) (Mulicolor broad range protein ladder, Euromedex).

(TIF)

Figure S2 The growth of P. aeruginosa in the presence of
SsoPox-I. A small decrease in P. aeruginosa growth was observed at

the highest concentration of SsoPox-I; however, this effect was not

significant (Student’s t test p = 0.67). The chart shows percentage of

controls (no SsoPox-I) and represents the data obtained from four

independent experiments, each performed with three technical

replicates. The error bars represent 95% confidence intervals.

(TIF)

Checklist S1 Arrive guidelines.

(PDF)
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