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1 Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France, 2 INSERM, U1104, Marseille, France, 3 CNRS, UMR7280, Marseille, France,

4 INSERM, UMR_S 1072, Marseille, France, 5 Aix-Marseille Université, UNIS, Marseille, France

Abstract

Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis.
EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of
the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced
by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the
cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in
EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the
synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in
50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar
concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as
the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+

store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF
response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade
of these ion channels.
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Introduction

EGF controls key cellular processes, such as proliferation,

survival, differentiation during development, tissue homeostasis,

and tumorigenesis (reviewed in [1]). Through binding to the

tyrosine kinase EGF receptor (EGFR), EGF activates a wide

variety of signaling cascades mostly leading to the regulation of

gene transcription. EGF is synthesized as a transmembrane

precursor from which a mature, diffusible form is generated by

metalloproteases. Soluble EGF can activate EGFR on distant cells

via an endocrine/paracrine pathway or cells of its origin via an

autocrine action. Endocrine/paracrine EGF is mitogenic at

picomolar concentrations. Human serum contains around 40

pM EGF [2], which is active on cell proliferation at a twenty-fold

dilution [3].

Consistent with these findings, high affinity classes of EGF

binding sites have been demonstrated to be present at the cell

surface. Analysis of 125I-EGF binding data [4] combined with

crystallographic structures of drosophila [5] and human [6,7]

EGFRs have suggested that the proposed high-affinity and low-

affinity classes of EGF binding sites at the cell surface reflect

negative cooperative binding to dimeric forms of the receptor,

high affinity sites being the unliganded dimer, and low affinity sites

the dimer already bound to one molecule of EGF. Recent data [8]

also suggested that monomers carry low affinity binding sites so

that the high affinity sites could be a dimeric receptor already

preformed and primed for fast activation by EGF.

Most studies on EGFR signaling have focused on low affinity

binding site receptors as EGF concentrations used were in the

nanomolar range. However, such doses might only be reached in

autocrine signaling in the immediate vicinity of cell-surface

receptors or in juxtacrine activation with a non-diffusible

transmembrane ligand engaged with EGFR on adjacent cell

membrane. Endocrine and paracrine responses to EGF are likely

to mainly involve binding to high affinity EGFR sites. So we asked

whether EGF at plasmatic concentrations, compatible with the

binding to EGFR high affinity binding sites, was able to induce a

significant cellular response. We chose to analyze Ca2+ signaling,
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an early event in EGF responses already thoroughly characterized

for nanomolar doses [9]. We used COS-7 cells naturally

expressing endogenous EGF receptors [10], in order to ensure

that the monomer/dimer equilibrium was unaltered, in contrast to

A431 carcinoma cells [9,11] or EGFR-transfected fibroblasts [10].

Using sensitive microscope-based real time imaging of calcium

dynamics, we unexpectedly discovered that plasmatic concentra-

tions of EGF (less than 20 pM) induce a distinctive robust

oscillatory Ca2+ signaling mode quantitatively comparable to the

Ca2+ signal obtained in response to nanomolar concentrations.

However, the two responses were qualitatively different as

picomolar EGF response involved essentially plasma membrane

Ca2+ channels that are not activated by store depletion, but was

modulated by charybdotoxin-sensitive K+ channels. In contrast,

the response to nanomolar concentrations involved internal Ca2+

release and was insensitive to K+ channel blockade.

Material and Methods

Cell culture
COS-7 cells (American Type Culture Collection) derived from

the kidney of the African Green Monkey, Cercopithecus aethiops
were cultured in Dulbecco’s modified Eagle’s medium (DMEM;

Life Technologies) containing 10% (V/V) FBS (Sigma-Aldrich) at

37uC under an atmosphere of 5% CO2 and plated at a density of

about 1.3 104 cells/cm2 on LabTek #1 borosilicate chambered

slides (Thermo Fisher Scientific) previously coated with fibronectin

(BD Biosciences) at a density of 1mg/cm2 for 1 hour and washed

with Ca2+-free HBSS (Life Technologies). Cells were grown for

48–72 hours and deprived of serum 18 hours before imaging in

DMEM-f12 medium without phenol red (Life Technologies). We

ensured that cells were healthy by culturing low-passage cell lines,

by systematically evaluating cell proliferation rate from growth

curve data and by verifying cellular morphology before EGF

stimulation experiments.

Drugs
Mouse EGF (Life Technologies) was diluted in fresh imaging

buffer solution (3 mM Ca2+ in the extracellular medium,

3 mM Ca2+
o); 125 mM NaCl, 2.5 mM KCl, 1.1 mM NaH2PO4,

4 mM NaHCO3, 2 mM MgCl2, 3 mM CaCl2, 10 mM glucose,

10 mM Hepes, 0.2% (W/V) BSA or in Ca2+ free buffer (nominally

0 mM Ca2+ in the extracellular medium, 0 mM Ca2+
o) solution;

125 mM NaCl, 2.5 mM KCl, 1.1 mM NaH2PO4, 4 mM

NaHCO3, 2 mM MgCl2, 10 mM glucose, 10 mM Hepes, 0.2%

(W/V) BSA, 1 mM EGTA (Sigma). EGF solutions of 40 pM and

4 nM (to be applied volume to volume to yield final concentrations

of 20 pM and 2 nM, respectively) were kept on ice at all times and

warmed up to 30uC just before stimulation to avoid degradation of

EGF.

EGFR-specific neutralizing monoclonal M225 antibodies [12]

were chosen for their capacity to inhibit EGF binding, EGFR

tyrosine kinase and proliferative activities and their use in cancer

therapy (humanized version Cetuximab/C225). 40 ml of 100 mg/

ml solutions of anti EGFR Ab-3 mouse M225 (Calbiochem, Merck

Millipore) or IgG1 were added to 400 ml cell culture chamber

200 s after the start of time-lapse recording.

Charybdotoxin (Alomone labs), a blocker of Ca2+-activated K+

channels KCa1.1 [13], KCa3.1 [14] and voltage-dependent Kv1.3

channels [15] was added to cells at a concentration of 100 nM,

20 min before starting the time-lapse recording.

Intracellular Ca2+ imaging
Fluo5F-AM (Life Technologies) was chosen as Ca2+ indicator in

view of the following considerations: i) high quantum efficiency

upon binding Ca2+ (comparable to Fluo4 quantum efficiency, Q
= 0.14, [16]), ii) excitation by light in the blue spectral range,

which reduces cell phototoxicity, iii) low affinity for Ca2+

(KD:700 nM at 30uC, 1 mM Mg2+ [17]), which is important to

avoid dye saturation, exogenous buffer effects [18], and to obtain

an accurate estimate of the timecourse of Ca2+ decay.

Cells were loaded with 3.5 mM fluo5F-AM in 0.5PBX Signal

Enhancer (Becton Dickinson Biosciences) and 0.5 DMEM-f12

medium without phenol red for 20 min at 37uC and 20 min at

room temperature. Loaded cells were washed and equilibrated

with fresh imaging buffer solution at 30uC. Video time-lapse was

started and 25 s after, EGF was applied volume to volume, leading

to final concentrations of 20 pM and 2 nM.

Digital fluorescence images were obtained using an inverted

Axio Observer.Z1 Zeiss microscope (406 oil-immersion lens;

numerical aperture, 1.4) equipped with an image acquisition

system (Axiovision, Zeiss), a metal halide HXP-120 lamp for

fluorescence excitation and a GFP fluorescence cube (Zeiss, filter

set 38 HE). To reduce photodamage, neutral density filters were

introduced in the light path to illuminate samples with 380 mW as

measured at the back aperture of the objective. Images were

acquired with a CCD camera, (Photometrics HQ2, interline

transfer chip (139261040 pixels) reaching a final pixel size of

322 nm after 640 magnification and a 26 binning to obtain a

good signal to noise ratio with minimal illumination of the cells.

Temperature was maintained at 30uC to slow down loss of

cytoplasmic Ca2+ indicator [19]. The standard protocol to study

Ca2+ transients consisted in acquiring a sequence of 300 images

with an integration time of 68 ms, and a 1s interval between

consecutive images.

Image analysis
Fig 1A illustrates the pattern of fluorescence reported by fluo5F

in COS-7 cells after addition of 2 nM EGF. Fluo-5F emission

(max 516 nm) changes were analyzed off-line with the Image J

software to measure the average fluorescence of individual cells

(Fcell) within a ‘‘region of interest’’ (ROI) covering the cell area

(Fig 1A). The mean intensity over the same area for the successive

images of the stack was then measured automatically to monitor

the timecourse of fluorescence changes. Approximately 10 to 20

cells were measured in each field of view. Background fluorescence

was evaluated by averaging fluorescence (Fbkg) in three regions of

similar size to the cellular ROIs, which were located in the

periphery of the recorded field (Fig 1A and B), and was subtracted

from the fluorescence value.

The changes in fluorescence (DF(t) = F(t) – F(0)) were calculated

(Sigma Plot software) where F(t) is the fluorescence at any time and

F(0) the average of the 25 images preceding the addition of EGF.

To correct for non-uniformities in dye concentration [18], DF(t)
was divided by the pre-stimulus fluorescence. Thus, the ratio was:

DF(t)/F(0) = (F(t) – F(0))/F(0).

Control experiments were performed for time-dependent dye

bleaching over the course of the experiment. In 41 control cells,

EGF-free buffer was added (Fig. 1C). Fluorescence was monitored

in 32 cells showing no fluorescence peak throughout the entire

time-lapse recording (Fig 1D) and was found to exhibit a decaying

baseline. Therefore, an Fbleach term was determined by fitting the

average of the fluorescence signal in these 32 cells ((Fcell – Fbkg)/

F(0)) with a single exponential function (F = 0.78+0.24e(20.008t),

time constant = 130s, Fig. 1D). The exponential fit was then used

High Affinity EGF Receptor Calcium Signaling
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to correct the fluorescence signal in responsive cells for dye

bleaching: F(t) values were normalized with the exponential

function F(t)bleach to produce the DF/F traces (Fig. 1E). This ratio

is a unique function of the stimulus-induced change in intracellular

Ca2+ (Ca2+
i).

Cell responsiveness to EGF was determined by selecting cells

that displayed calcium signals rising above an amplitude threshold

(th) which was defined from the distribution of normalized

fluorescence intensity values from the 32 non-responsive control

cells subjected to buffer in the absence of EGF: a mean (t0) of

0.047 and a standard deviation (SD) of 0.06 were extracted from a

Gaussian fit curve of the values and th was set as t0+3SD (Fig. 1F).

The calculated th value was 0.23, high enough to exclude the

appearance of false positives. With these detection criteria, 93%

(40/43) cells responded to 2 nM EGF and 49% (137/281 cells) to

20 pM EGF. Signals described as oscillating in Fig. 2C displayed

at least 2 peaks during the time frame.

To quantify oscillatory properties in single cells (Fig. 3 D–G),

responses rising and falling through the th level were detected as

‘‘spikes’’ using custom software developed in IGOR. ‘‘Spike’’

duration and area were calculated. Peaks with a duration shorter

than 10 s and an area smaller than 10 (a.u.) were regarded as noise

oscillations around threshold and discarded.

Data analysis
Kinetics of signals from responsive cells (Fig 2D and 3B) were

obtained by averaging all cell signals, synchronized at the time of

the first rise in fluorescence, for 150 s.

To determine the effect of extracellular Ca2+ on EGF responses

(Figs. 4B–C and 4F–G), an average signal was generated from the

entire single-cell signals over the 300 s time frame and an average

curve was superimposed in bold on individual traces.

Statistical analysis was performed according to the distribution

properties of the data, by rank Wilcoxon and Mann–Whitney

tests, Fisher’s exact test (for contingency table analysis), Gaussian

fitting procedure (all conducted using SigmaPlot 11.0, Jandel

Scientific), with p ,0.001 considered to be statistically significant.

Figures were prepared using SigmaPlot, Igor Pro, and Adobe

Illustrator CS5. Unless otherwise stated, data distributions are

presented as median values. Box and whisker plots are represented

with the first and third quartiles at the ends of the box, the median

is indicated by a horizontal line in the box, the 5th and 95th

percentiles are marked with a bar at the ends of the whiskers and

Figure 1. Image analysis protocol to study Ca2+ signaling. A/Image of fluo5F calcium-dependent fluorescence after addition of 2 nM EGF. ROIs
were drawn over two COS-7 cells (red and blue circles) and 3 areas outside cells (grey circles) in the same visual field. Scale bar: 100 mm. B/Raw
fluorescence intensity (F) as a function of time for the two cell ROIs (red and blue lines), and the three background ROIs (grey lines) shown in A. 2 nM
EGF application (represented by a white bar) was performed 25 s after the start of the video time-lapse. C/Grayscale-coded raster plot of fluorescence
intensity over time of 41 control cells in response to buffer application (i.e. in the absence of EGF). Buffer was added 25 s after the start of the video
time-lapse (as indicated by a white bar). D/Data (upper graph) obtained in cells subjected to control application of buffer in the absence of EGF (same
data as in C). Background fluorescence (Fbkg), evaluated by averaging the fluorescence of three areas outside cells, was subtracted from the signal
(Fcell), measured in 32 cells showing no fluorescence peak throughout the entire video time-lapse. The average fluorescence did not exhibit a flat
baseline due to photobleaching. An Fbleach term was determined from a single exponential fit (lower graph) to the average of 32 traces calculated
from Fcell -Fbkg/F(0) where F(0) is the average of the 25 images preceding buffer application (white bar, 25 s after the start of the video time-lapse). E/
Normalized fluorescence intensity (DF/F) as a function of time for the two cell ROIs (red and blue lines) shown in A. EGF (white bar) was added to cells
25 s after the start of the video time-lapse. F/Histogram of fluorescence intensity values from the 32 control cells where no peak was detected when
buffer was added. A centered value (t0) and a standard deviation (SD) were extracted from the Gaussian fit (red line) of the distribution and a
threshold value (th) was set as t0+3 SD = 0.23, and was used for the detection of significant responses in further experiments.
doi:10.1371/journal.pone.0106803.g001
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outliers are shown as open circles. Statistical significance of p,

0.001 and p,0.0001 are indicated on graphs by the use of ***,

and **** symbols.

Results

Picomolar concentrations of EGF elicit oscillatory Ca2+

responses
Intracellular calcium (Ca2+

i) dynamics induced by EGF in

COS-7 cells were studied by measuring changes in fluorescence

intensity of the low affinity Ca2+ indicator fluo5F, which faithfully

reports kinetics in single living cells [20]. Ca2+
i variations were

quantified as illustrated in Fig. 1. Exposure of COS-7 cells to

2 nM EGF resulted in a rise in Ca2+ levels subsequently reaching a

plateau (Fig. 1E), consistent with the responses to 10 nM EGF

previously reported using fura-2 calcium imaging [9].

Ca2+ signals in response to 20 pM EGF were then characterized

in 281 cells (Fig. 2). Forty nine percent of cells responded to 20 pM

EGF by producing a significant Ca2+ signal. Although high cell-to-

cell variability in the Ca2+
i timecourse was observed, the majority

of responsive cells (72%) displayed an oscillatory Ca2+ signal

(Fig. 2A– C). As these responses were triggered by an unusually

low concentration of EGF, we verified that they were specific to

EGF application. Non-specific calcium fluctuations were quanti-

fied by applying EGF-free buffer. Data from 41 cells (raster plot in

Fig. 1C displays the intensity of fluorescence, encoded in

grayscale, over time) were averaged over 150 s after the first rise

in fluorescence and compared with those elicited in the presence of

20 pM EGF (Fig. 2D). To quantify the difference between the

Ca2+ responses in the absence and in the presence of 20 pM EGF,

Ca2+ load into the cells was defined by measuring the area under

the fluorescence curve. The area in response to the addition of

Figure 2. Ca2+ single-cell microscopy measurements induced by 20 pM EGF in COS-7 cells. A/Raster plot of normalized fluorescence
intensity against time, grayscale coded according to fluorescence intensity. 20 pM EGF was applied 25 s after the start of the video time-lapse (white
bar). B/Representative traces of fluorescence variation over time for four individual cells corresponding to the three classes of responses observed
following 20 pM EGF application: from top to bottom panels, unresponsive cell (0 peak); cells displaying transient or sustained single response (1
peak); cell displaying oscillatory signals (.2 peaks). For each cell, the response is represented both as a grayscale coded raster plot (top, same
representation as in A) and as line plot (bottom). C/Proportion of unresponsive (0 peak), single-peak responsive (1 peak) and oscillatory responsive (.
2 peaks) cells following the addition of 20 pM EGF. D/Comparison of the average fluorescence signals in response to the addition of EGF-free buffer
(n = 8 responsive cells over 41 tested, red trace) or of 20 pM EGF (n = 137 over 281 tested, black trace). Fluorescence signals were synchronized at the
time the first fluorescence slope (time = 0 s), found by estimating the first derivative of the signal, and averaged over 150 s. E/Ca2+ signals are
specifically triggered by EGFR activation. Population traces averaged over cells to which irrelevant (n = 32, black line) or antagonistic anti-EGFR (n = 19
cells, red line) antibodies were added (black bar) 200 s after the start of real-time fluorescence imaging. Empty and filled circles represent the median
intensity during 176 s before and after the addition of antibodies respectively. EGF was applied 25 s after the start of the video time-lapse (white bar).
doi:10.1371/journal.pone.0106803.g002
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EGF-free buffer was found to be 0.6% of the area in response to

20 pM and considered negligible. In order to confirm that

responses to 20 pM EGF were specific to EGFR activation, the

effects of antagonistic anti-EGFR antibodies versus irrelevant

IgG1 antibodies (isotype control) were determined. While the

average fluorescence intensity values steadily increased after

irrelevant antibodies were added (n = 32 cells), possibly related to

an application effect that was also seen immediately after buffer

(Fig. 2D) or EGF (Fig. 2E) applications, a significant decrease

(Wilcoxon test, p,0.001) was seen when anti-EGFR antibodies

were applied (Fig. 2E): median values of the fluorescence signal

before and after anti-EGFR antibodies were respectively 0.62 and

0.38, demonstrating the specificity of the Ca2+ response to 20 pM

EGF.

Picomolar and nanomolar concentrations of EGF elicit
comparable Ca2+ responses

A statistical comparison of the Ca2+ responses to 2 nM and 20

pM EGF was performed (Fig. 3). While a higher fraction of cells

(Fig. 3A) responded to 2 nM than to 20 pM EGF (93%, n = 40/43

vs 49%, n = 137/281; Fisher’s exact p,0.0001), no noticeable

differences were found in the kinetics of the averaged Ca2+ signal

(first peak rise and decay, Fig. 3B) in response to 2 nM or 20 pM.

Considering the ratio of the concentrations applied (2 nM/20

pM = 100), the difference in the intensity of the calcium signal

elicited by the two concentrations was rather modest (1.2 vs 0.7 for

2 nM and 20 pM, respectively, ratio = 1.7), although statistically

significant (p,0.001, Mann-Whitney).

Figure 3. Comparative analysis of the Ca2+ responses following application of EGF at two different concentrations. A/Proportion of
cells not responding (white bar) or responding to 2 nM (grey bar, n = 40/43) or 20 pM (red bar, n = 137/281) EGF. B/Average of responsive cell Ca2+

signals time-locked on the first fluorescence peak and recorded over 150 sec in response to 2 nM (grey line, n = 40) or 20 pM (red line, n = 137) EGF
application. C/Schematic representation of the rules used to define the properties of the fluorescence peaks during an oscillatory response. Peaks
were defined as signals rising and falling through an intensity threshold (th) of 0.23, and delay, duration and inter-spike interval (ISI, difference
between the starting time of 2 consecutive peaks) values were defined relative to the threshold crossing. The area under the first peak is shown in
black. EGF was added 25 s after the start of the video time-lapse (white bar). D/Bar plot showing the distribution of first peak delays as defined in
C elicited by 2 nM (grey box, n = 40/43) or 20 pM (red box, n = 137/281) EGF. E/Bar plot showing the distribution of first peak durations as defined in C
elicited by 2 nM (grey box, n = 40/43) or 20 pM (red box, n = 137/281) EGF. F/Bar plot showing the distribution of first peak areas as defined in C
elicited by 2 nM (grey box, n = 40/43) or 20 pM (red box, n = 137/281) EGF. G/Bar plots showing the distribution of average interspike intervals
(Average ISI) for oscillatory cells responding to 2 nM (grey box, n = 22/43 cells) or 20 pM (red box, n = 98/281 cells) EGF.
doi:10.1371/journal.pone.0106803.g003
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To analyze the properties of the oscillatory responses observed

in response to 2 nM and 20 pM EGF, we defined a peak as a

signal that rises and falls through the intensity threshold th
(Fig. 3C), calculated from the Gaussian distribution of fluores-

cence intensity values in control experiments where EGF-free

buffer was added to cells (Fig. 1F). Then statistical analysis was

performed to determine whether the values of the different

parameters characterizing the oscillatory response (delay of

appearance of the first peak after EGF application, duration of

the first peak, area of the first peak and the average interval

between the peaks or ISI) were significantly different between the

20 pM and 2 nM EGF applications. The delays (Fig. 3D) of the

responses were slightly but significantly smaller for 2 nM EGF

than for 20 pM (61 vs 86 s, p = 0.031, Mann-Whitney). Peak

duration and area were evaluated on the first peak elicited after

EGF addition to avoid measurement errors on peaks exceeding the

recording time frame. Peak durations (Fig. 3E) obtained at 2 nM

EGF were significantly longer than those obtained at 20 pM EGF

(179 vs 53 s, p,0.001, Mann-Whitney). Peak areas (Fig. 3F) were

also significantly larger in response to 2 nM EGF compared to 20

pM EGF (382 vs 102, p,0.001, Mann-Whitney). However, the

medians of the interspike intervals (Fig. 3G) were not significantly

different at the two EGF concentrations (59 vs 72 s for 2 nM and

20 pM, respectively, p = 0.981, Mann-Whitney). Overall, quanti-

fications suggest that 2 nM EGF elicit a modestly but significantly

larger increase in Ca2+ load than 20 pM EGF, while Ca2+ signal

kinetics are not significantly different.

The Ca2+ sources involved in the EGFR response are
different for picomolar and nanomolar concentrations

It is already known that Ca2+ signaling in response to

nanomolar EGF has two components: Ca2+ release from the

Figure 4. External Ca2+ dependence and sensitivity to K+ channel blocker charybdotoxin of EGF Ca2+ transients. A/Proportion of cells
responding (grey bar) or not responding (white bar) to 2 nM EGF in 3 mM extracellular Ca2+ (n = 24) or in 0 mM Ca2+/1 mM EGTA (n = 28) in the
extracellular medium. B/Fluorescence intensity signaling of individual cells (each represented by a different color) during the application of 2 nM EGF
(white bar) when 3 mM Ca2+ was present (n = 24). The averaged population signal is shown as a thick black trace. C/Fluorescence intensity of
individual cells (each represented by a different color) during the application of 2 nM EGF (white bar) when Ca2+ was removed and 1 mM EGTA was
added to the extracellular medium (n = 28). The averaged population signal is shown as a thick black trace. D/Average of all cell signals during 2 nM
EGF application, synchronized at the time of the first fluorescence peak and averaged for 150 sec, when 3 mM Ca2+ was present (black line, n = 24) or
when Ca2+ was removed from and 1 mM EGTA was added to the extracellular medium (red line, n = 28). E/Proportion of cells responding (grey bar) or
not responding (white bar) to 20 pM EGF in 3 mM extracellular Ca2+ (n = 13) or in 0 mM Ca2+/1 mM EGTA (n = 11) in the extracellular medium. F/
Fluorescence intensity of individual cells (each represented by a different color) during the application of 20 pM EGF (white bar) when 3 mM Ca2+ was
present (n = 13). The averaged population signal is shown as a thick black trace. G/Fluorescence intensity of individual cells (each represented by a
different color) during the application of 20 pM EGF (white bar) when Ca2+ was removed from and 1 mM EGTA was added to the extracellular
medium (n = 11). The averaged population signal is shown as a thick black trace. H/Average of all cell signals during 20 pM EGF application,
synchronized at the time the first fluorescence peak and for 150 sec, when 3 mM Ca2+ was present (black line, n = 13) or when Ca2+ was removed
from and 1 mM EGTA was added to the extracellular medium (red line, n = 11). I/Proportion of cells responding (grey bar) or not responding (white
bar) to 2 nM EGF in the absence (0, n = 24/27) or in the presence (100, n = 16/19) of 100 nM charybdotoxin (chx) in the extracellular medium. J/
Proportion of cells responding (grey bar) or not responding (white bar) to 20 pM EGF in the absence (0, n = 16/22) or in the presence (100, n = 6/22) of
100 nM charybdotoxin (chx) in the extracellular medium.
doi:10.1371/journal.pone.0106803.g004
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intracellular stores sequentially due to phospholipase (PLC) c
activation, inositol 1,4,5-trisphosphate (IP3) synthesis and IP3

receptor activation, and a net Ca2+ influx from the outer medium

due to store-operated channels (SOC) [10] and/or non-SOC [21]

responsible for the plateau phase. Consistent with these previous

observations, when Ca2+ was omitted from the extracellular

medium and 1 mM EGTA was added (nominally 0 mM Ca2+ in

the extracellular medium), most cells still responded to 2 nM EGF

(Fig. 4A, 88% n = 24 in 3 mM Ca2+
o vs 64% n = 28 in 0 mM

Ca2+
o). Also, single-cell responses appeared very similar whether

Ca2+ was present or not in the extracellular medium. Average

fluorescence curves (shown in bold lines in Fig. 4B and 4C) were

comparable over the first 200 s phase, then the signal decreased in

the absence of Ca2+
o while it stayed at a plateau with 3 mM Ca2+

o.

Furthermore, the average kinetics of the first Ca2+
i peak elicited by

2 nM EGF were very similar with or without external Ca2+

(Fig. 4D, compare black curve 3 mM Ca2+
o with red curve 0 mM

Ca2+
o). In contrast, responses to 20 pM EGF were totally

abolished in the absence of extracellular Ca2+ (Fig. 4E–H). While

69% of the cells (n = 13) responded in 3 mM Ca2+
o, 0% (n = 11) of

the cells responded in 0 mM Ca2+
o (Fig. 4E). No signal was

detected in any of the cells (see average curve in black in Fig. 4G

and synchronized average response in red in Fig. 4H).

The Ca2+ oscillations induced by picomolar and
nanomolar concentrations have different
pharmacological sensitivities

Since oscillating responses represented more than 70% of the

responses observed after application of 20 pM EGF (Fig. 2C), we

investigated the mechanisms responsible for this type of Ca2+

pattern. It was already known that in a variety of cells, activation

of EGFR induces a sustained increase in calcium-activated

potassium (KCa) channel activity that results in a prolonged

membrane potential hyperpolarization [22,23]. Also, simultaneous

EGFR-dependent oscillations of K+ channel activity and of

intracellular Ca2+ have been found [23]. Furthermore, a model

of Ca2+ oscillation [24] has been proposed, based solely on the

dynamic interaction between Ca2+ entry and Ca2+ activation of

KCa3.1 channels. Based on these observations, we tested whether

Ca2+-activated K+ channels could be involved in the oscillatory

Ca2+ signal observed in response to 20 pM and 2 nM EGF. The

application of charybdotoxin (chx), a high affinity blocker of Ca2+-

activated K+ channels, revealed a clear difference (Figs. 4 I–J) in

the responses to 2 nM and 20 pM EGF. While no significant

change was observed between the proportion of cells reacting to

2 nM EGF (Fig. 4I) in the absence (84%) or in the presence (89%)

of 100 nM charybdotoxin, only 27% of cells responded to 20 pM

EGF (Fig. 4J) in the presence of the K+ channel blocker vs 73% in

the absence of chx (Fisher exact’s test p = 0.006).

Discussion

High affinity EGFR activation elicits specific Ca2+ signaling
Using sensitive Ca2+ imaging, we characterized Ca2+signals

elicited through high affinity EGFRs. These signals were specific

for EGFR activation as i) when buffer was applied instead of EGF,

negligible Ca2+
i variations were seen (Fig 1C) and ii) the increase

in average Ca2+
i induced by EGF was inhibited by EGFR-specific

neutralizing monoclonal M225 IgGs (Fig. 2E) [12].

Ca2+ oscillations
Using single-cell analysis of Ca2+ signals, we were able to

demonstrate the oscillating nature of the EGF-dependent Ca2+
i

transients (Fig. 2 A–C) in the majority of the cells responding to 20

pM EGF application. These responses did not occur as a

monotonic increase, but as repeated peaks, returning to a basal

value, a feature already reported by Cheyette and Gross [25] using

fura-2-imaging in A431 carcinoma cells.

Compared to constant Ca2+ elevation, calcium oscillations have

been shown to increase the efficiency of cell responses [26] by

reducing the Ca2+ threshold for activating effectors, therefore

increasing signal detection at low levels of stimulation. Further-

more, temporal encoding in Ca2+ oscillating signal may have a

significant impact on the specificity of the cellular response [26] as

many Ca2+-binding proteins have the ability to transduce different

frequencies of Ca2+ transients into graded levels of activation

(reviewed in [27]). For example it was shown that Ca2+ oscillations

are optimal signals for Ca2+-mediated activation of Ras signaling

through the ERK cascade [28]. Moreover, this boosting occurs for

Ca2+ interspike intervals of 60 s [28], surprisingly similar to the

72 s described in the present report (Fig. 3G). As picomolar EGF

concentrations mainly elicit oscillatory Ca2+ responses, our data

suggest that low EGF concentrations could preserve signal fidelity

and specificity with minimum metabolic cost and receptor

desensitization, while optimizing information transfer to other

signaling pathways.

Ca2+ sources involved in the EGFR response
We showed that high affinity EGFR activation elicits Ca2+

i

variations that are entirely independent of calcium release from

internal stores (Fig. 4), as no signal was detectable in the absence of

external Ca2+. In contrast, at higher EGF concentrations, Ca2+

signaling persisted, as previously reported [9,11]. This would

imply that high affinity receptors activate plasma membrane Ca2+

channels that are distinct from the store-operated calcium

channels, a feature already observed by Zhang and colleagues

[21] in a human salivary cell line, while activation of low affinity

receptors triggers in addition Ca2+ release from internal stores.

Our results suggest that the endocrine/paracrine actions of EGF

would mainly involve Ca2+ flux across the plasma membrane, a

mechanism reminiscent of the Mg2+ transport triggered by EGF in

renal epithelial cells, possibly through TRPM Ca2+/Mg2+

channels [29].

Involvement of Ca2+-activated potassium channels in the
Ca2+ oscillatory response

By exploring high affinity EGFR function in Ca2+ signaling, we

were able to demonstrate, for the first time, the involvement of

charybdotoxin-sensitive K+ channels. Charybdotoxin is known to

block calcium-activated KCa1.1, MaxiK or BK channels [13],

KCa3.1 or intermediate channels [14] and voltage-dependent Kv1.3

shaker current [15]. EGF mediates an increase in KCa1.1 channel

activity in vascular smooth muscle cells (VMSC) [30] and controls

KCa3.1 channel activation in VMSC [31] and glioma cells [32].

Changes in submicromolar concentrations of internal Ca2+

activate calmodulin and gate KCa3.1 channels, which are also

regulated by class II phosphoinositide-3 kinase (PI3K, reviewed in

[33]). KCa3.1 channels play important roles in the proliferation of

lymphocyte T cells [34], vascular smooth muscle cells [31], cardiac

pacemaker stem cell development (reviewed in [35]) and tumor

cell progression (reviewed in [36]). The KCa3.1-mediated char-

ybdotoxin-sensitive K+ current would enhance the electrical

driving force for Ca2+ entry as suggested for T-cell receptor

stimulation [37]. These channels, which are activated at low Ca2+

concentrations and undergo desensitization at higher Ca2+ level

[38], could cause cyclic transient membrane hyperpolarizations

and trigger Ca2+
i oscillations.
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All or none signaling
By performing single-cell Ca2+

i measurements in response to 20

pM EGF, we were able to uncover a strong heterogeneity in cell

responses already reported in A431 cells [25] in a different range

of EGF concentrations: although nearly all of the cells were

activated at 2 nM EGF, the percentage of responding cells fell to

50% at 20 pM EGF (Fig. 3A); however the cells responding to 20

pM showed Ca2+ signals in the same intensity range as those

obtained with 2 nM EGF. This heterogeneity in responsiveness

suggests pre-existing cell sensitivity, which may arise from the

presence of a majority of high affinity receptors in roughly 50% of

the cells. EGFRs are allosteric receptors with ligand binding

properties that display negative cooperativity, suggesting that the

high affinity sites could be a dimeric receptor already preformed

and primed for fast activation by EGF. One explanation of our

results would be that, in the highly EGF-sensitive fraction of cells,

the monomer-dimer equilibrium is shifted towards the dimeric

receptor. Consistent with this hypothesis and the observation that

high-affinity EGFRs decrease at high cell density [39], fewer cells

responded to 20 pM EGF when cells were cultured at high cell

density or not on fibronectin-coated coverslips (data not shown),

conditions that both influence the monomer/dimer equilibrium.

Quantitative analysis of the oscillating Ca2+ responses showed

that Ca2+ signals at 20 pM EGF are in the same range as those

elicited by 2 nM. Median duration (Fig. 3E), area under the first

peak (Fig. 3F) and the activation response time (Fig. 3D) changed

by only a factor of two to three in response to a two order-of-

magnitude variation in EGF concentration. No dose-dependent

effect on the interspike interval of Ca2+ oscillations (Fig. 3G) was

observed. Therefore, it seems that despite variable EGF concen-

trations and possible variability in receptor expression from cell to

cell, a highly sensitive subpopulation of cells is able to produce a

robust, almost all-or-none, Ca2+ signal in response to EGF

application.

Physiological relevance
Mitogenesis in response to EGF cannot be studied in COS-7

cells as they are partially transformed, but it is known that

picomolar EGF doses are able to activate the Ras/extracellular

signal-regulated kinase (ERK) signaling cascade, the central driver

of cell proliferation in a PI3K-dependent mode, in this cell type

[40]. Furthermore, picomolar concentrations of EGF activate

selectively ERK and PI3K/Akt pathways while PLCc, which

produces IP3 and triggers Ca2+ store release, is activated only by

nanomolar EGF concentrations [41]. In vivo, low levels of Ras

activation stimulate cellular proliferation, while high activation

levels induce proliferative arrest in epithelial cells [42]. ERK can

be activated by EGF concentrations as low as 2 pM and 40 pM,

resulting in proliferation of 8% and 55% of the cells respectively

[43]. Moreover, EGFR ligands act on cell proliferation at

picomolar concentrations while they display inhibitory effects at

higher doses in numerous cells such as carcinoma [44,45],

fibroblastic cell lines [46] and primary keratinocytes [47].

Interestingly, as already commented, oscillatory Ca2+ signals with

kinetics similar to the ones described in the current study in

response to 20 pM EGF seem particularly efficient in triggering

Ras/ERK signaling [28]. Altogether, these results suggest that, in

addition to inducing a strong Ca2+ response, EGF binding to the

high-affinity class of EGFRs is able to activate Ras and ERK

signaling cascades, and that these pathways may underlie the

proliferative effect of picomolar EGF concentrations observed in

various cell types. In fact, our results suggest that oscillatory Ca2+

signaling induced by physiological EGF concentrations may play a

significant role in this process.
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