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Abstract 

 Density Functional Theory studies show that in tungsten a mono vacancy can contain up 

to 6 Hydrogen Isotopes (HIs) at 300K with detrapping energies varying with the number of HIs 

in the vacancy. Using these predictions, a multi trapping rate equation model has been built and 

used to model thermal desorption spectrometry (TDS) experiments performed on single crystal 

tungsten after deuterium ions implantation. Detrapping energies obtained from the model to 

adjust temperature of TDS spectrum observed experimentally are in good agreement with DFT 

values within a deviation below 10 %. The desorption spectrum as well as the diffusion of 

deuterium in the bulk are rationalized in light of the model results. 

I. Introduction 

 

 To understand the issues of migration, trapping and desorption of Hydrogen Isotopes 

(HIs) in metals, a Macroscopic Rate Equation (MRE) model is often used. It is based on a one 

dimensional diffusion equation including trapping effects and was originally discussed by 

McNabb et al. [1]. It has been used for tungsten [2-7] in several codes, such as TMAP7 [5] or our 

own code MHIMS (Migration of Hydrogen Isotopes in MetalS) [7] to fit experimental Thermal 

Desorption Spectrometry (TDS) measurements. This type of model is based on the assumption 

that each trap can only contain a single HIs.  

However, it has been shown in Density Functional Theory (DFT) studies [8, 9, 10] that a mono 

vacancy can trap up to 6 HIs at 300 K with detrapping energies depending on the number of HIs 



in the vacancy. Inclusion of such effects in a MRE model was recently explored to analyze 

isotopic exchange experimental observations which are difficult to understand with classical 

MRE models [11]. In this contribution, a MRE model that includes these DFT predictions is 

proposed and it is used to probe the impact of HIs multi-trapping on TDS spectra. The 

implementation of this MRE model is called MHIMS-reservoir. After presenting the basic 

equation of the model, the code will be used to fit experimental TDS measurements performed on 

tungsten implanted with HIs ions [12]. Corresponding trapping energies obtained with MHIMS- 

reservoir will be compared to DFT detrapping energies and the simulation results will permit to 

discuss the evolution of the filling level of vacancies. 

II. Model description 

 

 In a 1D MRE model, HIs are split into two populations: mobile (or solute) and trapped 

species. We will consider a single type of trap (a vacancy for example) which can contain 𝑙 HIs. 

In the following, the concentration of HIs and traps, theoretically in m
-3

,will be normalized to the 

metal density (i.e. expressed in atomic fraction (at.fr.)). They will be expressed as: 

𝑛𝑠𝑜𝑙𝑢𝑡𝑒  Concentration of solute sites 

𝐶𝑚  Solute or mobile particles concentration  

Hypothesis 1: 𝐶𝑚 ≪ 𝑛𝑠𝑜𝑙𝑢𝑡𝑒  [7] 

𝑁𝑡  Trap concentration. Hypothesis 2: 𝑁𝑡 ≪ 𝑛𝑠𝑜𝑙𝑢𝑡𝑒 [7] 

𝑁𝑖  Concentration of traps filled with 𝑖 = 0, … , 𝑙 HIs, 𝑙 being the 

maximum number of HIs that can fill a trap (𝑙 = 6 in this model) 

𝐶𝑡,𝑖 = 𝑖 ⋅ 𝑁𝑖 𝑓𝑜𝑟 𝑖 > 0  Concentration of trapped HIs 

We call a i trap level a trap filled with i HIs. Without trap creation, we get ∀ 𝑡, ∑ 𝑁𝑖 = 𝑁𝑡
𝑙
𝑖=0 . 

Concerning, the evolution of the trap population, an i trap level can be changed into: 

 An i+1 trap level by trapping a solute particle (rate 𝑆𝑚𝑜𝑏𝑖𝑙𝑒→𝑖 𝑡𝑦𝑝𝑒), 

 An i-1 trap level by detrapping a trapped particle (rate 𝑆 𝑖 𝑡𝑦𝑝𝑒→𝑚𝑜𝑏𝑖𝑙𝑒). 

As a consequence, the variation of the population Ni of i-trap level can be decomposed in 4 

different sources following Eq. (1): 

𝜕𝑁𝑖

𝜕𝑡
= −𝑆𝑚𝑜𝑏𝑖𝑙𝑒→𝑖 𝑡𝑦𝑝𝑒 + 𝑆𝑚𝑜𝑏𝑖𝑙𝑒→𝑖−1 𝑡𝑦𝑝𝑒 − 𝑆𝑖 𝑡𝑦𝑝𝑒→𝑚𝑜𝑏𝑖𝑙𝑒 + 𝑆 𝑖+1 𝑡𝑦𝑝𝑒→𝑚𝑜𝑏𝑖𝑙𝑒  (1) 



Following hypothesis 2, one can write [7]: 

 𝑆𝑚𝑜𝑏𝑖𝑙𝑒→𝑖 𝑡𝑦𝑝𝑒 = 𝜈𝑚 ⋅
𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
⋅ 𝑁𝑖 (2) 

where 𝜈𝑚 (𝑠−1) is the frequency associated with the trapping process. It can be expressed as a 

function of the diffusion coefficient by 𝜈𝑚 =
𝐷(𝑇)

𝜆2   and 𝐷(𝑇) = 𝐷0 ⋅ 𝑒−
𝐸𝐷
𝑘⋅𝑇 (𝑚2/𝑠) is the diffusion 

coefficient of HIs in the tungsten matrix with 𝐸𝐷 the energy barrier for diffusion (eV), 𝑇 the 

temperature (K), 𝑘 the Boltzmann constant and 𝜆 is the distance between 2 solute sites.  

On the other hand, detrapping processes lead to several associated frequencies 𝜈𝑖  (𝑠−1). The 𝜈𝑖 

frequency depends on the temperature and the detrapping energy 𝐸𝑖 (eV) of HIs in the i-trap level 

according to: 

 𝜈𝑖 =  𝜈0 ⋅ 𝑒−
𝐸𝑖

𝑘⋅𝑇 (3) 

 with 𝜈0 = 1013 𝑠−1 [3-7] the jump attempt frequency. Following hypothesis 1, one can write: 

𝑆𝑖 𝑡𝑦𝑝𝑒→𝑚𝑜𝑏𝑖𝑙𝑒 =  𝜈𝑖 ⋅ 𝑁𝑖  (4) 

Finally, the variation of trap population 
𝜕𝑁𝑖

𝜕𝑡
 can be obtained as function of 𝜈𝑚, 𝜈𝑖 and 

concentrations: 

𝑓𝑜𝑟 0 < 𝑖 < 𝑙  
𝜕𝑁𝑖

𝜕𝑡
=  −𝜈𝑚 ⋅

𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
⋅ 𝑁𝑖 + 𝜈𝑚 ⋅

𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
⋅ 𝑁𝑖−1 − 𝜈𝑖 ⋅ 𝑁𝑖 + 𝜈𝑖+1 ⋅ 𝑁𝑖+1   

(5) 

𝑓𝑜𝑟 𝑖 = 0  
𝜕𝑁0

𝜕𝑡
=  −𝜈𝑚 ⋅

𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
⋅ 𝑁0 + 𝜈1 ⋅ 𝑁1                                                 (6) 

𝑓𝑜𝑟 𝑖 = 𝑙  
𝜕𝑁𝑙

𝜕𝑡
=  𝜈𝑚 ⋅

𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
⋅ 𝑁𝑙−1 − 𝜈𝑙 ⋅ 𝑁𝑙                                                 (7) 

This set of equations of the evolution of the trap concentration is based on the same approach as 

the one described by Schmid et al. [11] in the case of mono-isotopic case. 

In analogy with a classic MRE model, the variation with time of the concentration of the mobile 

particles is described in the present model as:  

𝜕𝐶𝑚

𝜕𝑡
=  𝐷(𝑇) ⋅

𝜕²𝐶𝑚

𝜕𝑥²
− ∑

𝜕𝐶𝑡,𝑖

𝜕𝑡

𝑙
𝑖=1 + 𝑆𝑒𝑥𝑡      (8) 

where 𝑆𝑒𝑥𝑡 is the exterior source of particles due to ions implantation expressed as: 

 𝑆𝑒𝑥𝑡 = (1 − 𝑟) ⋅ 𝜑 ⋅ 𝑓(𝑥) (9) 

where 𝜑 is the incident flux and the TRIM code [13] is used to obtained, the reflexion coefficient 

 𝑟 and the stopping range 𝑓(𝑥) of  the incident ions.  

Since  𝐶𝑡,𝑖 = 𝑖. 𝑁𝑖 Eq. (8) can be rewritten as: 



𝜕𝐶𝑚

𝜕𝑡
= 𝐷(𝑇) ⋅

𝜕2𝐶𝑚

𝜕𝑥2 − 𝜈𝑚 ⋅
𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
⋅ (𝑁𝑡 − 𝑁𝑙) + ∑ 𝜈𝑖 ⋅ 𝑁𝑖

𝑙
𝑖=1 + (1 − 𝑟) ⋅ 𝜑 ⋅ 𝑓(𝑥)   (10) 

With Eq. (5), Eq. (6), Eq. (7) and Eq. (10), the model of multi-trapping is fully described. As 

boundary condition, we consider that it is a Dirichlet one, i.e.  𝐶𝑚(𝑥 = 0, 𝑡) = 0 [7], since recent 

experimental work [14] has shown that surface processes are not rate-limiting on typical tungsten 

materials which are not atomically clean. 

Finally, we introduce new quantities which allow analyzing mobile particles concentration 

evolutions in quasi-equilibrium conditions. At the equilibrium 
𝜕𝑁𝑖

𝜕𝑡
= 0, therefore  𝑁𝑒𝑞,𝑖 are 

calculated with the following expression: 

𝑓𝑜𝑟 1 ≤  𝑖 ≤ 𝑙 
𝑁𝑒𝑞,𝑖

𝑁𝑒𝑞,𝑖−1
=

𝜈𝑚⋅
𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒

𝜈𝑖
  (11) 

𝑓𝑜𝑟 1 ≤  𝑖 ≤ 𝑙  
𝑁𝑒𝑞,𝑖

𝑁𝑒𝑞,0
=

(𝜈𝑚⋅
𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
)𝑖

∏ 𝜈𝑗
𝑖
𝑗=1

 (12) 

𝑓𝑜𝑟 0 ≤  𝑖 ≤ 𝑙 − 1  
𝑁𝑒𝑞,𝑙

𝑁𝑒𝑞,𝑖
=

(𝜈𝑚⋅
𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
)𝑛−𝑖

∏ 𝜈𝑙−𝑗+1
𝑙−𝑖
𝑗=1

 (13) 

And from these we obtained: 

∑ 𝑁𝑒𝑞,𝑖 = 𝑁𝑡 = 𝑁𝑒𝑞,0. (1 + ∑
(𝜈𝑚⋅

𝐶𝑚
𝑛𝑠𝑜𝑙𝑢𝑡𝑒

)𝑖

∏ 𝜈𝑗
𝑖
𝑗=1

𝑙
𝑖=1

𝑙
𝑖=0 ) = 𝑁𝑒𝑞,𝑙. (1 + ∑

∏ 𝜈𝑙−𝑗+1
𝑙−𝑖
𝑗=1

(𝜈𝑚⋅
𝐶𝑚

𝑛𝑠𝑜𝑙𝑢𝑡𝑒
)𝑙−𝑖

𝑙−1
𝑖=0 )  (8) 

So, for a given mobile particles concentration 𝐶𝑚, we are able to calculate each 𝑁𝑒𝑞,𝑖 which gives, 

at any time, the trend of evolution of each  𝑁𝑖: if 𝑁𝑒𝑞,𝑖 − 𝑁𝑖 < 0, the concentration of 𝑁𝑖 tends to 

decrease to reach the equilibrium and vice versa. By analyzing the concerted evolution of these 

trap levels concentrations, one is able to extract the global displacement of mobile particles in the 

material. 

 MHIMS-reservoir is used here to simulate TDS experiments. To be able to compare the 

results with experimental data, the code includes 3 stages in the simulation that render the actual 

measurements, as explained in [7]: 

 The implantation stage, lasting 𝑡𝑖𝑚𝑝  at the temperature 𝑇𝑖𝑚𝑝, 

 The resting stage between the end of the implantation and the beginning of the retention 

measurement. Here the samples are maintained at constant temperature 𝑇𝑟𝑒𝑠𝑡 for a period 

lasting 𝑡𝑟𝑒𝑠𝑡 called the resting time, 



 The TDS stage during which the temperature is increased with a given heating ramp 

𝛽 (expressed in 𝐾. 𝑠−1).  

 

III. Model parametrization 

 

 In order to test DFT values of HIs detrapping energies in vacancy, we compare the 

simulations results of MHIMS-reservoir with TDS measurements. In case of polycrystalline 

tungsten, multiple traps are present such as vacancies, dislocations and grain boundaries. It has 

been shown by classic MRE models that experiments performed on such materials can be 

roughly modeled with 2 or 3 traps [2-7]. However, the overlapping of desorption from each kind 

of trap makes the extraction of information on HIs in vacancies difficult. As a consequence, we 

chose to model one of the best characterized TDS measurements performed on Single Crystal 

Tungsten (SCW) by Quastel et al. [12]. In these experiments, SCW were mechanically and 

electrochemically polished with annealing at 1750 K after each polishing step. This procedure 

should reduce significantly dislocations concentration. Therefore, because there is no grain 

boundaries in SCW, vacancies are the most probable trapping sites. SCW samples were 

implanted at room temperature (𝑇𝑖𝑚𝑝 = 300 𝐾) with deuterium at 500 eV/D, at a flux of 10
20

 

D.m
-2

.s
-1

 and with a fluence of 10
23

 D.m
-2

. Furthermore, Quastel et al. [12] have shown that in 

their ion beam line a LN2 cold trap allows to reduce the level of volatile impurities. Therefore, we 

chose to simulate measurements obtained with their LN2 cold trap and without air exposure 

before TDS, to avoid impurities effect on D retention. The resting time was indicated to be 

𝑡𝑟𝑒𝑠𝑡 = 0.37 ℎ, the resting temperature was constant (𝑇𝑟𝑒𝑠𝑡 = 300 𝐾) and the TDS temperature 

ramp was  𝛽 = 5.1 𝐾 ⋅ 𝑠−1. These parameters were used to feed the following simulations. 

 In addition, Roszell et al. [15] used Nuclear Reaction Analysis (NRA) on the same kind 

of SCW samples (similar pre-implantation treatment and implantation characteristics 500 eV/D 

and fluence ~10
23-24

 D.m
-2

) to characterize non-homogeneous distribution of implanted D in the 

bulk of tungsten. As discussed previously in [7], this can be used in first approximation to define 

the non-homogenous distribution of vacancies in the materials during implantation. Therefore, we 

used the D distribution of Roszell et al. [15] to define the vacancy trap distribution in our 

simulation (fig. 1 (a)). 



 Finally, the diffusion coefficient used in the simulation is the one determined by DFT in 

[8] 𝐷𝐻(𝑇) = 1.38 × 10−7 ⋅ 𝑒−
0.2𝑒𝑉

𝑘⋅𝑇  (𝑚2. 𝑠−1). DFT calculations from various authors [8, 9, 10] 

show that up to 𝑙 = 6 HIs can be trapped in a vacancy at 300 K. Detrapping energies are between 

1.5 eV for 1 HIs per vacancy to 0.5 eV for 6 HIs per vacancy. The jump attempt frequency 𝜈0 

calculated by DFT [8] varies in the temperature range of 300 K-1000 K between 0.85×10
13

 and 

1.45×10
13

 s
-1

. As it remains within the same order of magnitude, the code uses a constant 

value 𝜈0 = 1 × 1013 𝑠−1. As a starting point, we used the detrapping energies 𝐸𝑖 from Fernandez 

et al. [8] in the MHIMS-reservoir code, before to adjust them in order to minimize the difference 

between our simulations and the experiment by Quastel et al. [12]. 

IV. Results and discussion 

 

 To fit the experimental data and obtain the right hydrogen desorption rate, we consider a 

distribution of vacancies (fig. 1 (a)) with a high concentration of 10
-3

 at.fr. in the first micrometre. 

As the formation energy of mono-vacancies in tungsten is above 3 eV [8], these vacancies cannot 

be thermal vacancies.  Remembering that we based our analysis on experiment done on SCW (no 

grain boundaries) annealed at high temperature (low dislocation concentration), these two 

potential intrinsic traps cannot be the origin of the high concentration of HIs observed in the first 

micrometre [15]: trap creation should occur during the implantation even at energies below the 

displacement threshold. Here we make the assumption that the created traps are vacancies. 

Indeed, it has been already demonstrated by [17] and classical Molecular Dynamics [18] that HIs 

induces mono-vacancies formation in tungsten through mechanisms that associated hexagonal 

self-interstitial clusters and linear crowdion.  Moreover, it has also been demonstrated, merging 

DFT modelling and statistical thermodynamic approach, that at 300 K and at the thermodynamic 

equilibrium, a solute fraction of 𝑥𝐻𝐼 = 10−5𝑎𝑡. 𝑓𝑟. induces a fraction of 
1

6
× 𝑥𝐻𝐼 in mono-

vacancies filled with 𝑙 = 6 hydrogen atoms [8, 16]. These previous findings support the high 

vacancy concentration in the sub-surface region as the results of H implantation. The spontaneous 

formation of vacancies due to hydrogen implantation is not yet present in the model and so to 

mimic it, a non-homogeneous distribution of vacancies is introduced as explained before. 



The resulting simulated TDS spectrum presented in fig. 1 (b) shows 2 desorption peaks at 420 K 

and 630 K which correspond well with the experimental measurement. It is to note that a change 

of the spatial distribution of vacancies would change the position of the TDS peak for the same 

detrapping energies. This is why we based our distribution on experimental NRA measurements 

[15] to improve the reliability of the model. The final detrapping energies used in this simulation 

are, from E6 to E1: 0.85 eV, 1.06 eV, 1.17 eV, 1.19 eV, 1.30 eV and 1.31 eV. These energies are 

in good agreement with DFT values [8-10] (fig. 2), the deviation being below 9% of the starting 

value from [8]. They are in particular good agreement with DFT results from Fernandez et al. [8] 

where activation energies were calculated from vacancy site to the first nearest neighbour 

interstitial site and zero point energy corrections where taken into account. Analysis of trap filling 

levels during the TDS stage allows to interpret the origin of the two desorption peaks. In the 

following, we note VHi a vacancy which trapped i HIs. While the first peak is concurrent to the 

detrapping from VH6, the second peak results of the overlapping detrapping from VH5 to VH1.   

 Now that the MHIMS-reservoir code parametrization is validated by the successful 

reproduction of TDS measurements, we used the code to interpret the quasi-equilibrium condition 

that one usually assumes before TDS measurements. Vacancies filling level profiles before the 

TDS start are presented in fig. 3. Up to a 5 µm depth, vacancies are filled with mainly 5 and 6 

HIs (fig. 3 (a)). However, at the edge of this 5 µm depth (fig. 3 (b)), the amount of VH5-6 

decreases abruptly, concurrently to the increase of, first the VH4 concentration, then the VH3 

concentration, and so forth until VH1 are only found in the deepest trapping zone. In this 

transitioning zone (between 4.5 and 5 µm) where VH5-6 left room for VH4-1, the analysis of the 

𝑁𝑒𝑞,𝑖 − 𝑁𝑖 quantities (fig. 4) allows to distinguish 2 zones. First, up to 4.7 µm, there is an 

equilibrium zone with no evolution of the total concentration of particles (𝑁𝑒𝑞,𝑖 − 𝑁𝑖 ≈ 0). Then 

after 4.7 µm, there is the out equilibrium zone where the total concentration of particles drops 

quickly (fig. 3). Focusing on the 4.7 – 4.8 µm, one notices that the VH5-6 concentration tends to 

increase (𝑁𝑒𝑞,𝑖 − 𝑁𝑖 > 0) while VH4-0 concentration tends to decrease (𝑁𝑒𝑞,𝑖 − 𝑁𝑖 < 0). This 

behavior results from mobile HIs diffusing into this zone containing numerous partly empty traps 

VH4-0. Mobile HIs are thus “stopped” by being trapped into these VH4-0, forming VH5-1 and 

limiting further HIs migration towards the bulk. 



V. Conclusion 

 

 In this paper, a rate equation model is presented for multi-trapping/migration of HIs in 

tungsten having a single type of trap. This model is based on DFT predictions: a mono vacancy 

can trap up to 6 HIs at 300K. The equations of the model have been described for a general case 

of a trap which can contain up to 𝑙 HIs. These equations are implemented in the MHIMS-

reservoir code in order to fit experimental TDS measurements obtained on single crystal tungsten 

in which vacancies are considered to be the most probable trapping site. The simulation results 

show a good agreement between detrapping energies needed to fit the experimental measurement 

and the DFT predictions. Two peaks are observed in the TDS spectra at 420 K and 630 K: the 

first corresponds to desorption of HIs from vacancies filled with 6 HIs and the large second one 

to the other levels of filling. Studying the equilibrium of equations, a process for the migration at 

room temperature of HIs in the bulk through vacancies is proposed: mobile particles diffuse 

through saturated zone and are stopped/trapped where vacancies are not completely filled. 
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Figure Caption 

Figure 1. (a) Non-homogeneous vacancy distribution used in this work. (b) Simulations of the 

TDS spectrum measurement (#15) on a SCW [12] with the non-homogeneous vacancy 

distribution of (a). Incident ions energy = 500 eV/D, flux = 10
20

 D.m
-2

.s
-1

, fluence 10
23

 D.m
-2

, 

temperature ramp up = 5.1 K/s. 

Figure 2. Detrapping energies of HIs in a tungsten mono vacancy as a function of the number of 

HIs in the vacancy. The detrapping energies are calculated by addition of the DFT binding 

energies with a barrier for diffusion of the interstitial H equal to 0.2 eV [8-10]. The value Evac-

>solute correspond to the energy barrier from the vacancy to the first nearest interstitial site [8]. 

Figure 3. Simulated HIs depth profile just before the TDS start (a) between 0 and 5 µm and (b) 

between 4.5 and 5 µm (fluence = 10
23

 D.m
-2

 with 500 eV/D). Ct,1-4 are not contributing 

significantly to retention in (a) and  have been removed for clarity 

Figure 4. 𝑁𝑒𝑞,𝑖 − 𝑁𝑖 between 4.5 and 5 µm for the mobile profile 𝐶𝑚 just before TDS start. 𝑁𝑒𝑞,𝑖 

are calculated using Eq. (5), Eq. (6), Eq. (7) and Eq. (8). 
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