

Ferromagnetic resonance and magnetic damping in C-doped Mn5Ge3

Charles Emmanuel Dutoit, Voicu Dolocan, Michael Kuzmin, Lisa Michez, Matthieu Petit, Vinh Le Thanh, Benjamin Pigeau, Sylvain Bertaina

▶ To cite this version:

Charles Emmanuel Dutoit, Voicu Dolocan, Michael Kuzmin, Lisa Michez, Matthieu Petit, et al.. Ferromagnetic resonance and magnetic damping in C-doped Mn5Ge3. Journal of Physics D: Applied Physics, 2015, 49 (4), pp.045001. 10.1088/0022-3727/49/4/045001. hal-01266713

HAL Id: hal-01266713 https://amu.hal.science/hal-01266713v1

Submitted on 19 Jul2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ferromagnetic resonance and magnetic damping in C-doped Mn₅Ge₃ (Dated: May 15, 2015)

X-band ferromagnetic resonance (FMR) was used to investigate static and dynamic magnetic properties of Mn_5Ge_3 and Carbon-doped Mn_5Ge_3 (C_{0.1} and C_{0.2}) thin films grown on Ge(111). The temperature dependence of magnetic anisotropy shows an increased perpendicular magnetocrystalline contribution at low temperature with an in-plane easy axis due to the large shape contribution. We find that our samples show as small as 400e FMR linewidth (corresponding Gilbert damping $\alpha = 0.005$), for the out-of-plane direction, certifying of their very good structural quality. The perpendicular linewidth shows a minimum around 200K for all samples, which seems not correlated to the C-doping. The magnetic relaxation parameters have been determined and indicate as main extrinsic contribution the two-magnon scattering. A transition from six-fold to two-fold plus fourth-fold in-plane anisotropy is observed in the FMR linewidth of Mn₅Ge₃C_{0.2} around 200K.

61

INTRODUCTION I.

1

2

3

The field of semiconductor spintronics is rapidly de-⁵ veloping nowadays. The idea to combine the well es-6 tablished data processing capabilities of semiconductor 7 electronics with ferromagnetism may lead to new func-⁸ tionalities and low power consumption of devices^{1,2}. One ⁹ of the main obstacle for spin injection into a semicon-¹⁰ ductor is the conductivity mismatch at the interface of ¹¹ the ferromagnetic metal and the semiconductor³. One 12 way to avoid it is to use a thin insulating layer acting ¹³ as a tunnel barrier between the two materials. Another ¹⁴ approach is to design the spin injecting interface with a ¹⁵ similar structure and properties by alloying or doping the semiconductor with a magnetic element. 16

The intermetallic magnetic Mn₅Ge₃ could provide the 17 ¹⁸ desired solution as it grows directly onto Ge substrate⁴, therefore being compatible with existing semiconductor 19 technology. Mn₅Ge₃ shows ferromagnetism with a Curie 20 temperature (T_c) around room temperature⁵ and an im-21 portant spin polarization (up to 42%)^{6,7}. The Mn₅Ge₃ 22 hexagonal cell contains 10 Mn atoms which are arranged 23 in two different sublattices $(Mn_I \text{ and } Mn_{II})$ due to dif-24 ²⁵ ferent coordination. Inserting Carbon atoms into interstitial voids of Mn_{II} octahedra leads to an increase of 26 T_c up to 450K, supplying a solution for the room tem-27 perature spin injection⁸. Ab-initio calculations indicate 28 that the structural distortions have a small influence on 29 the increased T_c in $Mn_5Ge_3C_x$ (the lattice is compressed 30 compared to pure Mn_5Ge_3), with the enhanced ferromag-31 netism attributed to a 90° ferromagnetic superexchange 32 mediated by Carbon⁹. 33

Several preparation methods were used to grow Mn_5Ge_3 thin films. The most common growth method 35 is the solid phase epitaxy which consists in the deposi-36 tion of Mn or Mn and C on a Ge(111) layer followed 37 ³⁸ by an annealing leading to the formation of the Mn₅Ge₃ $_{39}$ or $Mn_5Ge_3C_x$ films. Due to the low Mn solubility in $_{s1}$ surface of the sample during the epitaxial growth. No dif-⁴⁰ Ge, secondary precipitates or Mn-rich regions/clusters ⁸² fusion phenomenon is required for the growth unlike the $_{41}$ frequently appear inside the Mn₅Ge₃ films. Mn atoms $_{83}$ solid phase epitaxy process which is usually employed to ⁴² also diffuse in the underlying Ge(111) substrate which ⁸⁴ form the $Mn_5Ge_3C_x$ films on Ge(111). However a good 43 deteriorates the interface quality. In this letter, we re- 85 control of the different flows is needed to match the sto-44 port on the structural and magnetic properties of thin ⁸⁶ ichiometry of the desired compound : Ge and Mn were ⁴⁵ films C-doped Mn₅Ge₃ epitaxially grown on Ge(111) by ⁸⁷ evaporated using Knudsen cells and C atomic flow was ⁴⁶ reactive deposition epitaxy (RDE) at room temperature. ⁸⁸ obtained thanks to a high purity pyrolytic graphite fila-

⁴⁷ The low growth temperature reduces segregation and al-48 lows the formation of thin films of excellent crystalline ⁴⁹ quality suitable for the determination of various mag-⁵⁰ netic parameters by FMR: magnetic anisotropy, magne- $_{51}$ tization and the *g*-factor which were quantitatively de-52 termined and theirs dependence on Carbon content and ⁵³ temperature was identified. From the study of the FMR 54 linewidth, the magnetic relaxation process is investigated 55 and the relaxation parameters are found. The main re-56 laxation channels we identify are the intrinsic Gilbert 57 damping and the two-magnon scattering. The ferro-58 magnetic resonance measurements demonstrate the very ⁵⁹ good structural quality of the pure and C-doped Mn₅Ge₃, ⁶⁰ paving the way for heterostructures integration.

EXPERIMENTAL DETAILS II.

The sample preparation as well as the reflection high-62 63 energy electron diffraction (RHEED) measurements were 64 performed in a UHV setup with a base pressure of 65 2.7×10⁻⁸ Pa. Mn₅Ge₃C_x layers were grown epitaxially 66 on Ge(111) substrates^{4,10}. These substrates were chem-⁶⁷ ically cleaned before introduction in the UHV chamber. $_{68}$ Then we did a degassing of the Ge(111) substrates by ⁶⁹ direct heating up to 720 K for 12 h and flashed after-⁷⁰ wards at 1020 K to remove the native oxide layer. After ⁷¹ repeated flashes at 1020 K and a cooling down at 770 ⁷² K, a 15 nm thick Ge buffer layer was deposited on the ⁷³ Ge(111) substrates to make sure that the starting surface ⁷⁴ of the $Mn_5Ge_3C_x$ thin films growth is of good quality. ⁷⁵ The quality of this starting surface was checked *in-situ* ⁷⁶ by RHEED. Eventually the sample was cooled down to ⁷⁷ room temperature (RT).

To form the $Mn_5Ge_3C_x$ layers we used the reactive 78 ⁷⁹ deposition epitaxy method¹¹. Using this method the $_{80}$ Mn₅Ge₃C_x layers are created by phase nucleation at the ⁸⁹ ment source (SUKO) from MBE-Komponenten. The Ge ⁹⁰ and Mn flows were calibrated with a water-cooled quartz ⁹¹ crystal microbalance and the C flow was calibrated using ⁹² the structure transition between the Si(001) (2×1) and ⁹³ c(4×4) reconstructions which occurs for a C deposited ⁹⁴ thickness of 0.4 atomic monolayer on Si(001) surfaces¹². ⁹⁵ The growth of the Mn₅Ge₃C_x films was monitored *in*-⁹⁶ *situ* by RHEED : the Mn₅Ge₃C_x films growing epitax-⁹⁷ ially on a Ge(111) surface exhibit an easily identifiable ⁹⁸ RHEED ($\sqrt{3} \times \sqrt{3}$)R30° pattern which is characteristic ⁹⁹ of the Mn₅Ge₃ and Mn₅Ge₃C_x compounds^{10,13}.

The saturation magnetization and the estimated Curie 100 temperatures of all samples were determined by SQUID 101 ¹⁰² measurements. A SQUID magnetometer Quantum Design MPMSXL working in a temperature range 1.8K to 300K and in a magnetic field up to 5T was used. The 105 FMR measurements were performed with a conventional X-band (9.39GHz) Bruker EMX spectrometer in the 80K 106 to 300K temperature range. The samples $(2 \times 2 \text{mm}^2)$ 107 were glued on quartz suprazil rode and mounted in the 108 center of a rectangular cavity (TE_{102}) . To improve the 109 ¹¹⁰ signal-to-noise ratio, the FMR measurements are carried out using a modulation field of 100kHz and 5Oe ampli-111 tude with a lock-in detection. The FMR spectra were 112 ¹¹³ measured with the applied magnetic field rotated in plane and out-of-plane. The FMR spectra were fitted with a 114 Lorentzian profile and the resonance field and FWHM 115 linewidth were subsequently extracted. Typical spectra $_{117}$ at room temperature are shown in Fig. 1(a) for thin films ¹¹⁸ of 12nm thickness.

III. MODEL AND GEOMETRY

119

¹²⁰ The FMR spectra were analyzed with the Smit-Beljers ¹²¹ formalism for a thin film with uniaxial (hexagonal) ¹²² symmetry¹⁴. For a ferromagnetic film with hexagonal ¹²³ symmetry, the free energy density including the Zeeman ¹²⁴ energy, the demagnetizing energy and the anisotropy en-¹²⁵ ergy density is written as:

$$F = -MH[\sin\theta\sin\theta_H\cos(\varphi - \varphi_H) + \cos\theta\cos\theta_H] - (2\pi M^2 - K_2)\sin^2\theta + K_4\sin^4\theta + K_{6\perp}\sin^6\theta + K_{6\parallel}\sin^6\theta\cos6\varphi$$
(1)

¹²⁶ where θ_H , φ_H are the polar and azimuthal angle of the ¹²⁷ external field with respect to the surface normal of the ¹²⁸ thin film ([001] direction) and respectively [100] direction, ¹²⁹ θ and φ are the polar and azimuthal angle of the magneti-¹³⁰ zation with respect same directions (Fig. 1(b)) and K_i are ¹³¹ the anisotropy constants to sixth order. The resonance ¹³² condition, neglecting the damping effects and consider-¹³³ ing the magnetization at equilibrium under steady field, ¹³⁴ is given by:

$$\left(\frac{\omega}{\gamma}\right)^2 = H_1 \cdot H_2 \tag{2}$$

FIG. 1. (Color online) (a) Typical spectra at room temperature for Mn_5Ge_3 , $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$ thin films with 12nm thickness. (b) Schema of the coordinate system used in FMR measurements.

 $_{^{135}}$ where H_1 and H_2 represent the stiffness fields evaluated $_{^{136}}$ at the equilibrium angles of the magnetization:

$$H_1 = \frac{1}{M} \frac{\partial^2 F}{\partial \theta^2} \tag{3}$$

$$H_2 = \frac{1}{M\sin^2\theta} \frac{\partial^2 F}{\partial \varphi^2} \tag{4}$$

Equation (2) is valid for a high-symmetry case, where the mixed second derivative of the free energy is nil. Our experiments were carried out in two distinct geometries:

(i) out-of-plane geometry ($\varphi_H = 0^\circ, \theta_H$ variable). The stiffness fields are the following:

$$H_{1}^{\perp} = H_{r} \cos(\theta - \theta_{H}) - 4\pi M_{eff} \cos 2\theta + 2\frac{K_{4}}{M} (\cos 2\theta)$$
$$-\cos 4\theta + 30\frac{(K_{6\perp} + K_{6\parallel})}{M} \sin^{4}\theta$$
$$-36\frac{(K_{6\perp} + K_{6\parallel})}{M} \sin^{6}\theta \tag{5}$$
$$H_{2}^{\perp} = H_{r} \cos(\theta - \theta_{H}) - 4\pi M_{eff} \cos^{2}\theta + 4\frac{K_{4}}{M} (\cos^{2}\theta)$$
$$\cos^{4}\theta + 6\frac{(K_{6\perp} + K_{6\parallel})}{M} \sin^{4}\theta \cos^{2}\theta - 26\frac{K_{6\parallel}}{M} \sin^{6}\theta$$

$$-\cos^4\theta) + 6\frac{(K_{6\perp} + K_{6\parallel})}{M}\sin^4\theta\cos^2\theta - 36\frac{K_{6\parallel}}{M}\sin^6\theta$$
(6)

(ii) in-plane geometry ($\theta_H = 90^\circ, \varphi_H$ variable). The 140 stiffness fields are: 141

$$H_1^{\parallel} = H_r \cos(\varphi - \varphi_H) + 4\pi M_{eff} - 4\frac{K_4}{M} - 6\frac{K_{6\perp}}{M} - 6\frac{K_{6\parallel}}{M} \cos 6\varphi \tag{7}$$

$$H_2^{\parallel} = H_r \cos(\varphi - \varphi_H) - 36 \frac{\kappa_{6\parallel}}{M} \cos 6\varphi \tag{8}$$

Here $4\pi M_{eff} = 4\pi M - \frac{2K_2}{M}$, ω the angular frequency 143 and $\gamma = g\mu_B/\hbar$ the gyromagnetic ratio. $H_{1,2}^{\perp}$ represent 144 the stiffness fields for the out-of-plane geometry ($\theta_H = 0$) ¹⁴⁵ and $H_{1,2}^{\parallel}$ for the in-plane geometry ($\theta_H = 90^\circ$).

The FMR linewidth is analyzed by including the in-146 $_{147}$ trinsic and extrinsic damping mechanisms $^{15-17}$:

$$\Delta H = \Delta H_{intr} + \Delta H_{extr} \tag{9}$$

In this expression, the intrinsic contribution due to the ¹⁴⁹ magnon-electron interaction can be described by the di- $_{\tt 150}$ mensionless Gilbert damping parameter $\alpha^{18,19}$:

$$\Delta H_{intr} = \frac{2\alpha\omega}{\gamma\Psi} \tag{10}$$

190

197

¹⁵³ anisotropy. When **M** and **H** are parallel, this contribu-¹⁹⁵ magnetic anisotropy energy, the *g*-factor, magnetization tion vanishes. As generally the in-plane and out-of-plane 196 and magnetic relaxation parameters. 154 linewidth are not equal, extrinsic contribution have to 155 be taken into account. The extrinsic contribution gener-156 ally include the magnetic relation due to magnon-magnon 157 interaction, the two-magnon interaction, which is given 158 159 by²⁰⁻²³:

$$\Delta H_{2mag} = \frac{\Gamma}{\Psi} \tag{11}$$

 $_{160}$ with Γ the two-magnon scattering rate. The two-magnon ¹⁶¹ contribution usually vanishes for a critical out-of-plane $_{162}$ angle $\theta <$ 45°. Inhomogeneous broadening effects also ¹⁶³ participate to the extrinsic linewidth, especially at in-164 termediate angles as the resonance local field can vary. ¹⁶⁵ We consider here three types of inhomogeneous broad-¹⁶⁶ ening: $\Delta H_{mos}, \Delta H_{int}$ and ΔH_{inhom} . The first term is 167 the mosaicity term due to the distribution of easy axes $_{168}$ directions 15,19 :

$$\Delta H_{mos} = \left| \frac{\partial H_r}{\partial \beta_H} \right| \Delta \beta_H \tag{12}$$

¹⁶⁹ with $\beta_H = (\theta_H, \varphi_H)$. The second term represents the ²¹⁷ ¹⁷⁰ inhomogeneity of the internal fields in the sample¹⁷:

$$\Delta H_{int} = \left| \frac{\partial H_r}{\partial (4\pi M_{eff})} \right| \Delta (4\pi M_{eff}) \tag{13}$$

Finally, the last term which can contribute to the 171 ¹⁷² linewidth is a residual frequency and angular indepen-173 dent inhomogeneous linewidth that cannot be put in 174 other form.

The procedure used to determine the magnetic param-175 176 eters is as follows: the anisotropy fields were determined using the system of equations (5)-(8) applied at high sym-178 metry directions (along easy/hard axes) together with 179 the corresponding measured resonance fields (fixed fre- $_{180}$ quency) at a fixed g-factor. Afterwards, the polar and ¹⁸¹ azimuthal angular dependence of the resonance field was 182 fitted with the same equations and the equilibrium con-183 dition of the free energy allowing for a variable g-factor 184 as parameter. The iteration was repeated several times ¹⁸⁵ until a good fit was obtained. This analysis yields the ¹⁸⁶ *q*-factor, the anisotropy constants and the magnetization 187 direction θ . These values serve in the angular variation 188 of the linewidth which allows the evaluation of α , Γ and 189 the inhomogeneous contribution.

IV. **RESULTS AND DISCUSSION**

In this section, experimental results of C-doped 191 ¹⁹² Mn₅Ge₃ thin films investigated by ferromagnetic reso-¹⁵¹ where $\Psi = \frac{1}{H_1 + H_2} \frac{d(\omega^2/\gamma^2)}{dH_r}$ is the dragging function as ¹⁹³ nance and SQUID magnetometry are presented. Using ¹⁵² the magnetization **M** is dragged behind **H** owing to ¹⁹⁴ samples with different carbon content, we determined the

Magnetic anisotropy Α.

To determine the magnetic energy anisotropy (in ab-198 ¹⁹⁹ solute units), FMR measurements were carried out at a ²⁰⁰ frequency of 9.4GHz. The FMR spectra were recorded 201 as a function of the polar and azimuthal angles of the ²⁰² external magnetic field at different temperatures. The ²⁰³ saturation magnetization was determined from SQUID $_{204}$ measurements. In Fig. 2(d), the temperature dependence $_{205}$ of the magnetization up to 300K is shown for Mn₅Ge₃, $_{206}$ Mn₅Ge₃C_{0.1} and Mn₅Ge₃C_{0.2}. The Curie temperature $_{\rm 207}$ was estimated from these curves by fitting with a Bril- $_{\rm 208}$ louin function in reduced units. The full line correspond $_{209}$ to a fit with $B_{1.5}$ and the dotted line to a fit with B_1 . $_{\rm 210}$ The estimated values of T_c are 315K, 345K and 450K. $_{211}$ The error bars correspond to $\pm 10 \mathrm{K}$ for $\mathrm{Mn}_5\mathrm{Ge}_3$ and $_{212}$ Mn₅Ge₃C_{0.1} as the experimental points cover a larger $_{213}$ temperature range and superpose closely with $B_{1.5}$. The $_{214}$ experimental points for $Mn_5Ge_3C_{0.2}$ cover only a small ²¹⁵ part of the temperature range and the error bars are es- $_{216}$ timated to be of ± 30 K.

The out-of-plane angular variation for the reso-²¹⁸ nance field H_r is shown in Fig. 2(a)-(c) for Mn₅Ge₃,

FIG. 2. (Color online) Out-of-plane angular variation of the resonance field at 300K for (a) Mn_5Ge_3 , (b) $Mn_5Ge_3C_{0,1}$, (c) Mn₅Ge₃C_{0.2}. The temperature dependence of the magnetization is shown in (d) in normalized coordinates. The full and dotted lines correspond to fits with a Brillouin function. The estimated T_cs are 315K, 345K and 450K. (e) In-plane angular dependence of the resonance field for $Mn_5Ge_3C_{0.2}$ at room temperature. The distance between dotted circles is 1 Oe. The line represents a fit with Eq.(3).

 $_{219}$ Mn₅Ge₃C_{0.1} and Mn₅Ge₃C_{0.2} at room temperature. The $_{244}$ and Mn₅Ge₃C_{0.1}, the sixfold in-plane symmetry is to 223 spectively. The hard axis is perpendicular to plane ([001] 248 temperatures and increases at low temperature. K₄ de-224 225 226 227 228 229 230 231 onance field can be well simulated with Eq.(2) and the 232 anisotropy fields can be extracted. The anisotropy con- $_{\scriptscriptstyle 257}$ 233 234 magnetization determined from SQUID measurements. 235

230 237 238 239 240 241 limit, K₂ could overcome the shape anisotropy result- 265 increases to 2.0291 meaning an increased orbital contri- $_{242}$ ing in an out-of-plane anisotropy axis. The different K_i $_{266}$ bution with Carbon doping (1.5% of the spin magnetic ²⁴³ have a different temperature dependence. For Mn₅Ge₃ ²⁶⁷ moment).

 $_{220}$ H_r(θ_H) indicate an easy axis along H|| [100] (in-plane) $_{245}$ low to be extracted, therefore only the K₂ and K₄ con-221 with a minimum resonance field of 1.6kOe, 2.3kOe and 246 stants were determined from the angular measurements. 222 2.7kOe for Mn₅Ge₃C_{0.2}, Mn₅Ge₃C_{0.1} and Mn₅Ge₃ re- ²⁴⁷ K₂ is positive for Mn₅Ge₃ and C-doped Mn₅Ge₃ at all direction) and has the highest H_r of 8.6kOe, 6kOe and 249 creases (increases in absolute values) for Mn₅Ge₃, but 5kOe. The azimuthal angular dependence of the res- 250 for the C-doped compounds has a minimum or a maxonance field for $Mn_5Ge_3C_{0.2}$, recorded also at 300K is 251 imum at an intermediate temperature. The sixfold inshown in Fig. 2(e). The sixfold (hexagonal) symmetry in ²⁵² plane anisotropy in Mn₅Ge₃C_{0.2} increases at 250K from the azimuthal angular dependence indicates that an in- 253 the room temperature value, while at lower temperature plane hexagonal anisotropy exists with easy axes along 254 becomes to small or a transition to a fourfold in-plane the [100] direction of the film. The experimental FMR ²⁵⁵ anisotropy arises as will be inferred from the linewidth data of out-of-plane and in-plane dependence of the res- 256 temperature dependence discussed in the next section.

The q-factor can be estimated from the angular destants can be found in absolute units by using the sample 258 pendence of the resonance field. Its value indicates the ²⁵⁹ influence of the orbital contribution to the total magnetic The resulting anisotropy constants are summarized 260 moment. The ratio of the orbital to the spin magnetic in Table I along with the g-factor at several tempera- 261 moment can be inferred from the Kittel formula and is tures. The positive sign of K_2 indicates that this term $_{262}$ equal to the deviation of the g-factor from the free elecfavors an out-of-plane easy axis of magnetization while $_{263}$ tron value. The value of the g-factor for Mn_5Ge_3 and the shape anisotropy dominates²⁴. In the very thin film $_{264}$ Mn₅Ge₃C_{0.1} is 2.0005, while for Mn₅Ge₃C_{0.2} this value

в. Magnetic relaxation

268

The linewidth of the resonant signal ΔH_r is directly re-260 270 lated to the magnetic and structural quality of the films and provide information about the different relaxation 271 channels in magnetic damping. In Fig. 3, the tempera-272 ture dependence of the FMR linewidth is shown for the 273 perpendicular to plane direction ($\theta_H = 0^\circ$) for Mn₅Ge₃ 274 and C-doped Mn₅Ge₃. A shallow minimum is observed 275 for all three compounds around 200K and a sharp peak 276 close to T_c . At lower temperature, the FMR linewidth 277 increases and saturates for Mn_5Ge_3 (measured to 6K). 278 The minimum in the linewidth seems not related with 279 the C-doping. It occurs around the same absolute value 280 of temperature and could be related with a small in-plane 281 transition to a fourfold anisotropy from sixfold anisotropy 282 (tetragonal distortion) or to a constriction by the sub-283 strate. The increase of linewidth at low temperature was 284 explained as an inhomogeneous broadening due to the in-285 crease of the anisotropy constants (K_2) with decreasing 286 $temperature^{16}$. 287

FIG. 3. (Color online) Temperature variation of the resonance linewidth for Mn_5Ge_3 , $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$.

Fig. 4 and Fig. 5(a) show the out-of-plane variation of 288 the FMR linewidth for the C-doped Mn_5Ge_3 compared 289 to the pure Mn_5Ge_3 at room and low temperatures. The 290 shape of the curves shows the characteristic dependence 291 for thin films with a maximum of the linewidth at in-292 termediate angles. Our films have an in-plane easy axis 293 at all temperatures, therefore the magnetization lags be-294 hind the applied field when the field is rotated out of the 295 plane. The peak in the linewidth occurs for θ_H between 296 20° at room temperature and 10° at low temperature, 297 corresponding to the largest interval between M and H. 298 From the theoretical fits of the data (solid lines), the re-299 laxation parameters are extracted and listed in Table II. 300 For all three compounds, the perpendicular to plane 301 linewidth is always smaller than the in-plane one indi- 307 isotropic and independent of temperature. We prefer us-302 303 304 extrinsic contributions in the samples. The intrinsic 309 0.005 and 0.01 over the Gilbert damping parameter G $_{305}$ damping cannot explain the out-of-plane shape of the $_{310}$ given by $\alpha = G/\gamma M$ as the latter will imply a tempera-³⁰⁶ linewidth. The estimated intrinsic damping is considered ³¹¹ ture dependence. The Gilbert damping represents the

FIG. 4. (Color online) Out-of plane angular dependence of the resonance linewidth for Mn_5Ge_3 (a) and $Mn_5Ge_3C_{0.1}$ (b) at different temperatures. The lines represent fits with intrinsic and extrinsic contributions.

cating the presence of two-magnon scattering and other $_{308}$ ing the dimensionless parameter α which varies between

313 the lattice as it is introduced in the Landau-Lifschitz- 371 mates as a precise identification of the defects is difficult Gilbert equation¹⁸. The spin-orbit coupling is assumed ₃₇₂ to obtain. 314 ³¹⁵ to be at the origin of spin-lattice relaxation in ferro-³⁷³ As observed from Table II, the other extrinsic contri- $_{316}$ magnets. Ab-initio calculations that include the spin- $_{374}$ butions to the linewidth have only a small impact on the $_{317}$ orbit coupling explicitly show a weak dependence of α $_{375}$ fitted curves. The mosaicity is very small, inferior to 318 319 320 321 322 323 324 325 326 327 328 homogeneous broadening (ΔH_{int} and ΔH_{inh}). Although $_{387}$ dependent intrinsic contribution as discussed above. 329 we consider a constant α , as it is observed from Table II, 388 332 333 334 335 336 337 338 339 stant α as considered. 340

The second relaxation mode that influence the FMR 341 ³⁴² linewidth is the two magnon scattering. The uniform mode can couple with degenerate spin-wave modes 343 due to fluctuations in the local effective field that can 344 arise from surface defects, scattering centers, fluctua-345 tion in the anisotropy from grain to grain or other 346 inhomogeneities 20,22 . The two magnon scattering rate 347 Γ depends on the angle θ_H (out-of-plane geometry) and 348 $_{\rm 349}$ on the resonance field ${\rm H}_{res}.~{\rm A}$ detailed analysis based on the effect of the defects on the response functions of 350 thin films was performed in Refs.21 and 28 for the case when the magnetization is tipped out-of-plane. We consider here the same type of angular dependence of Γ as in 353 Ref.28 (see Eq.8). Γ depends on the nature and shape of 354 the defects that activate the scattering mechanism. The 355 values for the Mn₅Ge₃ compounds, extracted from the 356 fitting of the linewidth curves, are shown in Table II as 357 a function of temperature. From the calculated value 358 $\Gamma_{2mag}=8H_K b^2 p/\pi D$, the exchange spin-wave stiffness D $_{412}$ with $\omega_0 = \gamma M_{eff}$ and $\Gamma_i f(\varphi_i)$ characterize the 359 361 362 $_{416}$ surements were performed on the samples, from which $_{416}$ metry as the angular dependence of H_r (Fig. 2(e)). If the 365 ³⁶⁶ for $Mn_5Ge_3C_x$ was of the order of 1nm. Therefore, at ⁴¹⁹ lattice symmetry^{19,29}. The angular dependence of the

³¹² decay of magnetization by direct viscous dissipation to ³⁷⁰ sidering a defect ratio of 50%. These values are only esti-

with temperature in a large range of temperatures^{25,26}. ₃₇₆ 0.1°, being almost negligible testimony of the good qual-Two different mechanisms contribute to the temperature 377 ity of our samples. Also the inhomogeneity of the internal dependence²⁷, one conductivity-like and one resistivity- 378 fields is almost negligible in the majority of cases, only like with a transition between the two at intermediate $_{379}$ for Mn₅Ge₃C_{0.1} at room temperature it seems to have temperature. Sometimes these two contributions have an $_{380}$ a larger influence. The higher values of H_{int} are needed equal influence on the damping. We estimated the value $_{381}$ to explain the small peak observed around $\theta_H = 0^\circ$ for of α for each compound by fitting the out-of-plane angu- $_{382}$ both Mn₅Ge₃ and Mn₅Ge₃C_{0.1} and for the increase of lar dependence of ΔH_r at a temperature corresponding $_{383}$ the linewidth at intermediate angles until $\theta_H = 90^\circ$ for to the minimum of the curves in Fig. 3 (around 200K). $_{384}$ Mn₅Ge₃C_{0.1} at room temperature. The values of the For this specific temperature, the estimation correspond 385 residual inhomogeneous contribution are generally small, to the maximum possible value of α considering small in- $_{386}$ the larger values can also be attributed to a temperature

We now discuss the case of $Mn_5Ge_3C_{0.2}$ for which both at room and low temperature the linewidth (and corre- 389 out-of-plane and in-plane data was fitted as shown in spondingly the inhomogeneous residual field) increases 390 Fig. 5. The panel (a) show the out-of-plane dependence for $Mn_5Ge_3C_{0.1}$ which could be explained by an increase $_{391}$ of the FMR linewidth. The 300K and 250K data are well of α at least at low temperature. The room tempera- 392 fitted close to $\theta_H = 0^{\circ}$ and at larger angles but not at the ture increasing in the linewidth is usually explained as a $_{393}$ peaks that correspond to the largest interval between M breakdown of the uniform precession due to thermal ex- $_{394}$ and H (critical angle). The dashed line at T=300K correcitations. The increasing of the linewidth at low temper- 395 sponds to a fit with the parameters indicated in Table II ature is smaller for Mn₅Ge₃ and Mn₅Ge₃C_{0.2} in the 100- $_{396}$ and $\Delta\theta_H = 0.05^{\circ}$, while the full line to a fit with $\Delta\theta_H$ 300K temperature range being compatible with a con- $_{397} = 0.2^{\circ}$. Although increasing the mosaicity contribution ³⁹⁸ fits better the peaks, the fitted curve becomes V-shaped ³⁹⁹ between the peaks in total contradiction with the data. 400 We believe that the mosaicity is small (0.05°) and the ⁴⁰¹ discrepancy at the critical angle at 300K is due to some ⁴⁰² other effect (the FMR line being strongly distorted at this ⁴⁰³ angle). We also tried to fit the 300K curve introducing in- $_{404}$ plane second and fourth order anisotropy constants (K_{2||} $_{405}$ and $K_{4\parallel}$) without a better result (not shown). The low 406 temperature curves are nicely fitted with the presented ⁴⁰⁷ model for all angles.

> For the in-plane dependence of ΔH_r , the only contri-408 409 butions that were considered were from the isotropic in-⁴¹⁰ trinsic damping and the two-magnon contribution which $_{411}$ was expressed as follows 19,20,28 :

$$\Delta H_{2mag} = \frac{\sum_{i} \Gamma_i f(\varphi_i)}{\Psi} \arcsin\left(\sqrt{\frac{\sqrt{\omega_r^2 + (\omega_0/2)^2} - \omega_0/2}{\sqrt{\omega_r^2 + (\omega_0/2)^2} + \omega_0/2}}\right)$$
(14)

can be inferred if details of the defects as the covered frac- 413 anisotropy of the two-magnon scattering along different tion of the surface p or the effective height b are known $_{414}$ crystallographic in-plane directions. At 300K and 250K (H_K the anisotropy field). Atomic force microscopy mea- $_{415}$ (Fig. 5(b)), the FMR linewith has the same six-fold symthe rms surface roughness was determined: for Mn_5Ge_3 417 scattering centers are given by lattice defects (dislocathe surface roughness was of the order of 1.5-2nm, while 418 tion lines), the azimuthal dependence should reflect the ³⁶⁷ room temperature, the spin-wave stiffness was estimated ⁴²⁰ scattering was fitted with $\Gamma_i f(\varphi_i) = \Gamma_0 + \Gamma_2 \cos^2(\varphi - \varphi_6)$ ³⁶⁸ as 0.12×10^{-8} G cm² for Mn₅Ge₃, 0.16×10^{-8} G cm² for ⁴²¹ φ_2) + $\Gamma_6 \cos 6(\varphi - \varphi_6)$ at 250K and 300K and with ³⁶⁹ Mn₅Ge₃C_{0.1} and 0.39×10^{-8} G cm² for Mn₅Ge₃C_{0.2} con-⁴²² $\Gamma_i f(\varphi_i) = \Gamma_0 + \Gamma_2 \cos^2(\varphi - \varphi_2) + \Gamma_4 \cos 4(\varphi - \varphi_4)$ at 150K $_{423}$ and 100K. The parameters Γ_2 and Γ_4 are phenomenologi- $_{444}$ Mn₅Ge₃ and C-doped Mn₅Ge₃ show perpendicular uni-424 cally introduced to account for the observed angular vari- 445 axial magneto-crystalline anisotropy and an in-plane easy $_{425}$ ation. Γ_6 is expected from the sixfold symmetry. The in- $_{446}$ axis of magnetization due to the large shape anisotropy. 426 plane anisotropies are very small as observed form their 447 The small linewidth of the films are a proof of the good 427 428 function is very close to one and neglected. A change of 449 dence of the resonance field and of the linewidth, the 429 430 431 432 433 434 435 the 45° direction (not shown). More experimental mea- 457 temperature dependence of the out-of-plane linewidth. 436 surements are needed to elucidate the linewidth transi-437 tion at 200K. 438

439

CONCLUSION V.

440 441 442 formed on the samples at different temperatures. Both 465 FR3443). 443

- I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 498 466 467 323 (2004). 499
- D. D. Awschalom and M. E. Flatté, Nature Phys. 3, 153 468 (2007).469
- 3 G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, 470 and B. J. van Wees, Phys. Rev. B 62, R4790 (2000). 471
- 4 C. Zeng, S. C. Erwin, L. C. Feldman, A. P. Li, R. Jin, Y. 472 Song, J. R. Thompson and H. H. Weitering, App. Phys. 473 Lett. 83, 5002 (2003). 474
- 5M. Gajdzik, C. Sürgers, M. Kelemen, and H. v. Löhneysen, 475 J. Magn. Magn. Mater. 221, 248 (2000). 476
- 6 R. P. Panguluri, C. Zeng, H. H. Weitering, J. M. Sullivan, 477 S. C. Erwin, and B. Nadgorny, Phys. Status Solidi B 242, 478 R67 (2005). 479
- S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. 512 480 B 70, 235205 (2004). 481
- C. Sürgers, G. Fischer, P. Winkel, and H. v. Löhneysen, 482 Phys. Rev. B 90, 104421 (2014). 483
- 9 I. Slipukhina, E. Arras, P. Mavropoulos, and P. Pochet, 484 Appl. Phys. Lett. 94, 192505 (2009). 485
- 10 S. Olive-Mendez, A. Spiesser, L.A. Michez, V. Le Thanh, 518 486 A. Glachant, J. Derrien, T. Devillers, A. Barski, M. Jamet, 487 Thin Solid Films 517, 191 (2008). 488
- 11 Matthieu Petit, Lisa Michez, Charles-Emmanuel Dutoit, 489 Sylvain Bertaina, Voicu O. Dolocan, Vasile Heresanu, and 490 Vinh Le Thanh, submitted to Thin Solid Films (2015). 491
- 12L. Simon, M. Stoffel, P. Sonnet, L. Kubler, L. Stauffer, 492
- A. Selloni, A. De Vita, R. Car, C. Pirri, G. Garreau, D. 525 493 Aubel, and J. L. Bischoff, Phys. Rev. B 64, 035306 (2001). 526 494
- 13C. Zeng, W. Zhu, S. C. Erwin, Z. Zhang, and H. H. Weit-495
- 496 ering, Phys. Rev. B 70, 205340 (2004). 14
- M. Farle, Rep. Prog. Phys. 61, 755 (1998). 497

values in Table III, therefore $\varphi_M \approx \varphi_H$ and the dragging 448 quality of all the samples. From the angular depensymmetry of the scattering seems to take place around $_{450}$ anisotropy fields, g-factor and magnetic relaxation pa-200K corresponding to the minimum in Fig. 3. At lower 451 rameters are obtained. The contributions to the broadtemperature a superposition of twofold and fourfold sym- ⁴⁵² ening of the FMR linewidth come primarily from the metry dominates the angular dependence of the in-plane 453 intrinsic Gilbert damping and two-magnon scattering. linewidth. This cannot be related only to crystalline de- 454 A transition from the six-fold to two-fold plus fourthfects as the azimuthal dependence of the resonance field 455 fold in-plane anisotropy was determined around 200K show a small highly distorted uniaxial anisotropy along $_{456}$ for Mn₅Ge₃C_{0.2} that corresponds to the minimum in the

ACKNOWLEDGEMENTS

458

This work has been carried out thanks to the support 459 460 of the A*MIDEX project (No. ANR-11-IDEX-0001-02) 461 funded by the "Investissements d'Avenir" French Gov- Mn_5Ge_3 and $Mn_5Ge_3C_x$ films with 12nm thickness $_{462}$ ernment program, managed by the French National Rewere grown by reactive deposition epitaxy on Ge(111) 463 search Agency (ANR). We also want to thank the insubstrates. Detailed FMR measurements were per- 464 terdisciplinary French EPR network RENARD (CNRS -

- C. Chappert, K. L. Dang, P. Beauvillain, H. Hurdequint, and D. Renard, Phys. Rev. B 34, 3192 (1986).
- 16W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and 500 K. Baberschke, Phys. Rev. B 58, 5611 (1998). 501
- 17S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. 502 Phys. 40, 580 (2001). 503
- 18 T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004). 504
- 19505 K. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S. 506 S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, and Z. 507 Frait, Phys. Rev. B 76, 104416 (2007). 508
- 20 509 R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999).
- 21P. Landeros, R. E. Arias, and D. L. Mills, Phys. Rev. B 510 77, 214405 (2008). 511
- 22R. D. McMichael, D. J. Twisselmann, and A. Kunz, Phys. Rev. Lett. 90, 227601 (2003). 513
- 23S. S. Kalarickal, P. Krivosik, J. Das, K. S. Kim, and C. E. 514 Patton, Phys. Rev. B 77, 054427 (2008). 515
- 24A. Truong, A. O. Watanabe, T. Sekiguchi, P. A. Morte-516 mousque, T. Sato, K. Ando, and K. M. Itoh, Phys. Rev. B 517 **90**, 224415 (2014).
- 25K. Gilmore, Y. U. Idzerda, and M. D. Stiles, Phys. Rev. 519 Lett. 99, 027204 (2007). 520
- 26H. Ebert, S. Mankovsky, D. Ködderitzsch, and P. J. Kelly, 521 522 Phys. Rev. Lett. 107, 066603 (2011).
- 27B. Heinrich, Ultrathin Magnetic Structures III (Springer, 523 New York, 2005). 524
- 28J. Lindner, I. Barsukov, C. Raeder, C. Hassel, O. Posth, R. Meckenstock, P. Landeros, and D. L. Mills, Phys. Rev 527 B 80, 224421 (2009).
- 29528 G. Woltersdorf and B. Heinrich, Phys. Rev. B 69, 184417 (2004).529

TABLE I. Magnetic parameters for Mn_5Ge_3 , $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$ at different temperatures obtained from the FMR.

Sample	T(K)	$4\pi \ M_{eff}(kOe)$	$\rm K_2(erg/cm^3)$	${ m K}_4 ({ m erg}/{ m cm}^3)$	$\rm K_{6\parallel}(erg/cm^3)$	$\gamma/2\pi({\rm GHz/kOe})$
${ m Mn}_5{ m Ge}_3$	300	1.5	3.7×10^{5}	2832.45		2.8
	250	4.3	9.95×10^{5}	682.68		2.8
	200	4.6	1.69×10^{6}	-1.19×10^{5}		2.8
	6	5.4	$3.95{ imes}10^6$	-9.84×10^{5}		2.8
$\mathrm{Mn}_5\mathrm{Ge}_3\mathrm{C}_{0.1}$	300	2.6	1.65×10^{6}	3.85×10^4		2.8
	250	3.8	2.71×10^{6}	-1901		2.8
	200	4.4	3.37×10^{6}	-5131.37		2.8
	100	5.0	4.29×10^{6}	2.58×10^{4}		2.8
$\mathrm{Mn_5Ge_3C_{0.2}}$	300	5.3	4.39×10^{6}	4.41×10^{4}	27.95	2.84
	250	5.8	4.78×10^{6}	5.53×10^{4}	134.17	2.84
	150	6.6	5.19×10^{6}	5.35×10^{4}		2.84
	100	7.0	5.28×10^{6}	4.61×10^{4}		2.84

TABLE II. Magnetic relaxation parameters for Mn_5Ge_3 , $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$ at different temperatures determined from the out of plane angular variation of FMR.

Sample	T(K)	α	$\Gamma_{2mag}(\text{Oe})$	$\Delta \theta_H(\text{deg})$	$\Delta(4\pi M_{eff})(Oe)$	$\Delta H_{inh}(\text{Oe})$
${\rm Mn}_5{\rm Ge}_3$	300 6	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	$\begin{array}{c} 150 \\ 600 \end{array}$	$\begin{array}{c} 0.05 \\ 0.1 \end{array}$	20 10	270 10
$\mathrm{Mn}_5\mathrm{Ge}_3\mathrm{C}_{0.1}$	$300 \\ 250 \\ 200 \\ 150 \\ 100$	$\begin{array}{c} 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.005 \end{array}$	210 280 320 400 430	$\begin{array}{c} 0.05 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	80 5 5 5 5 5	80 15 5 5 80
$\mathrm{Mn}_{5}\mathrm{Ge}_{3}\mathrm{C}_{0.2}$	$300 \\ 250 \\ 150 \\ 100$	$0.01 \\ 0.01 \\ 0.01 \\ 0.01$	220 300 500 450	$\begin{array}{c} 0.05\text{-}0.2 \\ 0.05 \\ 0.05 \\ 0.05 \end{array}$	10 10 10 10	5 5 5 5

FIG. 5. (Color online) Out-of plane (a) and in-plane (b) angular dependence of the resonance linewidth for $Mn_5Ge_3C_{0.2}$ at different temperatures. The lines represent fits with intrinsic and extrinsic contributions.

TABLE III. Magnetic relaxation parameters for $Mn_5Ge_3C_{0.2}$ at different temperatures determined from the in-plane angular variation of FMR.

T(K)	$\Gamma_0(\mathrm{Oe})$	$\Gamma_2(\mathrm{Oe})$	$\Gamma_4(\mathrm{Oe})$	$\Gamma_6(\mathrm{Oe})$	φ_2	φ_4	φ_6
300	72.75	1.5		1.5	90		30
250	97.5	1.7		1.5	90		30
150	254.2	8.6	5.58		57	166	
100	291.4	12.4	8.68		57	167	