

Ferromagnetic resonance and magnetic damping in C-doped Mn5Ge3

Charles Emmanuel Dutoit, Voicu Dolocan, Michael Kuzmin, Lisa Michez, Matthieu Petit, Vinh Le Thanh, Benjamin Pigeau, Sylvain Bertaina

To cite this version:

Charles Emmanuel Dutoit, Voicu Dolocan, Michael Kuzmin, Lisa Michez, Matthieu Petit, et al.. Ferromagnetic resonance and magnetic damping in C-doped Mn5Ge3. Journal of Physics D: Applied Physics, 2015, 49 (4), pp.045001. 10.1088/0022-3727/49/4/045001. hal-01266713

HAL Id: hal-01266713 <https://amu.hal.science/hal-01266713v1>

Submitted on 19 Jul 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

\rm_{1} Ferromagnetic resonance and magnetic damping in C-doped $\rm{Mn}_{5}Ge_{3}$ ² (Dated: May 15, 2015)

X-band ferromagnetic resonance (FMR) was used to investigate static and dynamic magnetic properties of Mn_5Ge_3 and Carbon-doped Mn_5Ge_3 (C_{0.1} and C_{0.2}) thin films grown on Ge(111). The temperature dependence of magnetic anisotropy shows an increased perpendicular magnetocrystalline contribution at low temperature with an in-plane easy axis due to the large shape contribution. We find that our samples show as small as 40Oe FMR linewidth (corresponding Gilbert damping α =0.005), for the out-of-plane direction, certifying of their very good structural quality. The perpendicular linewidth shows a minimum around 200K for all samples, which seems not correlated to the C-doping. The magnetic relaxation parameters have been determined and indicate as main extrinsic contribution the two-magnon scattering. A transition from six-fold to two-fold plus fourth-fold in-plane anisotropy is observed in the FMR linewidth of $Mn_5Ge_3Co_{0.2}$ around 200K.

I. INTRODUCTION

The field of semiconductor spintronics is rapidly de- veloping nowadays. The idea to combine the well es- tablished data processing capabilities of semiconductor electronics with ferromagnetism may lead to new func-⁸ tionalities and low power consumption of devices^{1,2}. One of the main obstacle for spin injection into a semicon- ductor is the conductivity mismatch at the interface of n_1 the ferromagnetic metal and the semiconductor³. One way to avoid it is to use a thin insulating layer acting as a tunnel barrier between the two materials. Another approach is to design the spin injecting interface with a similar structure and properties by alloying or doping the semiconductor with a magnetic element.

 17 The intermetallic magnetic Mn_5Ge_3 could provide the ¹⁸ desired solution as it grows directly onto Ge substrate⁴, ¹⁹ therefore being compatible with existing semiconductor ²⁰ technology. Mn5Ge³ shows ferromagnetism with a Curie ²¹ temperature (T_c) around room temperature⁵ and an im-22 portant spin polarization (up to 42%)^{6,7}. The Mn₅Ge₃ ²³ hexagonal cell contains 10 Mn atoms which are arranged ²⁴ in two different sublattices (Mn_I and Mn_{II}) due to dif-²⁵ ferent coordination. Inserting Carbon atoms into inter-26 stitial voids of Mn_{II} octahedra leads to an increase of $_{27}$ T_c up to 450K, supplying a solution for the room tem-28 perature spin injection⁸. Ab-initio calculations indicate ²⁹ that the structural distortions have a small influence on ³⁰ the increased T_c in $Mn_5Ge_3C_x$ (the lattice is compressed $_{31}$ compared to pure Mn_5Ge_3 , with the enhanced ferromag-³² netism attributed to a 90[°] ferromagnetic superexchange 33 mediated by Carbon⁹.

 Several preparation methods were used to grow Mn5Ge³ thin films. The most common growth method is the solid phase epitaxy which consists in the deposi- tion of Mn or Mn and C on a Ge(111) layer followed by an annealing leading to the formation of the Mn5Ge³ 39 or $Mn_5Ge_3C_x$ films. Due to the low Mn solubility in si surface of the sample during the epitaxial growth. No dif- Ge, secondary precipitates or Mn-rich regions/clusters ⁸² fusion phenomenon is required for the growth unlike the $_{41}$ frequently appear inside the Mn_5Ge_3 films. Mn atoms $_{83}$ solid phase epitaxy process which is usually employed to 42 also diffuse in the underlying Ge(111) substrate which α form the $Mn_5Ge_3C_x$ films on Ge(111). However a good deteriorates the interface quality. In this letter, we re-⁸⁵ control of the different flows is needed to match the sto- port on the structural and magnetic properties of thin ⁸⁶ ichiometry of the desired compound : Ge and Mn were 45 films C-doped Mn_5Ge_3 epitaxially grown on Ge(111) by $\,$ s7 evaporated using Knudsen cells and C atomic flow was reactive deposition epitaxy (RDE) at room temperature. ⁸⁸ obtained thanks to a high purity pyrolytic graphite fila-

 The low growth temperature reduces segregation and al- lows the formation of thin films of excellent crystalline quality suitable for the determination of various mag- netic parameters by FMR: magnetic anisotropy, magne- tization and the g-factor which were quantitatively de- termined and theirs dependence on Carbon content and temperature was identified. From the study of the FMR linewidth, the magnetic relaxation process is investigated and the relaxation parameters are found. The main re- laxation channels we identify are the intrinsic Gilbert damping and the two-magnon scattering. The ferro- magnetic resonance measurements demonstrate the very good structural quality of the pure and C-doped Mn_5Ge_3 , paving the way for heterostructures integration.

⁶¹ II. EXPERIMENTAL DETAILS

 The sample preparation as well as the reflection high- energy electron diffraction (RHEED) measurements were performed in a UHV setup with a base pressure of ⁶⁵ 2.7×10^{-8} Pa. Mn₅Ge₃C_x layers were grown epitaxially ⁶⁶ on $Ge(111)$ substrates^{4,10}. These substrates were chem- ically cleaned before introduction in the UHV chamber. ϵ ⁸ Then we did a degassing of the Ge(111) substrates by direct heating up to 720 K for 12 h and flashed after- wards at 1020 K to remove the native oxide layer. After repeated flashes at 1020 K and a cooling down at 770 K, a 15 nm thick Ge buffer layer was deposited on the $73 \text{ Ge}(111)$ substrates to make sure that the starting surface of the $Mn_5Ge_3C_x$ thin films growth is of good quality. The quality of this starting surface was checked in-situ by RHEED. Eventually the sample was cooled down to room temperature (RT).

⁷⁸ To form the $Mn_5Ge_3C_x$ layers we used the reactive ⁷⁹ deposition epitaxy method¹¹. Using this method the 80 $Mn_5Ge_3C_x$ layers are created by phase nucleation at the ⁸⁹ ment source (SUKO) from MBE-Komponenten. The Ge ⁹⁰ and Mn flows were calibrated with a water-cooled quartz ⁹¹ crystal microbalance and the C flow was calibrated using ⁹² the structure transition between the Si(001) (2×1) and 93 $c(4\times4)$ reconstructions which occurs for a C deposited ⁹⁴ thickness of 0.4 atomic monolayer on $Si(001)$ surfaces¹². 95 The growth of the $Mn_5Ge_3C_x$ films was monitored in- $\frac{1}{96}$ situ by RHEED : the Mn₅Ge₃C_x films growing epitax- α ially on a Ge(111) surface exhibit an easily identifiable $\frac{1}{98}$ RHEED $(\sqrt{3} \times \sqrt{3})$ R30° pattern which is characteristic 99 of the Mn_5Ge_3 and $\text{Mn}_5\text{Ge}_3\text{C}_x$ compounds^{10,13}.

 The saturation magnetization and the estimated Curie temperatures of all samples were determined by SQUID measurements. A SQUID magnetometer Quantum De- sign MPMSXL working in a temperature range 1.8K to 300K and in a magnetic field up to 5T was used. The FMR measurements were performed with a conventional X-band (9.39GHz) Bruker EMX spectrometer in the 80K to 300K temperature range. The samples $(2 \times 2 \text{mm}^2)$ were glued on quartz suprazil rode and mounted in the 109 center of a rectangular cavity (TE₁₀₂). To improve the signal-to-noise ratio, the FMR measurements are carried out using a modulation field of 100kHz and 5Oe ampli- tude with a lock-in detection. The FMR spectra were measured with the applied magnetic field rotated in plane and out-of-plane. The FMR spectra were fitted with a Lorentzian profile and the resonance field and FWHM linewidth were subsequently extracted. Typical spectra $_{117}$ at room temperature are shown in Fig. 1(a) for thin films of 12nm thickness.

119 **III. MODEL AND GEOMETRY**

 The FMR spectra were analyzed with the Smit-Beljers formalism for a thin film with uniaxial (hexagonal) symmetry¹⁴. For a ferromagnetic film with hexagonal symmetry, the free energy density including the Zeeman energy, the demagnetizing energy and the anisotropy en-ergy density is written as:

$$
F = -MH[\sin \theta \sin \theta_H \cos(\varphi - \varphi_H) + \cos \theta \cos \theta_H]
$$

$$
- (2\pi M^2 - K_2) \sin^2 \theta + K_4 \sin^4 \theta + K_{6\perp} \sin^6 \theta
$$

$$
+ K_{6\parallel} \sin^6 \theta \cos 6\varphi
$$
 (1)

¹²⁶ where θ_H , φ_H are the polar and azimuthal angle of the external field with respect to the surface normal of the thin film ([001] direction) and respectively [100] direction, ¹²⁹ θ and φ are the polar and azimuthal angle of the magneti-¹³⁰ zation with respect same directions (Fig. 1(b)) and K_i are the anisotropy constants to sixth order. The resonance condition, neglecting the damping effects and consider- ing the magnetization at equilibrium under steady field, is given by:

$$
\left(\frac{\omega}{\gamma}\right)^2 = H_1 \cdot H_2 \tag{2}
$$

FIG. 1. (Color online) (a) Typical spectra at room temperature for Mn_5Ge_3 , $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$ thin films with 12nm thickness. (b) Schema of the coordinate system used in FMR measurements.

135 where H_1 and H_2 represent the stiffness fields evaluated ¹³⁶ at the equilibrium angles of the magnetization:

$$
H_1 = \frac{1}{M} \frac{\partial^2 F}{\partial \theta^2} \tag{3}
$$

$$
H_2 = \frac{1}{M\sin^2\theta} \frac{\partial^2 F}{\partial \varphi^2}
$$
 (4)

 $_{137}$ Equation (2) is valid for a high-symmetry case, where ¹³⁸ the mixed second derivative of the free energy is nil. Our ¹³⁹ experiments were carried out in two distinct geometries:

(i) out-of-plane geometry ($\varphi_H = 0^\circ$, θ_H variable). The stiffness fields are the following:

$$
H_1^{\perp} = H_r \cos(\theta - \theta_H) - 4\pi M_{eff} \cos 2\theta + 2\frac{K_4}{M} (\cos 2\theta - \cos 4\theta) + 30\frac{(K_{6\perp} + K_{6\parallel})}{M} \sin^4 \theta
$$

$$
- 36\frac{(K_{6\perp} + K_{6\parallel})}{M} \sin^6 \theta
$$
(5)

$$
H_2^{\perp} = H_r \cos(\theta - \theta_H) - 4\pi M_{eff} \cos^2 \theta + 4\frac{K_4}{M} (\cos^2 \theta
$$

$$
-\cos^{4}\theta + 6\frac{(K_{6\perp}+K_{6\parallel})}{M}\sin^{4}\theta\cos^{2}\theta - 36\frac{K_{6\parallel}}{M}\sin^{6}\theta
$$
\n(6)

¹⁴⁰ (ii) in-plane geometry ($\theta_H = 90^\circ$, φ_H variable). The ¹⁴¹ stiffness fields are:

$$
H_1^{\parallel} = H_r \cos(\varphi - \varphi_H) + 4\pi M_{eff} - 4\frac{K_4}{M} - 6\frac{K_{6\perp}}{M}
$$

$$
-6\frac{K_{6\parallel}}{M} \cos 6\varphi \tag{7}
$$

$$
H_2^{\parallel} = H_r \cos(\varphi - \varphi_H) - 36 \frac{K_{6\parallel}}{M} \cos 6\varphi \tag{8}
$$

 H_{142} Here $4\pi M_{eff} = 4\pi M - \frac{2K_2}{M}$, ω the angular frequency ¹⁴³ and $\gamma = g\mu_B/\hbar$ the gyromagnetic ratio. $H_{1,2}^{\perp}$ represent ¹⁴⁴ the stiffness fields for the out-of-plane geometry ($\theta_H = 0$) ¹⁴⁵ and $H_{1,2}^{\parallel}$ for the in-plane geometry $(\theta_H = 90^{\circ})$.

¹⁴⁶ The FMR linewidth is analyzed by including the in-¹⁴⁷ trinsic and extrinsic damping mechanisms^{15–17}:

$$
\Delta H = \Delta H_{intr} + \Delta H_{extr} \tag{9}
$$

¹⁴⁸ In this expression, the intrinsic contribution due to the ¹⁴⁹ magnon-electron interaction can be described by the di-¹⁵⁰ mensionless Gilbert damping parameter $\alpha^{18,19}$:

$$
\Delta H_{intr} = \frac{2\alpha\omega}{\gamma\Psi} \tag{10}
$$

where $\Psi = \frac{1}{H_1 + H_2}$ $d(\omega^2/\gamma^2)$ ¹⁵¹ where $\Psi = \frac{1}{H_1 + H_2} \frac{d(\omega / \gamma)}{dH_r}$ is the dragging function as \sum_{152}^{111} the magnetization \overrightarrow{M} is dragged behind \overrightarrow{H} owing to ¹⁵³ anisotropy. When M and H are parallel, this contribu-¹⁵⁴ tion vanishes. As generally the in-plane and out-of-plane ¹⁵⁵ linewidth are not equal, extrinsic contribution have to ¹⁵⁶ be taken into account. The extrinsic contribution gener-¹⁵⁷ ally include the magnetic relation due to magnon-magnon ¹⁵⁸ interaction, the two-magnon interaction, which is given $_{159}$ \rm{by}^{20-23} :

$$
\Delta H_{2mag} = \frac{\Gamma}{\Psi} \tag{11}
$$

 $_{160}$ with Γ the two-magnon scattering rate. The two-magnon contribution usually vanishes for a critical out-of-plane 162 angle θ < 45°. Inhomogeneous broadening effects also participate to the extrinsic linewidth, especially at in- termediate angles as the resonance local field can vary. We consider here three types of inhomogeneous broad- ening: ΔH_{mos} , ΔH_{int} and ΔH_{inhom} . The first term is the mosaicity term due to the distribution of easy axes directions^{15,19}:

$$
\Delta H_{mos} = \left| \frac{\partial H_r}{\partial \beta_H} \right| \Delta \beta_H \tag{12}
$$

¹⁶⁹ with $\beta_H = (\theta_H, \varphi_H)$. The second term represents the μ ¹⁷⁰ inhomogeneity of the internal fields in the sample¹⁷:

$$
\Delta H_{int} = \left| \frac{\partial H_r}{\partial (4\pi M_{eff})} \right| \Delta (4\pi M_{eff}) \tag{13}
$$

Finally, the last term which can contribute to the linewidth is a residual frequency and angular indepen- dent inhomogeneous linewidth that cannot be put in other form.

 The procedure used to determine the magnetic param- eters is as follows: the anisotropy fields were determined using the system of equations $(5)-(8)$ applied at high sym- metry directions (along easy/hard axes) together with the corresponding measured resonance fields (fixed fre- quency) at a fixed g-factor. Afterwards, the polar and azimuthal angular dependence of the resonance field was fitted with the same equations and the equilibrium con- dition of the free energy allowing for a variable g-factor as parameter. The iteration was repeated several times until a good fit was obtained. This analysis yields the g-factor, the anisotropy constants and the magnetization direction θ. These values serve in the angular variation 188 of the linewidth which allows the evaluation of α , Γ and the inhomogeneous contribution.

190 IV. RESULTS AND DISCUSSION

 In this section, experimental results of C-doped Mn5Ge³ thin films investigated by ferromagnetic reso- nance and SQUID magnetometry are presented. Using samples with different carbon content, we determined the magnetic anisotropy energy, the g-factor, magnetization and magnetic relaxation parameters.

197 **A.** Magnetic anisotropy

¹⁹⁸ To determine the magnetic energy anisotropy (in ab-¹⁹⁹ solute units), FMR measurements were carried out at a ²⁰⁰ frequency of 9.4GHz. The FMR spectra were recorded ²⁰¹ as a function of the polar and azimuthal angles of the ²⁰² external magnetic field at different temperatures. The ²⁰³ saturation magnetization was determined from SQUID $_{204}$ measurements. In Fig. $2(d)$, the temperature dependence $_{205}$ of the magnetization up to 300K is shown for Mn_5Ge_3 , 206 Mn₅Ge₃C_{0.1} and Mn₅Ge₃C_{0.2}. The Curie temperature ²⁰⁷ was estimated from these curves by fitting with a Bril-²⁰⁸ louin function in reduced units. The full line correspond $_{209}$ to a fit with $B_{1.5}$ and the dotted line to a fit with B_1 . $_{\rm 210}$ The estimated values of T $_{c}$ are 315K, 345K and 450K. ²¹¹ The error bars correspond to ± 10 K for Mn_5Ge_3 and 212 Mn₅Ge₃C_{0.1} as the experimental points cover a larger $_{213}$ temperature range and superpose closely with $B_{1.5}$. The $_{214}$ experimental points for $Mn_5Ge_3C_{0,2}$ cover only a small ²¹⁵ part of the temperature range and the error bars are es-²¹⁶ timated to be of ± 30 K.
²¹⁷ The out-of-plane are

The out-of-plane angular variation for the reso-218 nance field H_r is shown in Fig. 2(a)-(c) for Mn_5Ge_3 ,

FIG. 2. (Color online) Out-of-plane angular variation of the resonance field at 300K for (a) Mn_5Ge_3 , (b) $Mn_5Ge_3C_{0.1}$, (c) $Mn_5Ge_3Co_2$. The temperature dependence of the magnetization is shown in (d) in normalized coordinates. The full and dotted lines correspond to fits with a Brillouin function. The estimated T_c s are 315K, 345K and 450K. (e) In-plane angular dependence of the resonance field for $Mn_5Ge_3C_{0.2}$ at room temperature. The distance between dotted circles is 1 Oe. The line represents a fit with Eq.(3).

 $219 \text{ Mn}_5\text{Ge}_3\text{C}_{0.1}$ and $\text{Mn}_5\text{Ge}_3\text{C}_{0.2}$ at room temperature. The 244 and $\text{Mn}_5\text{Ge}_3\text{C}_{0.1}$, the sixfold in-plane symmetry is to data of out-of-plane and in-plane dependence of the res-²⁵⁶ temperature dependence discussed in the next section. onance field can be well simulated with Eq.(2) and the anisotropy fields can be extracted. The anisotropy con- stants can be found in absolute units by using the sample magnetization determined from SQUID measurements.

²³⁶ The resulting anisotropy constants are summarized ²⁶⁰ moment. The ratio of the orbital to the spin magnetic ²³⁷ in Table I along with the g-factor at several tempera-²⁶¹ moment can be inferred from the Kittel formula and is 238 tures. The positive sign of K_2 indicates that this term 262 equal to the deviation of the g-factor from the free elec- $_{239}$ favors an out-of-plane easy axis of magnetization while $_{263}$ tron value. The value of the g-factor for Mn_5Ge_3 and ²⁴⁰ the shape anisotropy dominates²⁴. In the very thin film ²⁶⁴ Mn₅Ge₃C_{0.1} is 2.0005, while for Mn₅Ge₃C_{0.2} this value $_{241}$ limit, K_2 could overcome the shape anisotropy result- $_{265}$ increases to 2.0291 meaning an increased orbital contri-²⁴² ing in an out-of-plane anisotropy axis. The different K_i 266 bution with Carbon doping (1.5% of the spin magnetic $_{243}$ have a different temperature dependence. For Mn_5Ge_3 $_{267}$ moment).

 $H_r(\theta_H)$ indicate an easy axis along H|| [100] (in-plane) 245 low to be extracted, therefore only the K₂ and K₄ con-²²¹ with a minimum resonance field of 1.6kOe, 2.3kOe and ²⁴⁶ stants were determined from the angular measurements. $_{222}$ 2.7kOe for $\rm Mn_5Ge_3C_{0.2}$, $\rm Mn_5Ge_3C_{0.1}$ and $\rm Mn_5Ge_3$ re- $_{247}$ K₂ is positive for $\rm Mn_5Ge_3$ and C-doped $\rm Mn_5Ge_3$ at all ₂₂₃ spectively. The hard axis is perpendicular to plane $([001]$ ₂₄₈ temperatures and increases at low temperature. K_4 de- $_{224}$ direction) and has the highest H_r of 8.6kOe, 6kOe and $_{249}$ creases (increases in absolute values) for Mn_5Ge_3 , but ²²⁵ 5kOe. The azimuthal angular dependence of the res-²⁵⁰ for the C-doped compounds has a minimum or a max-₂₂₆ onance field for $Mn_5Ge_3C_{0.2}$, recorded also at 300K is $_{251}$ imum at an intermediate temperature. The sixfold in- $_{227}$ shown in Fig. 2(e). The sixfold (hexagonal) symmetry in $_{252}$ plane anisotropy in $Mn_5Ge_3C_{0.2}$ increases at 250K from ²²⁸ the azimuthal angular dependence indicates that an in-²⁵³ the room temperature value, while at lower temperature ²²⁹ plane hexagonal anisotropy exists with easy axes along ²⁵⁴ becomes to small or a transition to a fourfold in-plane ²³⁰ the [100] direction of the film. The experimental FMR ²⁵⁵ anisotropy arises as will be inferred from the linewidth

> ²⁵⁷ The g-factor can be estimated from the angular de-²⁵⁸ pendence of the resonance field. Its value indicates the ²⁵⁹ influence of the orbital contribution to the total magnetic

B. Magnetic relaxation

269 The linewidth of the resonant signal ΔH_r is directly re- lated to the magnetic and structural quality of the films and provide information about the different relaxation channels in magnetic damping. In Fig. 3, the tempera- ture dependence of the FMR linewidth is shown for the ²⁷⁴ perpendicular to plane direction $(\theta_H = 0^{\circ})$ for Mn_5Ge_3 and C-doped Mn_5Ge_3 . A shallow minimum is observed for all three compounds around 200K and a sharp peak ₂₇₇ close to T_c . At lower temperature, the FMR linewidth $_{278}$ increases and saturates for Mn_5Ge_3 (measured to 6K). The minimum in the linewidth seems not related with the C-doping. It occurs around the same absolute value of temperature and could be related with a small in-plane transition to a fourfold anisotropy from sixfold anisotropy (tetragonal distortion) or to a constriction by the sub- strate. The increase of linewidth at low temperature was explained as an inhomogeneous broadening due to the in-286 crease of the anisotropy constants (K_2) with decreasing ²⁸⁷ temperature¹⁶.

FIG. 3. (Color online) Temperature variation of the resonance linewidth for Mn_5Ge_3 , $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$.

 $Fig. 4$ and Fig. $5(a)$ show the out-of-plane variation of the FMR linewidth for the C-doped Mn_5Ge_3 compared $_{290}$ to the pure $\rm Mn_{5}Ge_{3}$ at room and low temperatures. The shape of the curves shows the characteristic dependence for thin films with a maximum of the linewidth at in- termediate angles. Our films have an in-plane easy axis at all temperatures, therefore the magnetization lags be- hind the applied field when the field is rotated out of the ²⁹⁶ plane. The peak in the linewidth occurs for θ_H between 20° at room temperature and 10° at low temperature, corresponding to the largest interval between M and H. From the theoretical fits of the data (solid lines), the re- laxation parameters are extracted and listed in Table II. For all three compounds, the perpendicular to plane linewidth is always smaller than the in-plane one indi-³⁰⁷ isotropic and independent of temperature. We prefer us-³⁰³ cating the presence of two-magnon scattering and other ³⁰⁸ ing the dimensionless parameter α which varies between extrinsic contributions in the samples. The intrinsic ³⁰⁹ 0.005 and 0.01 over the Gilbert damping parameter G 305 damping cannot explain the out-of-plane shape of the 310 given by $\alpha = G/\gamma M$ as the latter will imply a tempera-

FIG. 4. (Color online) Out-of plane angular dependence of the resonance linewidth for Mn_5Ge_3 (a) and $Mn_5Ge_3C_{0,1}$ (b) at different temperatures. The lines represent fits with intrinsic and extrinsic contributions.

linewidth. The estimated intrinsic damping is considered ³¹¹ ture dependence. The Gilbert damping represents the

³¹³ the lattice as it is introduced in the Landau-Lifschitz-³⁷¹ mates as a precise identification of the defects is difficult $_{314}$ Gilbert equation¹⁸. The spin-orbit coupling is assumed $_{372}$ to obtain. ³¹⁵ to be at the origin of spin-lattice relaxation in ferro- 316 magnets. *Ab-initio* calculations that include the spin- 374 butions to the linewidth have only a small impact on the 317 orbit coupling explicitly show a weak dependence of α σ is fitted curves. The mosaicity is very small, inferior to 318 with temperature in a large range of temperatures^{25,26}. $\frac{376}{0.1}$, being almost negligible testimony of the good qual-319 Two different mechanisms contribute to the temperature $\frac{377}{11}$ ity of our samples. Also the inhomogeneity of the internal 320 dependence²⁷, one conductivity-like and one resistivity- 378 fields is almost negligible in the majority of cases, only ³²¹ like with a transition between the two at intermediate $\frac{379}{2}$ for $\text{Mn}_5\text{Ge}_3\text{C}_{0.1}$ at room temperature it seems to have $_{322}$ temperature. Sometimes these two contributions have an $_{380}$ a larger influence. The higher values of H_{int} are needed 323 equal influence on the damping. We estimated the value 381 to explain the small peak observed around $\theta_H = 0^{\circ}$ for 324 of α for each compound by fitting the out-of-plane angu- 382 both Mn_5Ge_3 and $Mn_5Ge_3C_{0.1}$ and for the increase of 325 lar dependence of ΔH_r at a temperature corresponding 383 the linewidth at intermediate angles until $\theta_H = 90^\circ$ for 326 to the minimum of the curves in Fig. 3 (around 200K). 384 $Mn_5Ge_3C_{0.1}$ at room temperature. The values of the ³²⁷ For this specific temperature, the estimation correspond ³⁸⁵ residual inhomogeneous contribution are generally small, 328 to the maximum possible value of α considering small in- 386 the larger values can also be attributed to a temperature ³²⁹ homogeneous broadening (ΔH_{int} and ΔH_{inh}). Although ³⁸⁷ dependent intrinsic contribution as discussed above. 330 we consider a constant α , as it is observed from Table II, 388 ³³¹ at room and low temperature the linewidth (and corre-³⁸⁹ out-of-plane and in-plane data was fitted as shown in ³³² spondingly the inhomogeneous residual field) increases ³⁹⁰ Fig. 5. The panel (a) show the out-of-plane dependence 333 for $Mn_5Ge_3C_{0.1}$ which could be explained by an increase $\frac{391}{2}$ of the FMR linewidth. The 300K and 250K data are well 334 of α at least at low temperature. The room tempera- 392 fitted close to $\theta_H = 0^\circ$ and at larger angles but not at the 335 ture increasing in the linewidth is usually explained as a $\frac{393}{2}$ peaks that correspond to the largest interval between M 336 breakdown of the uniform precession due to thermal ex- $\frac{394}{2}$ and **H** (critical angle). The dashed line at T=300K corre-³³⁷ citations. The increasing of the linewidth at low temper-³⁹⁵ sponds to a fit with the parameters indicated in Table II 338 ature is smaller for Mn_5Ge_3 and $Mn_5Ge_3C_{0.2}$ in the 100- 396 and $\Delta\theta_H = 0.05^{\circ}$, while the full line to a fit with $\Delta\theta_H$ 339 300K temperature range being compatible with a con- $_{397} = 0.2^\circ$. Although increasing the mosaicity contribution 340 stant α as considered.

 The second relaxation mode that influence the FMR linewidth is the two magnon scattering. The uni- form mode can couple with degenerate spin-wave modes due to fluctuations in the local effective field that can arise from surface defects, scattering centers, fluctua- tion in the anisotropy from grain to grain or other μ_{347} inhomogeneities^{20,22}. The two magnon scattering rate ³⁴⁸ Γ depends on the angle θ_H (out-of-plane geometry) and on the resonance field H_{res} . A detailed analysis based on the effect of the defects on the response functions of thin films was performed in Refs.21 and 28 for the case when the magnetization is tipped out-of-plane. We con- sider here the same type of angular dependence of Γ as in Ref.28 (see Eq.8). Γ depends on the nature and shape of the defects that activate the scattering mechanism. The values for the Mn5Ge³ compounds, extracted from the fitting of the linewidth curves, are shown in Table II as a function of temperature. From the calculated value $\Gamma_{2mag} = 8H_Kb^2p/\pi D$, the exchange spin-wave stiffness D 412 with $\omega_0 = \gamma M_{eff}$ and $\Gamma_i f(\varphi_i)$ characterize the can be inferred if details of the defects as the covered frac-⁴¹³ anisotropy of the two-magnon scattering along different $_{361}$ tion of the surface p or the effective height b are known $_{414}$ crystallographic in-plane directions. At 300K and 250K ³⁶² (H_K the anisotropy field). Atomic force microscopy mea- $_{415}$ (Fig. 5(b)), the FMR linewith has the same six-fold sym-363 surements were performed on the samples, from which 416 metry as the angular dependence of H_r (Fig. 2(e)). If the the rms surface roughness was determined: for Mn_5Ge_3 μ scattering centers are given by lattice defects (disloca- the surface roughness was of the order of 1.5-2nm, while ⁴¹⁸ tion lines), the azimuthal dependence should reflect the ³⁶⁶ for $Mn_5Ge_3C_x$ was of the order of 1nm. Therefore, at 419 lattice symmetry^{19,29}. The angular dependence of the room temperature, the spin-wave stiffness was estimated ³⁶⁸ as 0.12×10^{-8} G cm² for Mn₅Ge₃, 0.16×10^{-8} G cm² for

 312 decay of magnetization by direct viscous dissipation to 370 sidering a defect ratio of 50%. These values are only esti-

As observed from Table II, the other extrinsic contri-

We now discuss the case of $Mn_5Ge_3C_{0.2}$ for which both fits better the peaks, the fitted curve becomes V-shaped between the peaks in total contradiction with the data. 400 We believe that the mosaicity is small (0.05°) and the discrepancy at the critical angle at 300K is due to some other effect (the FMR line being strongly distorted at this angle). We also tried to fit the 300K curve introducing in- $_{404}$ plane second and fourth order anisotropy constants (K_{2||} 405 and $K_{4\parallel}$) without a better result (not shown). The low temperature curves are nicely fitted with the presented model for all angles.

 $\frac{408}{408}$ For the in-plane dependence of ΔH_r , the only contri-⁴⁰⁹ butions that were considered were from the isotropic in-⁴¹⁰ trinsic damping and the two-magnon contribution which $_{411}$ was expressed as follows^{19,20,28}:

$$
\Delta H_{2mag} = \frac{\sum_{i} \Gamma_{i} f(\varphi_{i})}{\Psi} \arcsin\left(\sqrt{\frac{\sqrt{\omega_{r}^{2} + (\omega_{0}/2)^{2}} - \omega_{0}/2}{\sqrt{\omega_{r}^{2} + (\omega_{0}/2)^{2}} + \omega_{0}/2}}\right)
$$
\n(14)

369 Mn₅Ge₃C_{0.1} and 0.39×10⁻⁸G cm² for Mn₅Ge₃C_{0.2} con-422 $\Gamma_i f(\varphi_i) = \Gamma_0 + \Gamma_2 \cos^2(\varphi - \varphi_2) + \Gamma_4 \cos 4(\varphi - \varphi_4)$ at 150K 420 scattering was fitted with $\Gamma_i f(\varphi_i) = \Gamma_0 + \Gamma_2 \cos^2(\varphi - \varphi_i)$ 421 φ_2 + $\Gamma_6 \cos 6(\varphi - \varphi_6)$ at 250K and 300K and with

 cally introduced to account for the observed angular vari-⁴⁴⁵ axial magneto-crystalline anisotropy and an in-plane easy α_{25} ation. Γ_6 is expected from the sixfold symmetry. The in- α_{46} axis of magnetization due to the large shape anisotropy. plane anisotropies are very small as observed form their ⁴⁴⁷ The small linewidth of the films are a proof of the good 427 values in Table III, therefore $\varphi_M \approx \varphi_H$ and the dragging 448 quality of all the samples. From the angular depen- function is very close to one and neglected. A change of ⁴⁴⁹ dence of the resonance field and of the linewidth, the ⁴²⁹ symmetry of the scattering seems to take place around ⁴⁵⁰ anisotropy fields, g-factor and magnetic relaxation pa- 200K corresponding to the minimum in Fig. 3. At lower ⁴⁵¹ rameters are obtained. The contributions to the broad- temperature a superposition of twofold and fourfold sym-⁴⁵² ening of the FMR linewidth come primarily from the metry dominates the angular dependence of the in-plane ⁴⁵³ intrinsic Gilbert damping and two-magnon scattering. linewidth. This cannot be related only to crystalline de-⁴⁵⁴ A transition from the six-fold to two-fold plus fourth- fects as the azimuthal dependence of the resonance field ⁴⁵⁵ fold in-plane anisotropy was determined around 200K $\frac{435 \text{ show a small highly distorted uniaxial anisotropy along } 456 \text{ for Mn}_5\text{Ge}_3\text{C}_{0.2}$ that corresponds to the minimum in the 436 the 45[°] direction (not shown). More experimental mea- 457 temperature dependence of the out-of-plane linewidth. surements are needed to elucidate the linewidth transi-tion at 200K.

V. CONCLUSION

 Mn_5Ge_3 and $Mn_5Ge_3C_x$ films with 12nm thickness 462 ernment program, managed by the French National Re- were grown by reactive deposition epitaxy on Ge(111) ⁴⁶³ search Agency (ANR). We also want to thank the in- substrates. Detailed FMR measurements were per-⁴⁶⁴ terdisciplinary French EPR network RENARD (CNRS - formed on the samples at different temperatures. Both ⁴⁶⁵ FR3443).

- 466 I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 498 323 (2004).
- ² D. D. Awschalom and M. E. Flatté, Nature Phys. 3, 153 (2007) .
- $470⁻³$ G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
- ⁴ C. Zeng, S. C. Erwin, L. C. Feldman, A. P. Li, R. Jin, Y. Song, J. R. Thompson and H. H. Weitering, App. Phys.
- 474 Lett. **83**, 5002 (2003). M. Gajdzik, C. Sürgers, M. Kelemen, and H. v. Löhneysen, J. Magn. Magn. Mater. 221, 248 (2000).
- ⁶ R. P. Panguluri, C. Zeng, H. H. Weitering, J. M. Sullivan, S. C. Erwin, and B. Nadgorny, Phys. Status Solidi B 242, R67 (2005).
- ⁴⁸⁰ ⁷ S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. 512 B 70, 235205 (2004).
- ⁸ C. Sürgers, G. Fischer, P. Winkel, and H. v. Löhneysen, Phys. Rev. B 90, 104421 (2014).
- ⁹ I. Slipukhina, E. Arras, P. Mavropoulos, and P. Pochet, Appl. Phys. Lett. 94, 192505 (2009).
- S. Olive-Mendez, A. Spiesser, L.A. Michez, V. Le Thanh, A. Glachant, J. Derrien, T. Devillers, A. Barski, M. Jamet, $\frac{488}{11}$ Thin Solid Films 517, 191 (2008).
- Matthieu Petit, Lisa Michez, Charles-Emmanuel Dutoit, Sylvain Bertaina, Voicu O. Dolocan, Vasile Heresanu, and Vinh Le Thanh, submitted to Thin Solid Films (2015).
- L. Simon, M. Stoffel, P. Sonnet, L. Kubler, L. Stauffer, A. Selloni, A. De Vita, R. Car, C. Pirri, G. Garreau, D.
- Aubel, and J. L. Bischoff, Phys. Rev. B 64, 035306 (2001). C. Zeng, W. Zhu, S. C. Erwin, Z. Zhang, and H. H. Weit-
- 496 ering, Phys. Rev. B **70**, 205340 (2004).
- M. Farle, Rep. Prog. Phys. **61**, 755 (1998).

423 and 100K. The parameters Γ_2 and Γ_4 are phenomenologi-444 $\rm Mn_5Ge_3$ and C-doped $\rm Mn_5Ge_3$ show perpendicular uni-

ACKNOWLEDGEMENTS

 This work has been carried out thanks to the support of the A*MIDEX project (No. ANR-11-IDEX-0001-02) funded by the "Investissements d'Avenir" French Gov-

- C. Chappert, K. L. Dang, P. Beauvillain, H. Hurdequint, 499 and D. Renard, Phys. Rev. B , 3192 (1986).
- W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and K. Baberschke, Phys. Rev. B 58, 5611 (1998).
- S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 40, 580 (2001).
- ⁵⁰⁴ ¹⁸ T. L. Gilbert, IEEE Trans. Magn. **40**, 3443 (2004).
- ⁵⁰⁵ ¹⁹ K. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. 506 Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S. S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, and Z. Frait, Phys. Rev. B 76, 104416 (2007).
- $_{509}$ 20 R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999).
- ⁵¹⁰ ²¹ P. Landeros, R. E. Arias, and D. L. Mills, Phys. Rev. B 77, 214405 (2008).
- R. D. McMichael, D. J. Twisselmann, and A. Kunz, Phys. Rev. Lett. 90, 227601 (2003).
- $_{514}$ ²³ S. S. Kalarickal, P. Krivosik, J. Das, K. S. Kim, and C. E. 515 Patton, Phys. Rev. B **77**, 054427 (2008).
- 516²⁴ A. Truong, A. O. Watanabe, T. Sekiguchi, P. A. Morte- mousque, T. Sato, K. Ando, and K. M. Itoh, Phys. Rev. B 90, 224415 (2014).
- ⁵¹⁹ ²⁵ K. Gilmore, Y. U. Idzerda, and M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007).
- $_{521}$ ²⁶ H. Ebert, S. Mankovsky, D. Ködderitzsch, and P. J. Kelly, Phys. Rev. Lett. 107, 066603 (2011).
- $_{523}$ 27 B. Heinrich, *Ultrathin Magnetic Structures III* (Springer, New York, 2005).
- J. Lindner, I. Barsukov, C. Raeder, C. Hassel, O. Posth, R. Meckenstock, P. Landeros, and D. L. Mills, Phys. Rev B 80, 224421 (2009).
- ²⁹ G. Woltersdorf and B. Heinrich, Phys. Rev. B 69, 184417 (2004) .

TABLE I. Magnetic parameters for $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$ at different temperatures obtained from the FMR.

Sample	T(K)	4π M _{eff} (kOe)	$K_2(\text{erg}/\text{cm}^3)$	$K_4(\text{erg}/\text{cm}^3)$	$K_{6\parallel}$ (erg/cm ³)	$\gamma/2\pi(\text{GHz}/\text{kOe})$
Mn_5Ge_3	300 250 200	1.5 4.3 4.6	3.7×10^5 9.95×10^{5} 1.69×10^{6}	2832.45 682.68 -1.19×10^{5}		2.8 2.8 2.8
$Mn_5Ge_3Co_{.1}$	6 300 250 200 100	5.4 2.6 3.8 4.4 5.0	3.95×10^{6} 1.65×10^6 2.71×10^{6} 3.37×10^{6} 4.29×10^{6}	-9.84×10^{5} 3.85×10^{4} -1901 -5131.37 2.58×10^{4}		2.8 2.8 2.8 2.8 2.8
$Mn_5Ge_3Co_{0.2}$	300 250 150 100	5.3 5.8 6.6 7.0	4.39×10^{6} 4.78×10^6 5.19×10^{6} 5.28×10^{6}	4.41×10^{4} 5.53×10^{4} 5.35×10^{4} 4.61×10^{4}	27.95 134.17	2.84 2.84 2.84 2.84

TABLE II. Magnetic relaxation parameters for Mn_5Ge_3 , $Mn_5Ge_3C_{0.1}$ and $Mn_5Ge_3C_{0.2}$ at different temperatures determined from the out of plane angular variation of FMR.

FIG. 5. (Color online) Out-of plane (a) and in-plane (b) angular dependence of the resonance linewidth for $Mn_5Ge_3C_{0.2}$ at different temperatures. The lines represent fits with intrinsic and extrinsic contributions.

TABLE III. Magnetic relaxation parameters for $Mn_5Ge_3C_{0.2}$ at different temperatures determined from the in-plane angu lar variation of FMR.

			$T(K) \Gamma_0(Oe) \Gamma_2(Oe) \Gamma_4(Oe) \Gamma_6(Oe) \varphi_2 \varphi_4 \varphi_6$				
300	72.75	1.5		1.5	90		30
250	97.5	1.7		1.5	90		30
150	254.2	8.6	5.58			57 166	
100	291.4	12.4	8.68			57 167	