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Abstract. A Quasi-Newton method for reconstructing the constitutive parameters of

three-dimensional penetrable scatterers from scattered field measurements is presented.

This method is adapted for handling large-scale electromagnetic problems while

keeping the memory requirement and the time flexibility as low as possible. The

forward scattering problem is solved by applying the Finite-Element Tearing and

Interconnecting Full-Dual-Primal (FETI-FDP2) method which shares the same spirit

as the Domain Decomposition methods for Finite Element methods (FEM). The idea

is to split the computational domain into smaller non-overlapping sub-domains in

order to simultaneously solve local sub-problems. Various strategies are proposed

in order to efficiently couple the inversion algorithm with the FETI-FDP2 method:

a separation into permanent and non-permanent subdomains is performed, iterative

solvers are favorized for resolving the interface problem and a marching-on-in-anything

initial guess selection further accelerates the process. The computational burden is

also reduced by applying the adjoint state vector methodology. Finally, the inversion

algorithm is confronted to measurements extracted from the 3D Fresnel database.
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1. Introduction

Quantitative inverse scattering algorithms attempt to estimate from scattering

experiments the physical parameters and features (position, form, size and complex

permittivity) of an unknown target. Quantitative microwave imaging is faced with two

main challenges: its ill-posedness and its non-linearity. The former jeopardizes the

robustness of the reconstruction algorithms and the quality of the results and the latter

results in a high computational cost. Indeed, unlike qualitative methods, quantitative

ones solve the exact non-linear electromagnetic inverse problem, which requires the

solution of a system of coupled equations. For this aim, either a global optimization

procedure is applied [1, 2] or a local one [3, 4, 5], into which the forward solver plays a

key role.

Various works take profit of the Finite Element Method (FEM) in order to

solve inverse problems in different scientific domains, such as in optical imaging [6],

electroencephalography imaging [7], electrocardiographic imaging [8], elasticity imaging

[9], electrical impedance tomography [10], eddy-current imaging [11] and, of course, in

microwave imaging [12, 13, 14, 15, 16, 17, 18, 19]. Thanks to its flexibility and its

capabilities of managing complex geometrical configurations, this type of modelling

scheme is more than appropriate to tackle biomedical and non-destructive testing

applications. Nevertheless, the numerical resolution of the Helmholtz equation in

heterogeneous media at high wave number is a challenging problem for the classical

finite element method. Indeed, the discretization mesh in FEM is directly proportional

to the wavelength λb. When the frequency increases, the number of field unknowns

increases very rapidly, especially in three-dimensional configurations. For example, a

30λ3
b computational domain corresponds to approximatively 0.5 106 field unknowns and

0.5 106 permittivity unknowns, while a domain of 90λ3
b meshed this time for a frequency

which is simply doubled leads to almost 1.5 106 field unknowns and 1.4 106 permittivity

unknowns. Even if the associated matrix system is sparse, its inversion as well as its

storage rapidly overwhelms even the largest resources that are currently available.

A way to overcome these difficulties is to apply a domain decomposition (DDM)

technique [20]. The principal idea of DDM is to split the entire computational domain

into smaller non-overlapping sub-domains and to solve a sequence of similar sub-

problems on these sub-domains. Among a variety of DDMs, the Finite-Element Tearing

and Interconnecting (FETI) method [21, 22] and its electromagnetic counter part,

the Finite-Element Tearing and Interconnecting-Dual Primal Electromagnetic method

(FETI-DPEM) [23, 24, 25, 26, 27, 28, 29, 30], are shown to be powerful techniques with

an excellent scalability.

Very few microwave inversion schemes take profit from the FETI-DPEM method

to handle large-scale problems, apart eventually [31] where a two-dimensional (2D)

configuration is investigated. In this work, we focus on the three-dimensional (3D) case,

because the computational burden here is more important than in 2D and leads us to

the necessity of well-defined numerical strategies. To that end, an updated version of



3

the FETI-DPEM method, named FETI-FDP2, has been developped and thoroughly

tested [32, 33]. Our aim here is to efficiently coupled it with an inversion scheme.

We have set our sights on quantitative imaging algorithms, without any use of a-

priori information, to recover the value of the complex permittivity in every point of a

given investigation domain. As the number of the permittivity unknowns is increasing

drastically at high wave number, we must tune the FETI-FDP2 method in order to

make this process more flexible in terms of time and memory consumption. At first,

we replace most the frontal solver by an iterative solver for inverting the large matrix

system which comes into play within the FETI-FDP2 method. Indeed, the sparse

matrices when factorized are not sparse any more and can not be easily stored through

compressed storage algorithms. We also exploit the marching-on-in-anything technique

[34, 35, 36] to select an initial field estimate which is the closest from the true field value.

Then, we separate the computational sub-domains into permanent and non-permanent

ones in order to reduce the number of permittivity unknowns and to pre-compute as

many elements as possible.

A cost function depending on the dielectric characteristics of the unknown target

is then defined and iteratively minimized. Two approaches currently prevail in the

literature, when a local minimum is searched for. In the first approach, called the

Contrast-Source inversion (CSI) method, the unknowns correspond to the current

distribution and to the permittivity. This method has been extended to various problems

[3, 37, 38, 39]. Here, we focus on the second, so-called ”conventional” approach, where

the electrical field comes into play in order to satisfy the Helmholtz equation at each

iteration of the inversion process. In the inversion part, the only unknowns are the

permittivity values in each tetrahedron of the non-permanent subdomains.

As the dimensions of the targets are small compared to the wavelengths, their

scattered field amplitudes are very low and close to the signal-to-noise ratio [8]. It

is thus of even more interest to provide robust inversion algorithms. In particular, we

can point out a Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton optimization

algorithm with line search [4] [40], which distinguishes itself through an approximation

of the Hessian matrix in the Newton correction step with a matrix that does not involve

the explicit computation of second order derivatives. Even if it requires additional

storage, this BFGS scheme is known for presenting a faster convergence rate than the

conjugate-gradient methods which can be seen as memory-less BFGS methods [41, 42].

To save up from additional inversion iterations and thus additional forward problems

computations, we select the BFGS method instead of the conjugate-gradient method.

But to compensate for the additional memory requirement, we use the limited-memory-

BFGS version [43] where instead of storing the full-dense approximation of the inverse

of the Hessian, we only save few vectors that represent the approximation implicitly.

Finally, taking advantage of the Lagrangian formalism and the definition of an ad-

hoc adjoint field, we calculate the gradients with respect to the permittivity. Thus,

we obtain an iterative algorithm which involves two full forward scattering problems at

each iteration of the inversion procedure.
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The article is organized as follows. In Section 2, the 3D free-space inverse scattering

configuration is detailed. The classical finite element method is recalled as well as the

main steps of the FETI-FDP2 method. Some figures are also provided to illustrate the

computational burden associated to such forward problem schemes. In Section 3, the

inverse problem is stated and the expression of the associated adjoint field is recalled. As

the measurements are performed in far-field, a near-field-to-far-field (NF-FF) transform

[44] [45] is applied and its implication on the inversion scheme is explained. In Section 4,

the details and the various steps of our proposed FETI-based inversion algorithm are

described. The correct implementation of this inversion scheme is first assessed by

means of synthetic noiseless dataset and by comparing the reconstructions with the ones

obtained with a classical FEM algorithm. Finally, in Section 5, the inversion algorithm

is confronted to measurements extracted from the 3D Fresnel database [46] [5]. Results

obtained with either a classical FEM-based inversion scheme and the FETI-FDP2-based

inversion scheme are compared and discussed. Conclusions follow.

2. Forward scattering problem

2.1. Electromagnetic configuration

Let us consider an isotropic three-dimensional inhomogeneous dielectric object

embedded in an isotropic background with known permittivity εb(r) = ε0εbr(r), where ε0

is the permittivity of vacuum (Figure 1). The embedding medium as well as the object

under consideration is assumed to be infinite and non-magnetic (µ(r) = µ0µr = µ0).

In the following, even if the modelling capabilities enable it, we will assume that the

embedding background is homogeneous, i.e., εb(r) = εb. The time convention is in

exp(jωt).

Figure 1. Geometry of the problem. (Left) A three-dimensional set of objects inside

an investigation test domain D and a computational domain Ω. (Right) Computational

domain Ω when a partitioning has been performed with NΩ = 10.

The vectorial electromagnetic field Esc(r) scattered by the object is entirely

determined by the characteristics of the impinging wave Einc(r) and the complex
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permittivity distribution ε(r) = ε0εr(r) which varies from εb only within the object.

In the computational domain Ω (Figure 1), the scattered field Esc satisfies the following

equation, associated with Silver-Muller radiation conditions,

H(Esc, εr) = ∇×
(

1

µr

∇× Esc

)
−k2

0εr(r)Esc(r) = Jsc(r) ∀(r) ∈ Ω(1)

where k0 corresponds to the vacuum wave-number. The secondary induced currents are

defined as Jsc(r) = k2
0 [εr(r)− εbr] Einc(r).

As the sources are located in far-field, the incident field is modelled as a plane

wave Einc(r; ks) = psexp(−jks · r) where ps corresponds to the polarization state of the

incident field and ks to its wave-vector. The scattered field is collected on a probing

line Γfar also located in far-field. In order to limit the computational domain Ω, we

take advantage of the near-field-to-far-field (NF-FF) transform [44] [45] to derive the

scattered field Efar
sc (r; ks) in far-field,

F(Esc) =

∫
Σ

Q(Esc(.; ks))(r; r′)dr′ = Efar
sc (r; ks) ∀r ∈ Γfar (2)

with

Q(Esc(.; ks))(r; r′) = jωµ0[n′ ×∇× Esc(r
′; ks)]G0(r; r′) (3)

+ [n′ · Esc(r
′; ks)]∇′G0(r; r′) + [n′ × Esc(r

′; ks)]×∇′G0(r; r′)

The closed surface Σ is chosen inside Ω such that it completely encloses the scatterers

and thus the investigation test domain D. n′ denotes the unit normal vector to Σ at

r′ and points toward the exterior region. G0(r; r′) is the classical 3D free-space scalar

Green function.

2.2. Classical Finite Element method

In order to simulate electromagnetic wave scattering in various types of complex

environments, a Finite Element Method (FEM) has been implemented [44] [47].

The computational domain Ω is first bounded and Radiation Boundary Conditions

(RBC) are applied in order to mimic infinite free-space [44]. The computational domain

is then discretized into small tetrahedrons. A first-order vector basis element scheme is

employed, where the permittivity is assumed to be constant in each tetrahedron cell.

The unknown components Esc of the vector Esc are directly proportional to the number

of edges Nedges in Ω. These values are computed by inverting the discretized version of

the weak form associated to Equation (1)

KEsc = fsc (4)

where K is the sum of the stiffness matrix, the mass matrix and the external boundary

conditions matrices on ∂Ω and fsc represents the discretized version of the weak form

associated to the induced current terms Jsc. Contrary to the method of moments

where the linear system is dense, the matrix K is sparse and can be easily stored

thanks to compressed storage algorithms. The linear system is inverted with a frontal
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method [48] specially adapted for sparse matrices. Once Esc is computed inside Ω, it

can be transformed into Efar
sc thanks to the near-field to far-field transform, where Σ

corresponds to the surface of a cubic box of slightly smaller dimensions than Ω.

2.3. FETI-FDP2 Finite Element method

The finite element method previously described has been further improved to address

large scale models while preserving the versatility of the FEM method. To that end,

an updated version of the Finite Element Tearing and Interconnecting-Dual Primal

Electromagnetic method (FETI-DPEM) [25], named FETI-FDP2, has been developed

and thoroughly tested [32] [33].

The general principle of the FETI methods is to divide the entire computational

domain Ω =
⋃NΩ

i=1 Ωi into smaller non-overlapping subdomains with Ωi∩Ωj = ∅, ∀i 6= j.

An arbitrary mesh partitioner [49] yielding strongly irregular surfaces with varying

curvatures is employed, leading to subdomains Ωi with no specific planar interfaces

(Figure 1). In each of these subdomains Ωi, local linear systems can now more easily

be inverted. The discretized version of the weak form associated to Equation (1) then

reads

KiEi
sc = f i

sc − DiΛi
sc i = 1, · · · , NΩ (5)

where Ki is the sum of the stiffness matrix, the mass matrix and the external and internal

boundary conditions matrices on ∂Ω and ∂Ωi. Ei
sc comprises the unknown components

of the vector Esc in Ωi and is directly proportional to the number of edges N i
edges in Ωi.

f i
sc represents the discretized version of the weak form associated to the induced current

terms Jsc for elements in Ωi. Di is a Boolean matrix which extracts only the edges of

Ωi which are on ∂Ωi. As for the dual Lagrange multipliers Λi
sc, they are involved in

the unknown boundary conditions which are imposed at the internal interfaces between

adjacent subdomains. These adjacent subdomains are glued at their common interfaces

thanks to appropriate boundary conditions and constraints imposed to the field and its

derivatives, leading to the following matrix system

Λi→j
sc + Λj→i

sc = −Wi↔jEj→i
sc i, j = 1, · · · , NΩ with i 6= j (6)

where the matrix Wi↔j directly translates the boundary conditions on ∂Ωi∩∂Ωj. Ei→j
sc

(resp. Ej→i
sc ) is the subset of Ei

sc associated to the edges of Ωi (resp. Ωj) which belong

to the interface ∂Ωi ∩ ∂Ωj.

By combining the previous linear systems, we end up with the so-called Interface

Problem,

FscΛsc = dsc (7)

where the vector Λsc = [Λ1
sc, · · · ,ΛNΩ

sc ]T contains all the Lagrange multipliers. The

explicit definition of the matrix Fsc and the right-hand-side term dsc can be found in

[33].

For a given illumination (ps,ks) and a given permittivity distribution εr, the

forward scattering problem requires first to solve the interface problem provided
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in Equation (7). Then, the solution inside each subdomain Ωi can be evaluated

independently by solving Equation (5). When the size of the computational domain

Ω increases with respect to the wavelength, the resolution of the various linear systems

requires more and more memory storage and computational resources. Nevertheless, it

is possible by increasing NΩ to limit the number of discretization cells in each subdomain

Ωi (Table 1).

Table 1. Number of elements when Ω is a parallepipedic domain discretized with a

fixed mesh step and separated into NΩ = 25 non-overlapping subdomains.

f (GHz) Size of Ω in λ3
b Nedges Average N i

edges NΛ

4 3.3× 3.3× 2.7 168 743 6 749 41 350

6 4.0× 4.0× 3.0 291 182 11 647 59 066

8 4.7× 4.7× 3.3 461 155 18 446 83 836

With such a strategy, Equation (5) can still be inverted with a direct frontal method

specially adapted for sparse matrices [48]. On the contrary, the size of the Interface

Problem increases with the frequency and the number of sub-domains, as it is directly

linked to the number of boundary conditions and constraints applied on the internal

interfaces ∂Ωi∩∂Ωj. Figure 2 shows an example of the requirement in terms of memory

consumption and time when the FETI-FDP2 method is employed. The FEM case is

more or less corresponding to the case when NΩ = 1. It is obvious that the memory

requirement for the FETI-FDP2 method is much less than the one associated with the

FEM method, even if there is a trade-off to find between a large NΩ (a large collection of

little sub-domains easily invertible (Equation 5) combined with a large Interface Problem

(Equation 7)) or a small NΩ (a small collection of large sub-domains combined with a

small Interface Problem).

Instead of a frontal solver for solving Equation (7), we prefer an iterative solver,

such as the Generalized Minimal Residual Method (GMRES) algorithm [50], in order

to limit the memory storage even if we loose on the computational time. Moreover, for

the time being, all the implementation is performed in a sequential way. We thus do

not expect a real gain on the computation time. This gain will certainly be achieved

once the entire algorithm will be parallelized as the resolution of the local sub-problems

can be easily distributed in an independent way on several processors. As any iterative

algorithm, a sequence of iterates
{

Λ
(0)
sc,s(εr), · · · ,Λ(g)

sc,s(εr), · · · ,Λ(Gs)
sc,s (εr)

}
is generated

with the GMRES algorithm, for a given initial guess Λ
(0)
sc,s(εr) and a stopping criterion

η. Gs corresponds to the final number of GMRES iterations. Once the field is computed

everywhere in Ω, the NF-FF transform provides Efar
sc .
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Figure 2. Evolution with respect to the number of sub-domains NΩ of the memory

consumption of the FETI-FDP2 method and the time requested to perform a Fsc

matrix-vector product. The computational domain Ω is an almost 90λ3 parallelepiped,

discretized with 15 points per wavelength leading to 1.5 106 edges and 1.4 106

tetrahedrons.

3. Inverse scattering problem

The scattered field measurements Emes are acquired on a probing line Γfar far from the

target position. The receiving antenna, located at rr, is assumed to be linearly polarized

along qr, qr being a unit vector. The field actually measured for each receiving point

is thus Efar
sc (rr; ks) · qr. Two possibilities occur to compare the simulated field and

the measured field. Either the far-field measurement is back-propagated from Γfar

into the computational domain Ω with a far-field-to-near-field (FF-NF) transform, or

the simulated field is extracted from Ω and projected onto Γfar thanks to the NF-

FF transform. We have chosen the second option for several reasons: (i) the integral

operator defined in Equation (7) is known to be ill-posed and suffers some real issues

when one tries to invert it, taking into account that the number of receivers is limited

and the measurements are unfortunately noisy, (ii) the scattered field is a vectorial field

and to be able to fully capture it would require to measure all the polarization cases

qr which might not be available in practical situations. The misfit criterion is thus

performed on the probing line and corresponds, for a given permittivity distribution εr,

to

J (εr) =
Nsrc∑
s=1

Nrec∑
r=1

ws,r |Emes
s,r − Efar

sc (rr; ks) · qr|2 (8)

where ws,r corresponds to weighting coefficients enabling to balance each measurement

point with respect to its own measurement uncertainty [51]. Nrec (resp. Nsrc)

corresponds to the maximum number of combinations of (qr, rr) (resp. (ps,ks)) used

in the experiment.

In our inverse problem scheme, the aim is to recover the permittivity distribution

which minimizes the above misfit criterion while fulfilling the various equations (1) (2)
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(3). In order to take into account all constraints, the following Lagrangian functional is

introduced

L(Efar
sc ,Esc, εr,U,P) = J (εr) + (9)

Nsrc∑
s=1

Re 〈U | F(Esc(·; ks))− Efar
sc (·; ks)〉Γfar +

Nsrc∑
s=1

Re 〈P | H(Esc(·; ks), εr)− Jsc(·; ks)〉Ω

where U and P are Lagrange multipliers. 〈· | ·〉Γfar corresponds to the L2 inner product

on Γfar and 〈· | ·〉Ω to the L2 inner product on Ω.

As we select an iterative optimization scheme based on a gradient-descent direction

algorithm, we need to compute the gradient ∇εrJ (εr) of the misfit criterion. This

quantity can be directly evaluated when the Karush-Kuhn-Tucker (KKT) conditions

[52] are met, which enables to find the saddle-point of L. At this saddle-point, Equations

(1) and (2) are satisfied. At this saddle-point, new equations arise, linking the scattered

field and the Lagrange multipliers to provide the definition of an adjoint field Padj(·; ks)

for each illumination pair (ps,ks) such that

H(Padj(·; ks), εr) = Jadj(r; ks) (10)

with

Jadj(r; ks) = −F †,∗
(

2
Nrec∑
r=1

ws,r[E
mes
s,r − Efar

sc (rr; ks) · qr]
∗δ(r− rr)qr

)
(11)

The operator F † corresponds to the adjoint operator of F , such that 〈u | F(v)〉Γfar =

〈F †(u) | v〉Σ. The notation u∗ corresponds to the complex conjugate of u. The adjoint

field thus satisfies a similar equation as Esc (see Equation (1)) apart from the right-

hand-side term, where receivers now act as sources and emit the discrepancy existing

between the simulated and measured fields.

Unfortunately, the adjoint operator F † is not straightforward to retrieve and we are

more or less facing the same issues as when one tries to search for an effective FF-NF

transform. Instead of computing F †, we follow an other strategy. As the receivers are

in far-field, we construct incident plane waves arising from the direction kr. The adjoint

source field term is then computed by summing up these plane waves with appropriate

weighting factors

Jadj(r; ks) = −2
Nrec∑
r=1

ws,r[E
mes
s,r − Efar

sc (rr; ks) · qr]qr exp(−jkr · r) (12)

The adjoint field is then computed as explained in Section 2.2 or in Section 2.3. When

the FETI approach is followed, the associated adjoint interface problem (Equation 7)

is solved with an iterative GMRES algorithm leading to an other sequence of Lagrange

multipliers
{

Λ
(0)
adj,s(εr), · · · ,Λ

(h)
adj,s(εr), · · · ,Λ

(Hs)
adj,s(εr)

}
, where Hs denotes the final number

of GMRES iteration. Once the scattered field and the adjoint field are computed, the

gradient of J is easily derived as

∇εrJ (εr)(r) = −k2
0

Nsrc∑
s=1

P∗adj(r; ks) · [Einc(r; ks) + Esc(r; ks)]
∗ (13)
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Since a solution of the optimization problem has to be sought numerically, a

parameter representation of the complex permittivity function εr(r) is needed to obtain

a finite number of optimization variables. We thus search for the permittivity values

in each of the mesh tetrahedrons. We could have used a coarser grid for representing

the permittivity unknown or a non-local basis [15] but we select for the time being

the simplest approach. Nevertheless, as the number of measurements is limited and

much smaller than the number of tetrahedrons, we limit the search to a subdomain

D of the computational domain Ω. As in any iterative scheme, a sequence of iterates{
ε

(0)
r , · · · , ε(v)

r , · · · , ε(V )
r

}
is generated for a given initial guess ε

(0)
r . These permittivity

maps may only differ from εb within the investigation domain D.

The sequence of permittivity maps is constructed thanks to a Quasi-Newton

algorithm

ε(v+1)
r = ε(v)

r + α(v) B∇εrJ (ε(v)
r ) (14)

where B is an approximation of the inverse of the Hessian [∇2
εrJ (εr)] and α(v) is the step

length. Among all the different approximations for computing the matrix B, we follow

the classical Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [40] as it is known to

converge faster than conjugate gradient schemes even if it requires additional storage.

As we are dealing with 3D large-scale problems, the memory consumption aspect can

not be neglected, especially as the Hessian matrix has dimension Ntets∈D × Ntets∈D,

where Ntets∈D is the number of tetrahedrons inside D. We have thus adopted the

limited-memory version of the BGFS algorithm [43].

The inversion iterations are stopped if the cost function J (εr) is becoming lower

than a stopping criterion ξ, or if the cost function stagnates or if a maximum number

of iterations (here 100) is reached.

4. Efficient FETI-based inversion algorithm

The aforementioned inversion algorithm requires to solve two forward problems at every

iteration step of the optimization process. These are for the direct and the adjoint

problems. Several inversion schemes based on classical Finite Element methods have

already been implemented. But high-frequency electromagnetic scattering problems

call for fine meshes, and therefore lead to large-scale systems of equations. For such

problems, solving the forward problem with a direct method entails memory and CPU

requirements that rapidly overwhelms even the largest resources that are currently

available. Thus, in order to make this process more flexible, we have implemented

the FETI-FDP2 method previously proposed and discussed. Our aim is not just to

plug the FETI-FDP2 method to replace the FEM method, but it is also to show how

a Domain Decomposition Finite Element method can be efficiently combined with an

iterative optimization algorithm and to point out the different strategies that we have

followed in order to limit the computational burden and reduce the memory storage.
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4.1. Comparison criteria

In order to quantitatively appraise the effectiveness of the implementation strategy,

we compare the results obtained with the FETI-FDP2 approach with the ones that

are retrieved when combining the inversion algorithm with a classical FEM method.

Two quantitative criteria are thus introduced for that purpose. The first one relies on

the convergence of the cost function J , which shows the correct behaviour of the two

inversion algorithms and the number of iterations required by each scheme to converge.

The second criterion corresponds to the discrepancy between the permittivity map

computed with the FEM forward problem and the FETI-FDP2 forward problem,

N (ε(v)
r ) = ‖ε(v)

r,FEM − ε
(v)
r,FETI‖

2
Ω (15)

where ‖·‖2
Ω is the L2 norm on Ω. This criterion is either computed all along the iterations

or for the last iteration of each method.

4.2. Synthetic configuration

A specific synthetic configuration is constructed in order to compare the various schemes.

Additional inversion results are also presented based on experimental datasets in

Section 5. This synthetic configuration corresponds to the TwoCubes object from the

Fresnel database [46]. The choice of this target is dictated by its size and its simplicity.

The TwoCubes object consists of two identical cubes with permittivity εr = 2.25 and

a side length of 0.025 m. They are organized such that they share a common corner

point. The positions, the number and the polarizations of the emitters and receivers are

exactly the ones described in the Fresnel database and are situated at approximately

2 m from the target. The background medium is air. We choose the operating frequency

equal to 4 GHz (λb = 0.075 m). The computational domain Ω is a cube with a side

length of 0.23 m (∼ 3.1λb). The investigation domain D is a sphere with a radius of

0.05 m centred in Ω. The finite element discretization is set to 10 points per wavelength,

leading to Ntets∈D = 15 197 in D. The initial guess ε
(0)
r corresponds to εrb apart from

a little cube with a 0.01 m side length, with one corner at the center of the set-up and

a permittivity equal to 1.1. All the tests in this section are performed on synthetic

noiseless scattered fields. We are thus typically in a full-inverse crime situation, even if

the FEM forward problem is employed to compute the simulated fields.

4.3. Permanent and non-permanent information

The inversion scheme and the FETI-FDP2 forward problem are fully iterative

techniques. If we want to efficiently implement the FETI-FDP2 method, we have to

conditionally divide it into two parts: the permanent and non-permanent parts. The

subdomains Ωi are also classified as permanent and non-permanent subdomains. Indeed,

the permanent subdomains keep the same permittivity values and the same geometrical

features for all the iterative scheme as they are not intersecting with D.
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The permanent step thus handles all the computational steps related to information

that do not change during the calculations. This corresponds at first to all the

geometrical features, such as the mesh generation (lists of nodes, edges and elements),

the mesh geometrical information extraction (matrices such as Di), the electromagnetic

configuration (positions and orientations of the emitters and receivers, plane waves

illuminations, etc). For the permanent subdomains, the matrices Ki are computed once

for all as well as some parts of the Fsc matrix. This permanent step is just performed a

single time at the beginning of the inversion iterative scheme.

The non-permanent step handles the parts that depend on the updated values of

ε
(v)
r . The corresponding matrices Ki, the non-permanent part of the Fsc matrix as well as

the right-hand-side terms for both the direct and the adjoint problems are thus updated

at each inversion iterative step.

4.4. Forward problem initialization

For each iteration v of the inversion process and for each illumination (ps,ks), the

initial values Λ
(0)
sc,s(ε

(v)
r ) and Λ

(0)
adj,s(ε

(v)
r ) must now be properly defined. We investigate

three different approaches based on the so-called marching-on-in-anything technique

[34, 35, 36] which has already been shown to accelerate the convergence procedures. For

• ∈ {sc, adj}, these approaches are based on

(i) a blank initialization: Λ
(0)
•,s(ε

(v)
r ) = 0,

(ii) a marching-on-in-anything permittivity initialization: Λ
(0)
•,s(ε

(v)
r ) = Λ

(Ks)
•,s (ε

(v−1)
r ),

(iii) a marching-on-in-anything source initialization: Λ
(0)
•,s(ε

(v)
r ) = Λ

(Ks)
•,s−1(ε

(v)
r ).

where Ks is either Gs if the forward problem is solved for computing the scattered field,

or Hs if it is for the adjoint field. In the original marching-on-in-anything technique,

the initialization is performed by combining several previous solutions. In our case, as

the sources are far apart from each other, the previous computed fields will be far from

the one which is currently sought-after. There is little chance that the process will be

accelerated by combining more than one previous solution. In order to provide a fair

comparison with the other initialization possibilities, we have decided to only use the

last field and not to combine several of them.

In all cases, the GMRES stopping criterion η is set to 10−2. The results associated

to the various strategies are presented in Figures 3 and 4. The FETI-based inversion

algorithm often stops earlier than the FEM-one. It can be due to the value selected for

the GMRES stopping criterion η, which is quite large with respect to the machine

precision. This choice has been done in order to speed up the GMRES iterative

algorithm, but it implies that the computed field will be different from the one computed

with the FEM based on a direct solver. As the scattered field and the adjoint field are

approximated, the gradient is as well approximated. When the gradient is small, that

is, at the end of the inversion iterative process, these approximations come into play.

Tiny variations of the permittivity profile will not be fully reflected in the computed
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Figure 3. Evolution of J (εr) (in dB) for the TwoCubes target with noiseless fields

simulated at 4 GHz. The FETI-FDP2 method is computed with various GMRES

initialization strategies [blank ( �), marching-on-in-anything permittivity (◦ ) and

marching-on-in-anything source (M)] or with FEM (——).
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Figure 4. (Left) Geometrical configuration of the TwoCubes. A line crossing

the diagonals of the two cubes as well as the shared corner is represented. (Right)

Profile cut along this crossing line of the final reconstructed real parts of εr,FEM

and εr,FETI with different GMRES initialization strategies, obtained from simulated

noiseless scattered fields at 4 GHz.

field, due to the choice of η. Thus, the inversion process will stop earlier than the FEM-

inversion scheme as the cost function will reach a plateau. In spite of this, the solutions

obtained with the various initialisation strategies are very similar to the one obtained

with a FEM-based algorithm. It is thus difficult to derive the best initialisation so far

if we only compare the reconstructed permittivity maps.

Let us now consider the number of iterations of the FETI-FDP2 method at each

iteration step of the inversion algorithm, that is the number Gs (resp. Hs) associated

to the direct (resp. adjoint) problem. To simplify, only their average values G and H

with respect to the number of sources are plotted in Figure 5, knowing that Gs and Hs

vary only from up to ±1 iteration from these average values.

It appears that the most efficient initialization strategy differs with the problem to

solve: the marching-on-in-anything permittivity is more efficient for the forward problem

while the marching-on-in-anything source is more efficient for the adjoint problem. This

might be due to the fact that, for the direct problem, the sources are located far apart

and the fields change from one source to another more than from one permittivity map
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Figure 5. Average number versus the number of iterations of the inversion

algorithm of the GMRES iterations obtained either with the blank initialisation (——),

the marching-on-in-anything permittivity initialisation (�), or the marching-on-in-

anything source initialisation (◦ ). (Left) G values for the direct field computation

and (Right) H values for the adjoint field computation.

to another. Of course, such results should be mitigated if more sources were present.

On the contrary, for the adjoint problem, the incident adjoint field is generated by the

receivers emitting all together the discrepancy between the measured and simulated

scattered field. Thus, from one source to the other one, there are no changes in the

emitters location, only the amplitudes slightly differ. This seems the reason why the

marching-on-in-anything source initialization works better in this case.

Given the above convergence results, we have selected the following strategy: a

marching-on-in-anything source initialization for the adjoint problem and a marching-

on-in-anything permittivity initialization for the forward problem, with the possibility

in this latter case to switch to a blank initialization if the relative error of the first

GMRES iteration is larger than 1.0.

4.5. Forward problem stopping criterion

The stopping criterion η of the FETI-FDP2 method must also be properly chosen. In

order to obtain the same solution as the FEM one, which uses a direct solver, one should

set η to the computer precision. Unfortunately, as practice shows, the multi-sources

calculation is going to be tremendously slow. Moreover, taking a very small η does not

guarantee the inversion scheme to converge towards the true permittivity distribution.

Finally, the forward and adjoint problem computations should be performed taking

into account that the measured fields might be noisy and an ”infinite” precision is not

systematically required. Increasing η should mainly influence the gradient computation.

Different stopping criteria are used. The convergence behaviour of J shown in

Figure 6 indicates that for all these stopping criteria, the cost function follows more or

less the same evolution, even if it tends to stop earlier when η is above 10−2. In all cases,

the inversion algorithm converges to a correct solution (see Figure 7) regardless of the

stopping criterion. Of course, even in an inverse crime situation, the final solution is

not identical to the true solution as the number of measurement points is much smaller

than the number of unknowns and the problem is ill-posed.

As the cost function behaviour only differs after a certain number of iterations, we
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Figure 6. Evolution of J (εr) (in dB) for the TwoCubes target with noiseless fields

simulated at 4 GHz. The FETI-FDP2 method is computed with various GMRES

stopping criteria η.
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Figure 7. Profile cut along the crossing line shown in Figure 4(a) of the final

reconstructed real parts of εr,FEM and εr,FETI with different GMRES stopping

criteria η, obtained from simulated noiseless scattered fields at 4 GHz.

have thus adopted a strategy for dynamically selecting η according to the value of J (εr).

When J (ε
(v)
r ) is above 10−2, we set η = J (ε

(v)
r ). Once J (ε

(v)
r ) gets below 10−2, we fix η

to 10−2. With such a strategy, applied both to the computation of the forward problem

and the adjoint problem, we reduce the number of GMRES iterations at the beginning

of the inversion process while still ensuring a correct computation of the gradients at

the end of the inversion algorithm.

5. Inversion of experimental data

The aforementioned inversion algorithm is now confronted to measurements extracted

from the 3D Fresnel database [46]. This database involves a set of homogeneous targets,

measured in free-space and in far-field, for various positions of sources and receivers, and

for various frequencies. For the two inversion algorithms (FEM and FETI-based), only

the results obtained at 4 GHz are presented herein. Indeed, we want to compare the

behaviour of the two inversion algorithms and thus to limit the size of the computational
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domain in order to make it still manageable with a classical FEM forward solver. The

investigation test-domain D is a sphere centred at (0, 0, 0.025) m with a diameter of

0.16 m (∼ 2.1λb). This test-domain has been selected as it enables to comprise all the

targets from the database. The computational domain Ω is a cubic domain, centred at

(0, 0, 0.0) m with a side-length of 0.26 m (∼ 3.5λb). The initial guess ε
(0)
r differs from

εrb only within a little cube of 0.01 m side length where the permittivity is set to 1.1.

The discretization mesh parameters are described in Table 2. All computations have

Table 2. Discretization information when Ω is a cubic domain of 0.26 m side-length,

discretized with 10 points per wavelength, at 4 GHz.

Nnodes Nedges Ntets∈Ω Ntets∈D NΛ NΩ Npermanent
Ω

51 050 362 280 302 244 77 539 89 308 38 12

been performed on an Intel(R) Xeon(R) CPU X5570 @ 2.93GHz, with 48 GB of RAM,

with no parallel programming specificities. The FEM-based inversion algorithm requires

15.3 GB of operative memory to reconstruct the objects with the mesh described above.

The FETI-FDP2 scheme takes only 5.7 GB. As expected (see Section 2.3), the FETI-

FDP2-inversion scheme requires much less memory than the FEM-inversion scheme as

there is no need to invert and store a large Nedges ×Nedges matrix. Instead, the largest

matrix system is associated to the Interface problem and consists of a NΛ×NΛ matrix.

As the time requirement highly depends on the number of GMRES iterations, we will

discuss it for each object under reconstruction.

5.1. Target with cubes

The permittivity map reconstructed for the TwoCubes target from the measured

scattered fields is presented in Figure 8. The corresponding cost function is shown

in Figure 9. A specific cut of the permittivity profile is visible in Figure 10.

The behaviour of the cost function is similar for the two algorithms, as well as the

associated permittivity reconstructed maps. Even if all the objects from the Fresnel

database have no imaginary part, our inversion algorithm is based on the independent

search of both the real part and the imaginary part. As no a-priori constraints are

set on the unknowns, it may happen that the real part and the imaginary part of

the permittivity take non-physical values. Nevertheless, the reconstructed values are

relevant and in particular, the imaginary part is close to 0. The average time for

one inversion iteration is equal to 1030 sec for the FETI-FDP2-based scheme against

450 sec for the FEM solution. As no parallelization procedure is followed, the FETI-

FDP2-based scheme is slower than the FEM-based one. Indeed, each forward/adjoint

problem requires the inversion of NΩ small linear systems sequentially.
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Figure 8. (Left) Geometry of the TwoCubes target compared to the investigation

domain D and the computational domain Ω. A crossing black line is also presented.

(Right) Vertical and horizontal slices, performed at the cube centres, of the real part

of the permittivity map reconstructed with the FETI-FDP2 inversion scheme from

measurements acquired at 4 GHz.
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Figure 9. Evolution of the least squares data fit cost function J (εr) (in dB) over

the iterations for the TwoCubes target, using the FEM- and FETI-based inversion

algorithms with measured fields at 4 GHz.
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Figure 10. (Left) Real and (Right) Imaginary profile cut of the permittivity

reconstructed with the FEM (——) and FETI-based (- - - -) algorithm, from scattered

fields measured at 4 GHz. The actual profile (· · · · · ·) along the line crossing the

diagonals of the two cubes as shown in Figure (8) is also plotted.

5.2. Targets with spheres

Other objects from the Fresnel database are mainly constructed with spheres. This

is the case of the TwoSpheres, the CubeSpheres and the Myster targets. Their
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associated reconstructions are shown in Figures 11, 12 and 13.

Figure 11. Reconstruction of the TwoSpheres target obtained with the FETI-

based inversion algorithm from fields measured at 4 GHz. (Left) 3D iso-surface of the

reconstructed permittivity map. (Right) Vertical and horizontal slices of the real part

of the permittivity map. The slices are passing through the centres of the spheres.

The semi-transparent object inside represents the actual boundaries of the target.

Figure 12. Reconstruction of the CubeSpheres target obtained with the FETI-

based inversion algorithm from fields measured at 4 GHz. (Left) 3D iso-surface of the

reconstructed permittivity map. (Right) Vertical and horizontal cuts of the real part of

the permittivity map. The slices are passing through the centre of the cube of spheres.

The semi-transparent object inside represents the actual boundaries of the target.

The localisation and the range of permittivity of the various targets are correctly

recognized. The profiles do not faithfully follow the actual profiles but this is expected

due to the presence of the noise, to the fact that the scattering operator is a low-

pass filter and that there are much more unknown parameters than degrees of freedom

available within the measured fields [53]. When the size of the individual spheres is
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Figure 13. Reconstruction of the Myster target obtained with the FETI-based

inversion algorithm from fields measured at 4 GHz. (Left) 3D iso-surface of the

reconstructed permittivity map. The semi-transparent object inside represents the

actual boundaries of the target. (Right) Slices of the real part of the relative

permittivity at five different altitudes (top: z = 0 mm and z = 13.74 mm, center:

z = 17.985 mm, down: z = 22.23 mm and z = 35.97 mm). The actual boundaries are

also superimposed.
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Figure 14. (Top) Evolution of the cost function J (εr) (in dB) along the iterations

for the FEM- and FETI-based inversion algorithm with measured fields at 4 GHz.

(Botton) Average number of GMRES iterations for the direct field and adjoint field

computation. (Left) CubeSpheres target and (Right) Myster target.

getting too small with respect to the wavelength (for example for the CubeSphere,

each sphere has a diameter approximatively equal to 0.2 λb), the inversion algorithm

fails to properly separate them. One should also note that we set ws,r = 1 and thus

the measurement uncertainty associated to each measurement point is not taken into

account, which degrades the reconstructed maps [54]. As the spatial coverage of each

individual sphere is larger than the effective one, the reconstructed permittivity value

is lower than expected in order to provide in the end the same scattered power.
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In terms of convergence, the FEM and FETI-based inversion algorithms are

behaving almost identically (Figure 14). The FEM-based inversion converges slightly

better than the FETI-FDP2-based inversion as the linear system is inverted with a direct

solver instead of an iterative solver, and provides results computed up to the machine

precision instead of the η precision selected for the GMRES algorithm. The average

numbers G and H of GMRES iterations are always quite low (below 5) leading to an

average time computation per inversion iteration of 2650 sec for the CubeSpheres and

to 1980 sec for the Myster target when the FETI-FDP2 algorithm is used (Figure 14),

and to 450 sec when the FEM-based inversion is used. The average time per iteration

for the FEM-based inversion does not change as a direct solver is used to invert

(Equation 4). Instead, the time associated to the FETI-DP2-based inversion varies

due to the GMRES iterative solver. This computational time is sligthly larger than for

the TwoCubes target as the targets with spheres have overall dimensions larger than

the TwoCubes ones. This computational time can be drastically reduced thanks to a

parallel implementation of the entire inversion algorithm.

6. Conclusion

In the current article, we have shown how we have efficiently coupled a finite-

element forward problem with a Quasi-Newton optimization algorithm to solve a three-

dimensional inverse scattering problem. Taking advantage of the Lagrangian formalism

and the definition of an ad-hoc adjoint field, we computed the gradient of the data

misfit criterion and incorporated it into the inversion scheme. In order to render this

process less depending on the memory, we applied a domain-decomposition technique

to solve the various forward problems. The incorporation of the FETI-FPD2 method

has been performed not in a brute-force way but in an specific manner such as to reduce

as much as possible the memory and the computational time associated to each part

of the entire inversion algorithm. The FETI-based inversion algorithm has been then

successfully tested on various objects from the Fresnel database. In the near future,

this inversion scheme will be extensively exploited to invert measurements acquired in

aspect-limited configurations [55]. Additional a-priori information will be introduced

based on the target properties (homogeneity [56], limited spatial support [18], etc) in

order to improve the spatial resolution of the reconstructed permittivity map. Finally,

large-scale configurations will also be studied. To that end, a parallelization of the entire

scheme will be performed.
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