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3D electromagnetic scattering computation in
free-space with the FETI-FDP2 method

Ivan Voznyuk, Herve Tortel, and Amelie Litman, member, IEEE

Abstract—The electromagnetic dual-primal finite element tear-
ing and interconnecting (FETI-DPEM) method is a non-
overlapping domain decomposition method developed for the
finite element analysis of large-scale electromagnetic problems,
where the corner edges are globally numbered. This paper
presents an extension of the FETI-DPEM2 method, named FETI-
Full Dual Primal (FETI-FDP2), where more flexible Robin-type
boundary conditions are imposed, on the inner interfaces between
subdomains as well as on the corner edges, leading to a new
interface problem. Its capacities are tested in the framework
of a 3D free-space scattering problem, with a scattered field
formulation and a computational domain truncated by Perfectly-
Mathed Layers (PML). First we compare its accuracy with
respect to other FETI-DPEM2 methods and to a complete
resolution of the FEM problem thanks to a direct sparse solver.
We show that the convergence of iterative solvers are affected by
the presence of the PML and can be accelerated by means of a
more accurate approximation, between adjacent subdomains, of
the Dirichlet-to-Neumann (DtN) operator. The effectiveness of the
iterative solvers are also considered for different test cases. The
advantages of the proposed FETI-FDP2 method combined with
the associated DtN approximation is numerically demonstrated,
regardless the chosen working frequency or the iterative solvers.

Index Terms—Finite Element Method (FEM), Domain de-
composition method, FETI-DPEM method, non-conformal mesh,
arbitrary partitioning, Krylov subspace iterative method, electro-
magnetic propagation and scattering, three-dimensional configu-
ration, Perfectly Matched Layer (PML)

I. INTRODUCTION

The need of engineering simulations of large and complex
structures is rapidly growing, requiring numerical methods
which are more and more efficient. As such, the Finite Element
Method (FEM) applied to the resolution of time harmonic
electromagnetic wave scattering has become very popular
over the past decades. Indeed, the resolution of the weak
form of the Helmholtz equation has shown its potential and
its versatility among different configurations and types of
problems to be solved (complex media, periodic structures,
anisotropic materials . . . [1]–[3]).

In this method, the unknown of interest (the electric or
magnetic field) is expanded onto a set of basis functions. A
linear system is then calculated by projecting the Helmholtz
equation onto the same set of test functions, as advocated by
the Galerkin method. Thus, the efficiency of the method is
mainly dependent upon one’s own ability to solve the resulting
sparse linear system, which can be time and memory consum-
ing, especially in three-dimensional (3D) configurations.
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- 13397 Marseille Cedex - France. e-mail: herve.tortel@fresnel.fr.

Among the different schemes proposed to solve large scale
models and preserve the versatility of the FEM method,
the Domain Decomposition Method (DDM) and its differ-
ent evolutions are especially appealing [4], [5]. The closely
related Finite Element Tearing and Interconnecting (FETI)
method seems also very robust when one is dealing with
arbitrarily mesh partitions. The general principle of FETI
methods is first to divide the entire computational domain
into smaller non-overlapping subdomains. In each of these
subdomains, local linear systems can now more easily be
inverted. Simultaneously, the different adjacent subdomains
are glued at their common interfaces thanks to appropriate
boundary conditions and constraints imposed to the field and
its derivatives, leading to a so-called global interface problem.
Once this interface problem is solved, the solution inside each
subdomain can be evaluated independently by using the known
mixed boundary conditions at the internal interfaces between
subdomains. This method has been applied in many domains
going from mechanics [6], [7], to acoustic wave propagation
[8]–[10], and electromagnetism [11]–[17].

In order to improve the convergence and the scalability of
the method, one can notice the existence of two techniques.
The first one uses the plane wave spectrum operator [8], while
the second one uses dual-primal techniques, denoted as FETI-
DPEM when applied to electromagnetic cases, which can be
seen as coarse grid corrections [9], [12], [14], [18]. Over
the past years, the latter has been successfully applied to the
simulation of large-scale electromagnetic problems [11], [19].
In this last method, the corner nodes in 2D or the corner edges
in 3D (the ”corners” corresponding to geometrical entities
belonging to more than two adjacent subdomains) are extracted
from each subdomain and are globally and uniquely numbered,
in combination with the boundary conditions imposed at these
corners.

The various boundary conditions can be easily imposed by
means of appropriate Lagrange multipliers. In FETI-DPEM,
a single Lagrange multiplier is introduced in order to impose
a Neumann boundary conditions at each internal interface, as
well as at the corner points. In FETI-DPEM2, each internal
interface apart from the corners is equipped with two Lagrange
multipliers, which is equivalent to imposing a Robin type
boundary condition, thus avoiding the appearing of spurious
solutions. This boundary condition can be also seen as a crude
approximation of a transparency operator and many efforts
have also been performed in order to optimize the coefficients
arising in this boundary condition for plane interfaces between
subdomains [10], [16], [17], [20].

In a previous work, performed in 2D [21], we have extended
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the FETI-DPEM2 method by imposing everywhere, even on
the corner nodes, more flexible Robin-type boundary condi-
tions. The resulting interface problem is completely rewritten
and acts as a new global coarse preconditioner. In 2D, a series
of numerical tests have shown the efficiency of this modified
method.

In this paper, we follow the same ideas applied this time to
a 3D configuration and for the vectorial Helmholtz equation.
Moreover, we analyse a 3D free-space scattering problem,
which leads us to implement a scattered field formulation
within a domain truncated by Perfectly Matched Layers (PML)
[22], [23]. After developing the linear system associated to the
internal interfaces problems due to the different variations of
the FETI-DPEM2 methods and to our proposed FETI-FDP2
method, we test the accuracy of each method with respect to a
direct FEM solution computed thanks to a direct sparse solver.
Then we focus our attention on the convergence behaviour
of the iterative algorithm which must be employed to solve
the interface problem. Indeed, iterative procedures appear
unavoidable when dealing with large size problems. We show
in this paper that the convergence of the iterative algorithm
is strongly affected by the presence of anisotropic materials.
We also show how the method can be strongly accelerated by
partly adopting the Evanescent Modes Damping Algorithm
(EMDA) [24] when PML are present. This EMDA method
originally was proposed as a more accurate approximation
of the Dirichlet-to-Neumann (DtN) operator for the non-
overlapping Schwarz DDM [24], instead of classical Som-
merfield boundary conditions between adjacent domains. One
can notice that second order transmission boundary conditions
or high order transmission boundary conditions [10], [25]–
[27] have been developped and have shown their efficiency,
though we have focused our study on the implementation and
optimization of the EMDA approach in the framework of our
proposed method since it avoids the appearing of supplemental
terms in the discrete finite element linear system.

The paper is organized as follows. Section 2 describes
the considered 3D free-space electromagnetic scattering con-
figuration and the associated scattered field formulation. In
Section 3, following the notations introduced in [13] [21],
the mathematical formalism of the different FETI-DPEM2
and FETI-FDP2 methods are described. The constructions of
the full and reduced linear systems obtained for the various
interfaces unknowns, either the corner edges or the inner
interface edges, are detailed. All the numerical results are
gathered in Section 4. At first, in Section 4.A, a small
3D scattering problem is constructed. It enables to test, in
Section 4.B, the accuracy of all the presented methods with
respect to a classical resolution of the same FEM problem.
In Section 4.C, we investigate the convergence behaviour of
a robust Generalized Minimal Residual Method (GMRES)
[28] iterative algorithm for solving the interface problem. In
particular, the influence of the different methods as well as the
presence of PML is analysed. The convergence improvement
obtained thanks to a Mixed approach which exploits in part
the EMDA method is also numerically shown. A similar
analysis is performed in Section 4.D for a second type of
iterative solver, that is the BiConjugate Gradient Stabilized

method (BiCGStab) [28]. Finally, the behaviour of all these
methods are presented in Section 4.E for large-scale problems.
Conclusions follow in Section 5.

II. SCATTERED FIELD FORMALISM

We consider a three-dimensional electromagnetic scattering
problem, where a known monochromatic incident electro-
magnetic wave is impinging on an inhomogeneous target
D ⊂ Ω, whose relative permittivity varies with respect to
the surrounding. The relative permittivity and permeability
distribution in absence (resp. in presence) of the scatterer are
denoted by εinc

r (~r) and µinc
r (~r) (resp. εtot

r (~r) and µtot
r (~r)) with

εtot
r (~r) 6= εinc

r (~r) ∀~r ∈ D
εtot
r (~r) = εinc

r (~r) ∀~r ∈ Ω \D (1)

From the linearity of Maxwell’s equations, the total field
(associated to the permittivity distribution εtot

r ) can be decom-
posed into the incident field ~E inc (associated to εinc

r ) and the
scattered field Esc which satisfies a Helmholtz equation

~∇×
(

1

µtot
r

~∇× ~Esc

)
− k2

0ε
tot
r
~Esc = ~J sc in Ω (2)

where k0 is the vacuum wavenumber. The induced currents
are defined as

~J sc = −~∇×
([

1

µtot
r

− 1

µinc
r

]
~∇× ~E inc

)
+k2

0

[
εtot
r − εinc

r

]
~E inc

(3)
The scattered field also satisfies a radiation condition (RBC)

~n×
(

1

µtot
r

~∇× ~Esc

)
+ jk0~n× ~n× ~Esc = 0 on ∂Ω (4)

The computational domain can be bounded thanks to a
Perfectly Matched Layer (PML) [22], [23] which can be
interpreted as an anistropic absorber [29] where the tensors
µpml
r and εpml

r are defined with respect to µtot
r and εtot

r along
with stretching factors. This type of absorbing layer helps
to prevent spurious reflections from the external boundaries
which may arise when the radiation boundary condition is
simply set.

When the sources and the receivers are not necessarily
located in the vicinity of the target, the meshing of the model
space is too memory-consuming. Indeed, in finite-element
methods, for first-order vector basis elements as it is the case
herein, the number of unknowns corresponds to the global
number of edges in the mesh. In that case, the computation
domain can be restricted to the scatterer’s area and a Near-to-
Far-Field transformation based on Huygen’s principle [2] can
be employed to extract the fields at the receivers locations.

Nonetheless, when the scatterer’s external dimensions are
large with respect to the wavelength, the size of the model
domain, even if it is moulded to the shape of the target,
requires heavy computational resources. It is therefore of
interest to derive ad-hoc and optimized numerical schemes
for solving the aforementioned Helmholtz equation.
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III. FINITE ELEMENT TEARING AND INTERCONNECTING
METHOD

Among the available domain decomposition-based methods,
we have adopted the FETI method, and in particular the
FETI-DPEM2 versions [13], [14] to solve our scattered field
problem. While recalling the various variations of the FETI-
DPEM2 method with the same notations as in [13], we
will detail how we have extended it in order to impose
everywhere more flexible Robin-type boundary conditions.
This new approach will be denoted as the FETI-FDP2 (full
dual-primal) method.

A. Geometrical feature extractions

According to the Domain Decomposition idea, we assume
that the domain Ω (with external boundary ∂Ω) is divided into
a set of Ns non-overlapping subdomains Ω =

⋃Ns

i=1 Ωi, with
Ωi ∩ Ωj = ∅, ∀i 6= j. For a given subdomain Ωi, the indices
of all its adjacent subdomains are called neighbor(i). The
internal boundary of the subdomain Ωi is denoted as Γi. The
internal boundary between two subdomains Ωi and Ωj , with
j ∈ neighbor(i), is denoted as Γij .

Following the idea of the FETI aproach [8], we construct
at first an augmented Lagrangian functional. Its associated
Karush-Kuhn-Tucker conditions [11] lead to the following
equation in each i-th subdomain

KiEi = f i − DiTλi (5)

Ki is the sum of the stiffness matrix, the mass matrix and the
external and internal boundary condition matrices

Ki =

∫
Ωi

[
1

µr
(∇× ~N i) · (∇× ~N i)T − k2

0ε
tot
r
~N i · ~N i

T
]
dV

+αi
∫

Γi

(~n× ~N i) · (~n× ~N i)T dS

+jk0

∫
∂Ωi∩∂Ω

(~n× ~N i) · (~n× ~N i)T dS

where ~N i denotes a column vector containing the curl-
conforming vector basis function in the i-th subdomain. The
role of αi is explained in Section III-C. Ei is the unknown
components of the vector field ~Esc in Ωi and f i represents
the discretized version of the right-hand-side of (Eq. 2). Di
is a Boolean matrix which extracts only the edges of Ωi

which are on Γi. As for the dual Lagrange multipliers λi, they
are also involved within the unknown boundary conditions
which are imposed at the internal interfaces between adjacent
subdomains.

B. Ordering with global corner edges

In each subdomain, we split the field unknowns in the
following way

Ei =

[
Eir
Eic

]
(6)

where the notations Eir denote all the internal (EiV ) and
interface (EiI ) Degrees of Freedom (DOFs) belonging to the i-
th subdomain except for the corner DOFs which are denoted

by Eic. The main feature of the FETI-DPEM methods is to
consider the corner edges in a different way from the other
edges. Indeed, these corner edges are merged, then globally
and uniquely numbered to provide a common vector Ec. With
such notations, we can now rewrite (Eq. 5) as follows[

Ki
rr Ki

rc

Ki
cr Ki

cc

] [
Eir
Eic

]
=

[
f ir
f ic

]
−
[
Dir

T
λir

λic

]
(7)

We now introduce several Boolean matrices to gather the
DOFs of interest. The matrix Dir selects from all the DOFs of
Ωi the ones which are located on its interface, i.e.,

DirEir = EiI (8)

The projection matrix Ti→jr extracts the DOFs associated to
the interface Γij from the ones belonging to Γi,

Ti→jr λir = λi→jr and Ti→jr EiI = Ei→jr (9)

A similar Boolean matrix Ti→jc is here to select all the corner
DOFs belonging to Γi and associated to Γij ,

Ti→jc Eic = Ei→jc (10)

Two supplemental Boolean matrices Qiλr
and QiEc

are
introduced such that

Qiλr
λr = λir and QiEc

Ec = Eic (11)

From the first line of (Eq. 7), the electric field in the i-th
subdomain can be easily derived

Eir = Ki−1

rr (f ir − Dir
T
λir −Ki

rcE
i
c) (12)

From the second line of (Eq. 7), the corner DOFS can be
estimated

(Ki
cc −Ki

crK
i−1

rr K
i
rc)QiEc

Ec =

f ic − λic −Ki
crK

i−1

rr f
i
r +Ki

crK
i−1

rr Dir
T
λir (13)

By assembling and summing all the subdomains contri-
butions, the global corner points related system equation is
obtained as follows

FEcEc
Ec − FEcλr

λr + FEcλc
λc = dEc

(14)

with

FEcEc
= SEc

(
Ki
cc −Ki

crK
i−1

rr K
i
rc

)
QiEc

FEcλr = SEc

(
Ki
crK

i−1

rr Dir
)
Qiλr

dEc = SEc

(
f ic −Ki

crK
i−1

rr f
i
r

)
where the operator SEc is defined by

SEc
u =

Ns∑
i=1

Qi
T

Ec
ui (15)
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C. Boundary conditions at internal interfaces

A classical continuity boundary condition is first imposed
on the tangential component of the electric field

J~n× ~EscKi↔j = 0 on Γij (16)

where J Ki↔j corresponds to the jump boundary condition
on Γij . This equation is rewritten as

Ej→i = Ei→j ∀i, j s.t. Γij 6= ∅ (17)

where Ei→j (resp. Ej→i) is the subset of Ei associated to the
edges of Ωi (resp. Ωj) which belong to the interface Γij . The
introduction of dual Lagrangian multipliers enables to insert,
at the internal interface Γi, either an unknown Neumann-type
boundary condition (when α = 0) or an unknown Robin-type
boundary condition (when α 6= 0)

~n×
(

1

µtot
r

~∇× ~Esc

)
+ α~n× ~n× ~Esc = Λi on Γi (18)

It leads to the following set of equations, taking advantages
of (Eq. 17),

λi→j + λj→i = −Wi↔jEj→i = −Wi↔jEi→j (19)

where the matrix Wi↔j = M i→j + M j→i directly translates
the boundary conditions. Following the aforementioned ”rc”-
notations, this equation can be rewritten as follows:[

λi→jr

λi→jc

]
+

[
λj→ir

λj→ic

]
= −

[
Wi↔j
rr Wi↔j

rc

Wi↔j
cr Wi↔j

cc

] [
Ej→ir

Ej→ic

]
(20)

The FETI-DPEM2 and FETI-FDP2 methods differ in the way
these boundary conditions are effectively introduced at the
internal interfaces, and more particularly at the corner edges.

D. Full Interface Problem construction

1) FETI-DPEM2(a) method: In [13], a Robin-type bound-
ary condition is imposed for each internal interface, apart from
the corner edges. Instead, for the DOFs related to the corners,
the Neumann-type boundary condition is applied. Moreover,
during the ”gluing” process, no interactions are introduced
between the corner and interface DOFs. In that case, (Eq. 20)
is simplified into[

λi→jr

λi→jc

]
+

[
λj→ir

λj→ic

]
= −

[
Wi↔j
rr 0
0 0

] [
Ej→ir

Ej→ic

]
(21)

Thanks to (Eq. 12), we can eliminate Ej→ir from the first line
of (Eq. 21). By summing over all the subdomains, we obtain
the first part of the FETI-DPEM2(a) Full Interface Problem:

Fλrλr
λr − FλrEc

Ec = −dλr
(22)

where

Fλrλr = Sλr

(
Tj→ir −Wi↔j

rr Tj→ir F jrr
)
Qjλr

+ I

FλrEc
= Sλr

(
Wi↔j
rr Tj→ir F jrc

)
QjEc

dλr
= Sλr

(
Wi↔j
rr Tj→ir djr

)
F irr = DirKi−1

rr Dir
T

F irc = DirKi−1

rr K
i
rc

dir = DirKi−1

rr f
i
r

and the operator Sλr
is defined by

Sλr
u =

Ns∑
i=1

Qi
T

λr

∑
j∈neighbor(i)

Ti→jr

T
uj→i (23)

Thanks to the definition of the operator SEc , the second line
of (Eq. 21) provides

FEcλc
= SEc

λic = 0 (24)

We can now assemble (Eq. 14), (Eq. 22) and (Eq. 24) to
derive the FETI-DPEM2(a) Full Interface Problem[

Fλrλr −FλrEc

−FEcλr
FEcEc

] [
λr
Ec

]
=

[
−dλr

dEc

]
(25)

2) FETI-DPEM2(b) method: In a previous work, performed
under a two-dimensional configuration [21], we showed that in
order to limit computational errors, the connection between the
corner and interface DOFs must be kept. In other words, the
term W i↔j

rc should not be neglected during the ”gluing” pro-
cess. This idea has also been adopted in the FETI-DPEM2(b)

method [26] where they transform the boundary conditions
into[

λi→jr

λi→jc

]
+

[
λj→ir

λj→ic

]
= −

[
Wi↔j
rr Wi↔j

rc

0 0

] [
Ej→ir

Ej→ic

]
(26)

With such a system, at the corner edges, a Neumann boundary
condition is still applied while a Robin boundary condition is
applied only for the rest of the interface DOFS. Taking this
into account, the resulting equation (Eq. 22) is still valid [21],
[26]. The only difference between the FETI-DPEM2(a) and
FETI-DPEM2(b) methods relies on the definition of the matrix
FλrEc

, which now corresponds to

FλrEc = Sλr

(
Wi↔j
rr Tj→ir F jrc −Wi↔j

rc Tj→ic

)
QjEc

3) FETI-FDP2 method: In the framework of a two-
dimensional configuration [21], we not only showed that the
term W i↔j

rc should not be neglected, but we also showed that
the method can be further enhanced by imposing a Robin-type
boundary condition everywhere. In that case, (Eq. 20) should
be kept as is.

Nevertheless, if we try to keep all the Lagrange multipliers
λc related to the corner points, we are facing singularity issues.
To avoid it, in our previous 2D work [21], we suggested to
look for a special set of Lagrange multipliers, such that

λ̃i↔jc = λ̃j↔ic =
1

2
(λi→jc + λj→ic ) (27)

which results in a matrix Fλcλc = 2I.
In the current 3D configuration, we propose a more general

framework. Instead of searching for λi→jc and λj→ic , we search
for global corner Lagrange multipliers λi↔jc = λi→jc + λj→ic ,
where i ↔ j is the index of the interface Γij among all the
NI interfaces. Thus[

λi→jr + λj→ir

λi↔jc

]
= −

[
Wi↔j
rr Wi↔j

rc

Wi↔j
cr Wi↔j

cc

] [
Ej→ir

Ej→ic

]
(28)

A new projection Boolean matrix Qi↔jλc
is introduced to

extract the double Lagrange multipliers λi↔jc associated to
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Γij from the full list of λc, i.e., λi↔jc = Qi↔jλc
λc. A new

operator Sλc is also defined such that [11]

Sλc
u =

NI∑
i↔j=1

Qi↔jλc

T
ui→j =

NI∑
i↔j=1

Qi↔jλc

T
uj→i (29)

By applying this new operator to the second line of (Eq. 28),
we obtain

−Fλcλrλr − FλcEcEc + Fλcλcλc = −dλc (30)

where

Fλcλr = Sλc

(
Wi↔j
cr Tj→ir F jrr

)
Qjλr

FλcEc
= Sλc

(
Wi↔j
cr Tj→ir F jrc −Wi↔j

cc Tj→ic

)
QjEc

Fλcλc
= Sλc

dλc
= Sλc

(
Wi↔j
cr Tj→ir djr

)
The matrix FEcλc

can not be introduced through the op-
erator SEc

. It is a Boolean projection matrix which puts
in correspondence all the global corner Lagrange multipliers
λi↔jc related to the global corner Ekc for every k = 1...NEc .
The size of this matrix is equal to NEc

× Nλc
and its

construction is quite simple. In each line (that corresponds
to the global index of the corner edge) we need to put 1 if the
given global corner Lagrange multiplier belongs to this corner
and 0 if not.

Combining (Eq. 14), (Eq. 22) and (Eq. 30), we arrive at the
FETI-FDP2 Full Interface Problem Fλrλr

−FλrEc
0

−FEcλr
FEcEc

FEcλc

−Fλcλr
−FλcEc

Fλcλc

λrEc
λc

 =

−dλr

dEc

−dλc

 (31)

E. Reduced Interface Problem construction

In practice, the Full Interface problem is not directly solved
but replaced by a linear system with smaller dimension and
better conditioning number [30]. Indeed, the Lagrange multi-
pliers λc are of not great interest and can be directly elim-
inated from the previous set of linear equations. Once these
Lagrange multipliers are dropped out after few mathematical
transformations, we arrive at the Reduced Interface Problem(

Fλrλr
+ FλrEc

F̂
−1

EcEc
F̂Ecλr

)
λr = d̂λr

(32)

where

F̂Ecλr
= −FEcλr

+ FEcλc
F−1
λcλc

Fλcλr

F̂EcEc
= FEcEc

+ FEcλc
F−1
λcλc

FλcEc

d̂Ec
= dEc

+ FEcλc
F−1
λcλc

dλc

d̂λr
= −dλr

+FλrEc
F̂
−1

EcEc
d̂Ec

We can now easily compute Ec by solving the following
system of equations

F̂EcEc
Ec = d̂Ec

− F̂Ecλr
λr (33)

Finally, replacing Ec and λr in (Eq. 12) gives access to Eir in
each subdomain Ωi. Note that, in this work, we only consider
the Reduced Interface Problem.

IV. NUMERICAL RESULTS

We now analyze the numerical behavior of the proposed
approaches in the framework of a 3D free-space scattering
configuration.

The factorization of each sub-matrices is performed thanks
to a direct sparse solver [31] and stored during the resolution of
the interface problem. The factorisation of the matrix F̂EcEc is
performed using Intel Math Kernel Library and kept during all
the iterative processes. All computations have been performed
on an Intel(R) Xeon(R) CPU X5570 @ 2.93GHz, with 48 GB
of RAM, with no parallel programming specificities.

A. Configuration description

We are interested in the computation of the field scattered by
a target consisting of four dielectric ellipsoids. Each scatterer
has similar external dimensions (Dx, Dy, Dz) = (5, 8, 5) cm.
Their positions are visible in Figure 1. Their relative permit-

Dx

Dz

Dy

ε1
r

ε4
r ε3

r

ε2
r

Fig. 1. Schematic map of the scatterer inside the investigation domain.

tivities ε1
r , ε2

r , ε3
r and ε4

r are respectively equal to 1.5, 2.0, 2.5
and 3.0. A plane wave illuminates the set of scatterers, with
an incidence angle of 45◦ and a linear polarization along Eθ.

The computational domain Ω is a parallelepiped whose
size depends on the wavelength. For example, at 4GHz, the
investigation domain Ω is a [0.32 × 0.34 × 0.22] m3 box
(≈ 61λ3, where λ is the background wavelength). The domain
is discretized thanks to a free unstructured mesh generator
Gmsh [32]. This global mesh is inserted into a home-made
mesh partitioner which provides, for each subdomain, the
structure of the local mesh as well as the boundaries and
the corner edges lists between subdomains. The partitioning
is definitely irregular as shown in Figure 2. This partitioner
intensively uses subroutines provided by Metis [33].

B. Direct frontal solver

At first, the computational domain domain is surrounded
with PML, with a width wPML of one wavelength. The scat-
tering problem is solved thanks to a classical Finite Element
Method without any partitioning, thanks to the frontal solver
Mumps [31] based on a LU decomposition. This provides the
scattered field ~Esc

FEM. The same frontal solver is used to solve
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Fig. 2. Map of the computational domain, showing the way the partitioning
has been performed for Ns = 42.

the Reduced Interface Problems associated to each of the three
aforementionned methods, with α = jk0. A L2-norm error is
introduced to compare the various scattered fields

L2(~Esc) =
‖ ~Esc − ~Esc

FEM ‖2

‖ ~Esc
FEM ‖2

(34)

and the associated errors are provided in Table I.

TABLE I
L2-NORM ERROR OBTAINED FOR VARIOUS PARTITIONING WHEN THE

INTERFACE PROBLEMS ARE SOLVED WITH A FRONTAL METHOD
(f = 4 GHZ, wPML = λ, α = jk0)

Ns FETI-DPEM2(a) FETI-DPEM2(b) FETI-FDP2
5 5.11E-002 9.12E-013 2.92E-012
7 8.98E-002 1.59E-012 7.66E-013
10 1.73E-001 9.78E-013 3.46E-012

It is obvious that the relative error obtained with the FETI-
DPEM2(a) method is significantly higher than the other ones.
This comforts us in the fact that, as proposed in [21], the term
W i↔j
rc of (Eq. 20) cannot be neglected. From now on, we

will thus stop considering the FETI-DPEM2(a) method. The
second obvious conclusion is that the FETI-DPEM2(b) and
FETI-FDP2 scattered fields are identical (up to the computer
precision) to the field computed with the classical FEM
method. This fully validates the proposed approaches and their
implementations.

C. GMRES iterative solver

As direct solvers require a large memory storage and as we
want to tackle large-scale electromagnetic scattering problems,
we investigate the influence of iterative solvers on the various
methods. At first, we employ a robust iterative solver, a
crude Generalized Minimal Residual Method (GMRES) [28],
[34]. We set m = 15 for the size of the Krylov subspace
and 10−6 for the stopping criterion. It is well-known that
methods based on Krylov-subspaces, such as GMRES, are
well adapted for solving linear systems, even if they might

poorly converge when the systems are not necessarily positive
definite. Unfortunately, neither the Full Interface Problem nor
the Reduced Interface Problem are positive definite systems.
As finding a good preconditioned for solving a given sparse
linear system is often viewed as a combination of art and
science, we propose to work without any preconditioner and
to focus on the various transmission boundary conditions
influences.

1) PML influence: We divide the investigation domain into
42 subdomains and follow the convergence process of the
iterative GMRES solver in presence of a λ-width PML layer.
Indeed, several numerical tests have pointed out that the PML
layers might have a drastic influence on the convergence be-
haviour of the iterative solver. Figure 3 shows the convergence
history of the modulus of Lagrange multipliers associated to
the subdomain Ω15.

450 455 460 465 470 475 480 485 490 495
0

2

4

6

8

x 10
−3

Index of Lagrange multiplier λ
15

|λ
1
5
|

Fig. 3. Modulus of the Lagrange multipliers in Ω15 with (f = 4 GHz, Ns =
42, wPML = λ, α = jk0). (Full line) Exact values extracted from Esc

FEM.
(Dotted line) Values extracted from Esc

FDP2 after 10 GMRES iterations. The
vertical grey lines denote the location of the PML area.

The choice of this specific subdomain is due to the fact
that, among all of them, the relative L2-error in Ω15 is the
highest one. It turns out that this domain contains the biggest
number of Lagrange multipliers located within a PML zone.
As one can see from Figure 3, after 10 GMRES iterations,
there is a high correlation between the numerical and exact
solutions in the areas not associated to PML, while there is
little correspondence between these values in the PML region.

2) RBC influence: Instead of surrounding the computa-
tional domain with PML, we employ a radiation boundary
condition (RBC). The corresponding convergence results are
presented in Figure 4, where the residue corresponds here to
the error committed at each iteration of the iterative process
between the left-hand-side and the right-hand-side of the
Reduced Interface Problem. The significant difference in terms
of number of iterations confirms the fact that the PML badly
impact the convergence behavior, whatever the chosen FETI
method. However, this is not the case when RBC are applied.

Indeed, as the Lagrange multipliers are approximated within
the PML, once the local problems are solved, they are all
affected by these errors. Thus, the misfit between the ”true”
FEM solution and the FETI solution is large. On the contrary,
when there is only an absorbing boundary condition, the
Lagrange multiplier error is small everywhere and does not
affect as much the local problems. The misfit is thus reduced.

3) Internal boundary conditions influence: Internal bound-
ary conditions are also known to impact the convergence of the
domain decomposition algorithms. Indeed, when α is simply
set to jk0 as in the Despres approach [35], the approximation
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Fig. 4. Evolution (in dB) of the GMRES error along the iterations, when the
external boundary conditions and the methods change (f = 4 GHz, Ns = 42,
α = jk0).

of the Dirichlet-to-Neumann operator of (Eq. 18) does not
treat efficiently the evanescent modes [10]. Recent works are
mainly devoted to the implementation of second or higher-
order transmission conditions and have shown their efficiency
[10], [25]–[27]. Here, we prefer to focus on simpler first-order
transmission conditions and see how we can combine them in
order to improve the convergence behaviour.

The role and the impact of α on the convergence of the
domain decomposition algorithms has already been studied
in the framework of DDM and FETI-methods but for plane
interfaces [17] [15] [25] [36]. Since we are dealing with an
arbitrary mesh partitioner yielding strongly irregular surfaces
with varying curvatures, we have decided to only select the
simplest choice for this parameter.

In particular, we exploit the Evanescent Modes Damping
algorithm (EMDA) proposed in [24] which enables to extend
the transmission boundary conditions to the evanescent modes.
We only consider here the EMDA case where α = jk0(1+jχ),
χ being a real-valued positive coefficient. The optimal value
for χ depends in particular from the mean curvature on the
interface [37]. As the partitioning is performed in an irregular
fashion, we simply set χ = 0.5 in the following computations
as it is favorized in [37].

We have played with the various types of transmission coef-
ficients, and more specifically with their locations (Figure 5).
We thus compare:

1) the Despres approach, which states α = jk0 everywhere,
2) the EMDA approach, which states α = jk0(1 + jχ)

everywhere,
3) a new Mixed approach, with α = jk0(1 + jχ) in the

PML areas and α = jk0 everywhere else.
The Reduced Interface Problem is first constructed with

RBC and no PML. The Mixed (or equivalently Despres) ap-
proach and the EMDA approach are thus applicable. The asso-
ciated convergence histories, obtained for the FETI-DPEM2(b)

and FETI-FDP2 methods are presented in Figure 6. It is clearly
visible that the convergence is decreased by the use of the
Mixed approach, whatever the employed FETI method.

The Reduced Interface Problem is now constructed with
PML. The convergence results obtained with the FETI-FDP2
method are presented in Figure 7. The associated eigenspectra
of the Reduced Interface Problems are also visible in Figure 8.
The number of eigenvalues which have negative real part

Despres EMDA Mixed

jk0 jk0(1 + jχ) jk0

jk0 jk0(1 + jχ) jk0(1 + jχ)

jk0 jk0(1 + jχ) jk0

Ω Ω Ω

Ω Ω Ω

PML PML PML

RBC RBC RBC

Fig. 5. Sketch of the various methods chosen for approximating the internal
transmission coefficients. (Upper row) In presence of PML. (Lower row) In
presence of RBC.
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 (Mixed) FETI−DPEM2
(b)
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Fig. 6. Evolution (in dB) of the GMRES error along the iterations for the
FETI-DPEM2(b) and FETI-FDP2 methods, in presence of RBC, when the
internal boundary conditions change in terms of values and locations (f =
4 GHz, Ns = 42).

is equal to 501, 411 and 292 for the Despres, EMDA and
Mixed approaches respectively. In presence of anisotropic
media, the EMDA algorithm improves the conditioning of
the Interface problem, and as a consequence, the convergence
results. Nevertheless, it seems more interesting to follow the
Mixed approach and to impose the EMDA only out of the PML
zone in order to further improve the convergence process.
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Fig. 7. Evolution (in dB) of the GMRES error along the iterations for
the FETI-FDP2 method, in presence of PML, when the internal boundary
conditions change in terms of values and locations (f = 4 GHz, Ns = 42,
wPML = λ).

A similar case is considered, but this time with smaller PML
(wPML = 0.4λ). The convergence behaviour of the GMRES
method is presented in Figure 9. Several conclusions can be
drawn. Firstly, the Mixed approach definitely improves the
convergence process. Secondly, whatever the chosen trans-
mission coefficients approximation, the FETI-FDP2 method
converges as fast as the FETI-DPEM2(b) method.



8

0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

Re(λ)

Im
(λ

)

(a) Despres

0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

Re(λ)

Im
(λ

)
(b) EMDA

0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

Re(λ)

Im
(λ

)

(c) Mixed

Fig. 8. Eigenvalues of the Reduced Interface Problem related to the FETI-
FDP2 method, in presence of PML, calculated for (a) the Despres approach,
(b) the EMDA approach and (c) the Mixed approach. (f = 4 GHz, Ns = 42,
wPML = λ)
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Fig. 9. Evolution (in dB) of the GMRES error along the iterations for the
FETI-DPEM2(b) and FETI-FDP2 methods, in presence of PML, when the
internal boundary conditions change in terms of values and locations (f =
4 GHz, wPML = 0.4λ).

D. BiCGstab iterative solver

Various research works take advantage of other iterative
methods, such as the BiCGStab method. We thus apply this
iterative method (with a stopping criterion equal to 10−3) to
solve the Reduced Interface Problem in presence of PML.
Unfortunately, for the three types of transmission conditions,
this method only converges for one of them, that is the Mixed
approach (Figure 10). The Despres and EMDA approaches
failed, whatever the employed FETI method.

The same problem is solved this time without PML but with
RBC. The corresponding results are given in Table II. It clearly
shows that the EMDA approach deteriorates the convergence
and can even prevent the iterative solver from converging.

All these numerical tests lead to the conclusion that the
Mixed approach should be favorized regardless the configura-
tion and the choice of the iterative solver. Moreover, it seems
that the combination of the FETI-FDP2 method and the Mixed
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Fig. 10. Evolution (in dB) of the BiCGstab error along the iterations, in
presence of PML, when the Mixed approach is applied for the two FETI
methods (f = 4 GHz, Ns = 42, wPML = λ).

TABLE II
NUMBER OF ITERATIONS AND RELATED L2-ERROR OBTAINED WITH THE

BICGSTAB METHOD, IN PRESENCE OF RBC (f = 4 GHZ, Ns = 42).

FETI-DPEM2(b) FETI-FDP2
Niter L2-error Niter L2-error

Despres/Mixed 111 8.60E-005 95 1.63E-004
EMDA - - 337 2.22E-004

approach is more stable and should be promoted.

E. Large scale problems

As all these methods are meant for tackling large-scale elec-
tromagnetic problems, we increase the frequency to enlarge
the number of unknowns. The stopping criterion for all the
iterative solvers is set to 10−3, which is a relatively high
number, but provides nevertheless a good indication of the
behaviour of the algorithms. Figure 11 shows for example the
repartition of the amplitude of the scattered field, when the
frequency is set to 20 GHz. Table III summarizes the results
obtained with the various methods for frequencies ranging
from 4 GHz to 20 GHz, in presence of RBC and when the
Mixed approach is used. In particular, in the last column, the
factorization time of all the matrices Ki

rr is provided as well
as the construction time and the factorization time required for
the matrix F̂EcEc

. In the FETI-DPEM2(b) method, only the
computation of FEcEc

is required. The addition of the new set
of Lagrange multipliers λc in the FETI-FDP2 method intro-
duces 3 supplemental matrix-matrix multiplications, in order
to obtain F̂λrEc , F̂EcEc and d̂Ec which are fully performed
at the pre-initialisation level. It is worth mentioning that the
computational time associated to these operations is relatively
small, as the biggest matrix Fλcλr

is very sparse and stored
in a special format which represents a set of full matrices. For
the largest problem considered in this work, this time varied
from few dozens to few hundreds of seconds depending on
the domain partitioning. The time required for one GMRES
iteration (for m+1 multiplications of the Interface Problem) is
also given and is the same for the FETI-DPEM2(b) and FETI-
FDP2 method, as the factorization of the various matrices is
performed beforehand and the number of unknowns is the
same for the two Reduced Interface Problems. This table en-
ables to appraise the computational burden associated to each
of the proposed methods and their various combinations. When
the frequency increases, the number of unknowns is getting
too large and prevents us from inverting the linear system
by means of a direct frontal solver. In those cases, the L2-
error is thus not available. It is of interest to note that the L2-
error, when computable, is of the same order as the stopping
criterion associated to the iterative solvers. This indicates that
the supplemental error due to the iterative algorithm must
be added to classical numerical errors linked for example to
mesh discretizations. For all the cases, the GMRES algorithm
converges faster than the BiCGStab. Similarly, the FETI-FDP2
method converges as fast as or even faster than the FETI-
FDPEM2(b) method.
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TABLE III
RESULTS OBTAINED AT DIFFERENT FREQUENCIES IN PRESENCE OF RBC, WITH THE MIXED APPROACH. THE FETI-DPEM2(b) AND FETI-FDP2

METHODS ARE COMBINED WITH EITHER GMRES (GM) OR BICGSTAB (BCG) ITERATIVE SOLVERS.

Size
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f of Ω
Number of

(GHz) (λ3) unknowns Iterations
L2-error Iterations

L2-errorGM/BCG GM/BCG

4 61 403 638 42 89 464 2 563 9/111 4.02E-004 9/95 4.99E-004 21 58/3 10

8 143 943 997 99 219 188 6 768 10/104 9.34E-004 9/94 1.15E-003 43 145/67 23

12 232 1 893 660 199 461 562 15 209 12/224 n.a. 12/130 n.a. 103 406/756 56

16 327 2 580 141 145 501 628 13 011 14/473 n.a. 13/246 n.a. 172 632/464 89

20 547 3 188 231 177 616 942 15 943 17/427 n.a. 17/215 n.a. 205 778/860 109

Fig. 11. Map in the plane z = 0 of the amplitude of the scattered field
computed at 20 GHz, in presence of RBC, computed with the FETI-FDP2
method and the Mixed approach. The location of the ellipsoidal scatterers are
indicated with white lines.

V. CONCLUSION

In this paper, a variation of a Domain-Decomposition
method, named the FETI-FDP2 method, has been suggested.
Thanks to Lagrange multipliers, this method applies Robin-
type boundary conditions everywhere, even at the corner
points. The principle of this method has been detailed and
its similarities and differences with the already existing FETI-
DPEM2 methods has been provided.

With such a method, an effective code has been developed
in order to solve 3D large-scale scattering electromagnetic
problems which can contain inhomogeneities and anisotropy.
This code is based on an arbitrary mesh partitioning, which

is a complicate issue in 3D. Special care has thus been taken
to handle internal interfaces which are not necessarily planar
without introducing a major drawback in terms of computa-
tional accuracy. The accuracy as well as the implementation
of this new method has been fully checked by comparing its
results with the ones obtained with classical FEM and FETI
methods, where direct solvers have been used.

Due to the increasing size of the underlying linear systems,
classical iterative methods have also been investigated to
solve the interface problem. The numerical results presented
here have shown that the convergence speed of the iterative
methods are seriously affected by the presence of PML and
the condition between the internal interfaces. A more accurate
approximation of the Dirichlet-to-Neumann operator has thus
been investigated. We have been able to numerically show
that the use of a Mixed approach, which enables to vary the
transmission condition in and out of the anisotropic areas,
strongly enhances the convergence process and even enables
it to no longer diverge.

So far, we have investigated a sequential implementation of
the FETI-FDP2 method. Future work will naturally concern
the algorithm’s parallelization. In order to further improve
the convergence rates, more advanced boundary conditions
[37] should also be investigated. At the same time, thanks
to our constant progress in microwave scattering experiments,
we will analyse numerically and experimentally the scattering
behaviour of objects whose overall dimensions are large with
respect to the wavelength [38] [39]. This is of course an
intermediate step before tackling complicated and large-scale
inverse scattering problems [40] [41], where an efficient and
accurate forward solver is a key feature.
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