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Abstract

Background: Rickettsia conorii conorii is the etiological agent of Mediterranean spotted fever, which is transmitted by the
brown dog tick, Rhipicephalus sanguineus. The relationship between the Rickettsia and its tick vector are still poorly
understood one century after the first description of this disease.

Methodology/Principal Findings: An entomological survey was organized in Algeria to collect ticks from the houses of
patients with spotted fever signs. Colonies of R. conorii conorii-infected and non-infected ticks were established under
laboratory conditions. Gimenez staining and electron microscopy on the ovaries of infected ticks indicated heavy rickettsial
infection. The transovarial transmission of R. conorii conorii in naturally infected Rh. sanguineus ticks was 100% at eleven
generations, and the filial infection rate was up to 99% according to molecular analyses. No differences in life cycle duration
were observed between infected and non-infected ticks held at 25uC, but the average weight of engorged females and
eggs was significantly lower in infected ticks than in non-infected ticks. The eggs, larvae and unfed nymphs of infected and
non-infected ticks could not tolerate low (4uC) or high (37uC) temperatures or long starvation periods. R. conorii conorii-
infected engorged nymphs that were exposed to a low or high temperature for one month experienced higher mortality
when they were transferred to 25uC than non-infected ticks after similar exposure. High mortality was observed in infected
adults that were maintained for one month at a low or high temperature after tick-feeding on rabbits.

Conclusion/Significance: These preliminary results suggest that infected quiescent ticks may not survive the winter and
may help explain the low prevalence of infected Rh. sanguineus in nature. Further investigations on the influence of extrinsic
factors on diapaused R. conorii-infected and non-infected ticks are required.

Citation: Socolovschi C, Gaudart J, Bitam I, Huynh TP, Raoult D, et al. (2012) Why Are There So Few Rickettsia conorii conorii-Infected Rhipicephalus sanguineus
Ticks in the Wild? PLoS Negl Trop Dis 6(6): e1697. doi:10.1371/journal.pntd.0001697

Editor: David H. Walker, University of Texas Medical Branch, United States of America

Received August 18, 2011; Accepted May 2, 2012; Published June 19, 2012

Copyright: � 2012 Socolovschi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: philippe.parola@univmed.fr

Introduction

Rickettsia conorii conorii is the etiological agent of Mediterranean

spotted fever (MSF), one of the oldest recognized vector-borne

infectious diseases [1]. In the 1930s, the brown dog tick,

Rhipicephalus sanguineus, was suspected to be the vector of MSF.

Ticks were crushed and used to inoculate humans who

consequently contracted MSF [1,2]. Crushed eggs, larvae,

nymphs, unfed adults collected in the winter and adults obtained

from infected Rh. sanguineus females were able to infect humans.

These data suggested that transstadial transmission (transfer of

bacteria from stage to stage) but also transovarial transmission

(TOT, the transfer of bacteria from adult female ticks to the

subsequent generation of ticks via the eggs) of R. conorii conorii

occurs in ticks and consequently that Rh. sanguineus (Figure 1) could

act not only as a vector but also as a reservoir of R. conorii conorii

[1].

Rh. sanguineus has become one of the most globally widespread

ticks because of its specialized feeding and association with

domestic dogs [3]. Although Rh. sanguineus rarely feeds on humans,

particularly in temperate countries, it seems to have a greater

human affinity in warmer temperatures [4]. This tick is highly

adapted to warm climates but also thrives in dog kennels and

human homes. It can be imported with dogs to the cooler regions

and survive in peridomestic environments, provided that it

encounters acceptable conditions. Thus, Rh. sanguineus has spread

globally between 50uN and 35uS [3]. However, MSF due to R.

conorii conorii is known to be endemic in North Africa and southern

Europe. MSF has also been described in a few countries in sub-

Saharan Africa, and a few cases have also been sporadically

reported in northern and central Europe [5,6], sometimes followed

by the installation of a local focus of the disease [1]. In contrast, R.

conorii conorii infection has never been described in the Americas

[7].

Although Rh. sanguineus-R. conorii conorii relationships were a

focus of interest of pioneering rickettsiologists, they are still poorly

understood even one century later. Interestingly, it has been

suggested that R. conorii conorii has a negative effect on the survival

of its tick vector when Rh. sanguineus ticks are experimentally

infected [8–12]. However, preliminary data have recently
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demonstrated that naturally infected colonies of Rh. sanguineus can

be maintained in laboratory conditions over several generations

[13]. Therefore, a significant population of infected ticks should

exist in the wild. However, the prevalence in the wild of ticks

infected by R. conorii is low (usually less than 1%). For example,

none of the 2,229 Rh. sanguineus ticks collected from Spain were

positive for R. conorii [14]. Rarely, a high prevalence of infected

ticks has been found in small foci. For example, when a spotted

fever focus was investigated in France in May 2007, 18% (24/133)

of the Rh. sanguineus ticks collected from the walls of one house and

from a garden were found to be infected with R. conorii conorii [4].

The vectorial capacity of ticks depends on several characteristics

of tick biology, including longevity, host-seeking behavior and

mobility, all of which are influenced by extrinsic factors, including

climatic conditions [15]. Temperature is known to influence tick-

microorganism relationships and consequently, the vectorial

capacity of ticks. For example, the maintenance and multiplication

of parasites (e.g., Theileria spp. and Babesia spp.) in ticks has been

shown to be influenced mostly by temperature [15]. Moreover, it

has been shown that ambient temperatures in excess of 27uC are

not permissive for the transmission of Borrelia burgdorferi, the agent

of Lyme disease in Ixodes dammini ticks [16].

In 1972, Injeyan et al. [17] inoculated guinea pigs with infected

crushed Rh. sanguineus nymphs that were previously held at

different temperatures. These ticks were experimentally infected

with the so-called ‘‘R. conorii Simko isolate’’ isolated from Rh. simus

collected from cattle in Ethiopia. The clinical reactions were most

evident in the guinea pigs injected with nymphs held at 35uC, and

the reactions were milder in those held at 5uC, 15uC, 20uC, or

25uC [17]. However, the relevant literature offers epidemiological

analyses of the influence of climatic factors on tick-borne rickettsial

diseases, rather that laboratory results [4,17,18]. For example,

during the 1970s, an increase in the number of observed MSF

cases was correlated with a decrease in the number of frost days

during the preceding year in France [19–21].

The aim of this study was to assess some of the life cycle

parameters of infected and non-infected Rh. sanguineus, the

transstadial and transovarial transmission of R. conorii conorii and

the influence of high and low temperature on the survival of Rh.

sanguineus infected with R. conorii conorii.

Figure 1. Rhipicephalus sanguineus, the vector and potential reservoir of Mediterranean spotted fever caused by Rickettsia conorii. A
mm scale is at the top of this image.
doi:10.1371/journal.pntd.0001697.g001

Author Summary

The bacterium Rickettsia conorii conorii is the etiological
agent of Mediterranean spotted fever (MSF), which is a life-
threatening infectious disease that is transmitted by
Rhipicephalus sanguineus, the brown dog tick. Rh. sangui-
neus-R. conorii conorii relationships in the wild are still
poorly understood one century after the discovery of the
disease. In this study, we collected naturally infected ticks
from the houses of people afflicted by MSF in Algeria.
Colonies of both infected and non-infected ticks were
maintained in our laboratory, and we studied the effect of
temperature variations on the infected and non-infected
ticks. We did not observe any major differences between
the biological life cycle of the infected and non-infected
ticks held at 25uC. However, a comparatively higher
mortality relative to the control group was noticed when
R. conorii conorii-infected engorged nymphs and adults
were exposed to a low temperature (4uC) or high
temperature (37uC) for one month and transferred to
25uC. R. conorii conorii-infected Rh. sanguineus may
maintain and serve as reservoirs for the Rickettsia if they
are not exposed to cold temperatures. New populations of
ticks might become infected with Rickettsiae when feeding
on a bacteremic animal reservoir.

Rickettsia conorii and Rhipicephalus sanguineus
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Materials and Methods

We studied the transmission of R. conorii conorii in Rh. sanguineus

through more than twelve generations by using molecular tools

and following the life cycle of infected and non-infected ticks under

laboratory conditions. Our investigation of the influence of high

and low temperature on the survival of several stages of Rh.

sanguineus infected with R. conorii conorii mimicked the cold weather

(4uC) and hot summer (37uC) in our area and compared the

experimental temperatures to laboratory conditions (25uC).

Rhipicephalus sanguineus infected with Rickettsia conorii
conorii

To collect Rh. sanguineus ticks naturally infected by R. conorii

conorii, an entomological survey was organized in Algeria. The

houses of patients who had contracted MSF between July and

August of 2006 were visited. The owners were interviewed about

the presence of ticks on their dogs and in their house. When

available, engorged females were removed from dogs. The ticks

were transported to Marseille, France and stored in environmental

incubators at 25uC and 80% relative humidity (RH) with a day/

night photoperiod of 16:8 (L:D) h [9]. After the ticks laid eggs,

DNA was extracted from each tick, and all samples were tested by

PCR for the rickettsial gltA and rompA genes, as previously

described [9]. For all PCR procedures, the negative controls

consisted of distilled water or DNA extracted from non-infected

ticks from laboratory colonies that were added to the PCR master

mix. The amplified products were sequenced, analyzed by BLAST

(www.ncbi.nlm.nih.gov/blast/Blast.cgi), and compared to those in

the GenBank database. A single specimen tested positive for both

rickettsial genes, and the analyzed sequences indicated R. conorii

conorii fragments (result section). The larvae and all subsequent

stages of the infected tick were placed on New Zealand white

rabbits (Oryctolagus cuniculus) that were used as the host for the blood

meal [13]. Ticks were placed in each of two cloth ear bags, which

were secured with ElastoplastH to the ears of rabbit [9]. Unfed

adults from the 2nd generation were used for definitive

morphological identification by a researcher (PP) using standard

taxonomic keys for adult ticks [22]. To confirm species

identification, amplification of the mitochondrial 12S rRNA gene

was achieved by conventional PCR [23]. Specimens (larvae,

nymphs and adults) of the 3rd, 4th and 10th subsequent generations

(Figure 2) were tested by real-time (RT)-PCR in a Lightcycler

(Roche) instrument for the presence of Rickettsia spp. DNA using

primers and Taqman probes targeting a partial sequence of the

citrate synthase gltA gene, as previously described [24]. Gimenez

staining, as previously described, was used to highlight morpho-

logical structures compatible with R. conorii conorii in the salivary

glands (Figure 3A), ovaries (Figure 4A) and eggs (Figure 5A) of

infected Rh. sanguineus [25].

Electron microscopy of ovaries from R. conorii conorii-
infected Rh. sanguineus

Engorged, infected ticks were dissected under a binocular

microscope. The ovaries were washed with PBS and fixed

overnight in 2% glutaraldehyde in a 0.1 M cacodylate buffer.

After being washed in a 0.1 M cacodylate buffer, the specimens

were post-fixed in 1% osmium tetroxide in 0.1 M potassium

ferricyanide for 1 h and dehydrated in an ascending series of

ethanol concentrations ranging from 30% to 100%. After the

absolute ethanol dehydration step, the dehydration was finished in

propylene oxide. The samples were embedded in Epon 812 resin.

Sections (70-nm thick) were stained with 5% uranyl acetate and

lead citrate before examination using a transmission electron

microscope (Philips Morgagni 268D). For better visualization of

the carbohydrate layer, another series was completed using

ruthenium red.

Rickettsia-free Rh. sanguineus colonies
We used colonies of ticks free of Rickettsia, Ehrlichia, Anaplasma,

Bartonella and Coxiella burnetii originating from Algeria that were

morphologically and molecularly [23] identified as Rh. sanguineus

and had been maintained in our laboratory in an incubator at

25uC with 80% relative humidity since 2006 [26]. When obtained,

the 12S RNA mitochondrial sequence data presented 100%

similarity to Rh. sanguineus from the USA (HM014443), Portugal

(FJ536554), and Switzerland (AF483241). Individual New Zealand

white rabbits (Oryctolagus cuniculus) were used for the attachment of

non-infected ticks, as described above. Periodically, new ticks from

the wild that tested negative by PCR were included in our non-

infected Rh. sanguineus colony, as previously described [27].

Study of the biological parameters of the life cycle
(duration of their metamorphosis) of R. conorii conorii-
infected Rh. sanguineus

The life cycle or developmental period of non-infected and R.

conorii conorii-infected Rh. sanguineus ticks was studied through

several generations. The duration of the larval, nymphal, and

adult feeding (the number of days from placement of the rabbit

until drop-off) were studied. In addition, the molting period

covering the transition from larvae to nymphs and from nymphs to

adults (the number of days from drop-off to ecdysis), the pre-

oviposition period (the period from female drop-off to the

beginning of oviposition), and incubation periods (from the

beginning of oviposition until hatching of larvae), as previously

described [27], were studied. The sum of the days of all of these

parameters represents the total life cycle of R. conorii conorii-infected

ticks. The weight of engorged females and the eggs of these females

of non-infected and R. conorii conorii-infected Rh. sanguineus ticks was

measured with an analytical balance (XB 620M, Micromega

groupSoframe). The weight data of engorged females and eggs

were analyzed with GraphPad PrismTM v 2.0 software (La Jolla,

USA, www.graphpad.com/prism/Prism.htm).

Influence of temperature on R. conorii conorii-infected
Rh. sanguineus

Batches of randomly selected eggs, larval and nymphal stage

unfed or engorged ticks (N = 100) and adult stage ticks (N = 40),

either infected or non-infected, were used for each of three

experiments from the 8th, 9th, and 10th generations. Each of the

treatment groups of engorged ticks were held at a particular

temperature (4u, 25u, 37uC) for one month and then all of the ticks

were held at the same temperature (25uC) for an additional month.

The non-engorged ticks held at 4uC, 25uC and 37uC for one

month were attached to New Zealand white rabbits for feeding.

The experiment with infected and non-infected ticks had been

conducted in the same time. The relative humidity (80% RH) was

the same for all groups with a light/dark photoperiod of 16:8 h.

The following biological parameters were recorded after one

month for infected and non-infected engorged nymphs held at

25uC: the number that were dead without molting, the number

that had molted but were dead, and the total number of dead

nymphs. For adult ticks, the following biological parameters were

noted: the number of ticks dead before attachment on the rabbit,

the number dead after attachment, and the total number of dead

ticks. Each experiment was performed in triplicate. The infected

and non-infected ticks of the corresponding temperature groups

Rickettsia conorii and Rhipicephalus sanguineus
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Figure 2. Study of the vertical transmission of Rickettsia conorii conorii in naturally infected Rhipicephalus sanguineus ticks. PCR,
polymerase chain reaction. TS, transstadial transmission (transfer of bacteria from stage to stage). TOT, transovarial transmission, the proportion of
infected females giving rise to at least one positive egg or larva. FIR, the filial infection rate, the proportion of infected eggs or larvae obtained from
an infected female. M: male. F: female.
doi:10.1371/journal.pntd.0001697.g002

Rickettsia conorii and Rhipicephalus sanguineus
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were compared. The numbers of dead ticks of each group were

compared using a x2 test conducted with Epi Info software,

version 3.4.1 (CDC, Atlanta, USA). Statistical significance was

defined as p,0.05.

Ethics
The animals were handled according to the rules of French

Decree N.8 87–848 of October 19, 1987, Paris. Each colony of

non-infected and infected ticks had individual rabbits. For the

non-infected ticks of the laboratory tick colony, a rabbit was used a

maximum for three times for feeding. However, for the infected

laboratory colonies and for the analysis of temperature on R. conorii

conorii-infected and non-infected Rh. sanguineus (experimental

analysis), an individual rabbit for each batch and for each

temperature condition was used only once. All experimental

protocols were reviewed and approved by the Institutional Animal

Care and Use Committee of the Université de la Méditerranée

(Marseille, France).

Results

Transmission of R. conorii conorii-over twelve generations
of Rh. sanguineus

A total of thirty engorged female Rh. sanguineus ticks were

collected from 7 dogs of patients who contracted MSF in Algeria.

A single specimen collected in Ghazonet, Algeria tested positive

for R. conorii conorii (GenBank, accession number ompA: DQ518245

and gltA: AE008677). The positive controls tested positive for all

PCR reactions, and no signal was obtained from the negative

controls for any PCR reaction. Molecular identification of tick

species based on partial 12S rRNA mitochondrial sequence data

indicated 99.7% (337/338) similarity to Rh. sanguineus from the

USA (HM014443), Portugal (FJ536554), and Switzerland

(AF483241).

Twelve successive generations were obtained, and the infected

colony is still growing in our laboratory as of this writing (Figure 2).

The PCR assay was positive for specimens of all stages of these

generations for rickettsial detection. For the 10th generation, all

engorged nymphs (20/20), all adults randomly chosen (16/16), 4/

4 females after laying eggs and the pools of eggs from these females

tested positive by RT-PCR for rickettsial DNA. These data suggest

100% transstadial and transovarial transmission of R. conorii conorii

in Rh. sanguineus ticks. The filial transmission rate (FIR, proportion

of infected eggs or larvae obtained from an infected female) of R.

conorii conorii was 99.07% (107/108), 94.3% (66/70) and 95.5%

(21/22) in larvae from several infected females of the 3rd, 4th, and

11th generations, respectively. Gimenez staining revealed many

morphological structures compatible with R. conorii conorii in the

salivary glands (Figure 3B), ovaries (Figure 4B) and eggs

(Figure 5B). Electron microscopy of the ovarian tissue revealed

heavy infection compatible with R. conorii conorii (Figure 4C, 4D).

The Rickettsiae exhibited typical rickettsial morphology and size, as

previously described [10].

Study of biological parameters of the life cycle (duration
of their metamorphosis) of R. conorii conorii-infected Rh.
sanguineus

No difference was observed between the duration of life cycle of

R. conorii conorii-infected and non-infected ticks held at 25uC, but

the average weight of engorged females and eggs was found to be

significantly lower in infected ticks. The number of infected

females began to drop off on day 8 after placement on the rabbit,

and their blood meal was completed by day 15 (Figure 6). The

average weight of 31 infected engorged females was 0.38111 g

(range, 0.2518–0.5389 g) compared to 0.4749 g (range, 0.2333–

0.6203 g) for six non-infected engorged females (p = 0.0136). At

25uC, the pre-oviposition period started between one and two

weeks after the end of female engorgement. The average weight of

eggs from one female infected tick was 0.2099 g (range, 0.0998–

0.2976 g, 31 samples) compared to 0.2919 g (range, 0.1321–

0.4271 g, 6 samples) for non-infected eggs (p = 0.0021). The

infected eggs began hatching within 2–3 weeks, as did non-infected

eggs. Hatched larvae were kept at 25uC for at least 2–3 weeks

before feeding. The duration of pre-feeding period was 2 to 4

Figure 3. Rhipicephalus sanguineus salivary glands and detection of Rickettsia conorii conorii. Salivary glands of a Rhipicephalus sanguineus
infected with Rickettsia conorii conorii (left). Gimenez staining: smears of infected Rhipicephalus sanguineus salivary glands (right).
doi:10.1371/journal.pntd.0001697.g003

Rickettsia conorii and Rhipicephalus sanguineus
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Figure 4. Rhipicephalus sanguineus ovary and detection of Rickettsia conorii conorii. Ovaries of a Rickettsia conorii conorii-infected engorged
Rhipicephalus sanguine; scale bar: 2 mm (top left). Gimenez staining, smears of infected Rhipicephalus sanguineus ovaries (top right). An electron
photomicrograph of ovarian tissue from a Rickettsia conorii conorii-infected engorged female Rhipicephalus sanguineus (bottom left and right). Red
flash, Rickettsia conorii conorii surrounded by electron-lucent halos. Scale bar: 0.1 mm.
doi:10.1371/journal.pntd.0001697.g004

Figure 5. Rhipicephalus sanguineus eggs and detection of Rickettsia conorii conorii. The eggs of a Rhipicephalus sanguineus infected with
Rickettsia conorii conorii(left). Gimenez staining, the crushed eggs of a Rhipicephalus sanguineus infected with Rickettsia conorii conorii (right).
doi:10.1371/journal.pntd.0001697.g005

Rickettsia conorii and Rhipicephalus sanguineus
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weeks after the end of eclosion of the last specimen. Infected larvae

fed for 3–6 days. The infected engorged larvae molted into the

nymphal stage between 9 and 15 days after engorgement. Molted

R. conorii conorii-infected nymphs were fed for approximately 3–4

weeks after ecdysis, as were non-infected nymphs. Nymphs were

fed for 4–7 days. It took 2–3 weeks for engorged nymphs to molt

into adults. Under our standard laboratory conditions, the life

cycle of infected Rh. sanguineus ticks lasted 18 to 24 weeks. To avoid

different abnormalities in infected ticks and to maintain genetic

diversity, new, non-infected male ticks were placed on rabbits

during the feeding of infected female ticks. In conclusion, under

laboratory conditions we did not find any difference in the

duration of developmental stages of the life cycle of R. conorii conorii-

infected Rh. sanguineus when compared to non-infected ticks [27].

Influence of temperature on R. conorii conorii-infected
Rh. sanguineus

Eggs, larvae and unfed nymphs. The same experiment was

performed with several batches of eggs, larvae and unfed nymphs

of infected and non-infected ticks. None of these stages, either

infected or non-infected, could tolerate low (4uC) or high (37uC)

temperatures for one month (data not shown). Moreover, at 25uC
the larvae and unfed nymphs did not survive more than one and

two months, respectively. To avoid high mortality, larvae and

nymphs were placed on the rabbit to feed after 2–3 weeks and 3–4

weeks, respectively.

Engorged nymphs. In the 3 experiments with engorged

nymphs, 88–100% of the R. conorii conorii-infected nymphs that had

been previously maintained at 4uC died after being transferred to

25uC (53–80% died without molting) compared to 41% (62/150)

of non-infected nymphs after one month (288/300 vs. 62/150,

p = 0.0001). In contrast, there was no mortality rate difference for

the ticks, both infected and non-infected, that had been

maintained at 25uC (2.3–2.6%, 8/300 vs. 7/300, respectively).

Significantly more engorged, infected nymphs maintained at 37uC
died than non-infected nymphs maintained at the same temper-

ature (17–67%, 101/300 and 4–7%, 15/300, respectively,

p = 0.0001) (Table 1).

Adults. In the first batch of adults, which was maintained at

4uC for one month and then transferred at 25uC for rabbit

attachment, 10–40% infected ticks died compared to a lack of

death for non-infected ticks (30/120 vs. 0/80, p = 0.0001). No

difference was observed between the infected and non-infected

adults for the second batch, which was maintained at 25uC (2/120

vs. 0/120). In the third batch, which was maintained at 37uC for

one month, 37.5–85% of infected ticks and 15–40% of non-

infected ticks died (75/120 vs. 29/120, p = 0.0001). Among all of

the dead ticks, 25–75% of infected ticks died before attachment to

the rabbit, and 10–20% of non-infected ticks died before

attachment to the rabbit (Table 2).

In conclusion, infected ticks (nymphs and adults) had a

comparatively higher rate of mortality at 37uC than at 25uC,

and after a 4uC cooling when compared to non-infected ticks.

Moreover, only engorged nymphs and adults survived at high and

low temperatures.

Discussion

This study confirms the vertical transmission of R. conorii conorii

in naturally infected Rh. sanguineus ticks over twelve generations

with a TOT rate of 100% and an FIR of up to 99%. R. conorii

conorii was detected in ovary tissue by electron microscopy and by

Gimenez staining, which supports the mechanism of transmission

through several generations of infected ticks. The duration of the

different steps of the tick life cycle in laboratory conditions were

similar between non-infected and R. conorii conorii-infected ticks.

These results are in agreement with recent published data about

non-infected Rh. sanguineus [27]. The difference in the average

weights of engorged females and eggs between the infected and

non-infected ticks suggests that the fecundity of infected female

ticks is lower than that of uninfected females. This implies that the

prevalence of infection in a tick population should gradually

decline and disappear without periodical augmentation.

The mortality rate of infected and non-infected engorged

nymphs and adults maintained in our laboratory at 25uC and 80%

RH was approximately 2%. In contrast, a comparatively higher

mortality rate was observed when R. conorii conorii-infected

engorged nymphs (88–10%, 4uC; 17–67%, 37uC) and adults

(10–40%, 4uC; 37.5–85%, 37uC) that were exposed to low

temperature or high temperature for one month were transferred

Figure 6. Rhipicephalus sanguineus ticks during blood feeding on rabbits. Rhipicephalus sanguineus infected with Rickettsia conorii conorii
during blood feeding on a New Zealand white rabbit, feces circled (left). Inflammation around a bite site of a female Rhipicephalus sanguineus
infected with R. conorii conorii during feeding (right).
doi:10.1371/journal.pntd.0001697.g006
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to 25uC, compared to the control group (Table 1, 2). The negative

effect of temperature on the viability of Rh. sanguineus infected with

Rickettsia conorii conorii could be related to the long-recognized

phenomenon known as reactivation, which remains poorly

understood [28]. Between 1926 and 1930, Spencer and Parker

demonstrated that triturated and starved Dermacentor andersoni ticks

infected with Rickettsia rickettsii, the agent of Rocky Mountain

spotted fever, did not cause disease but did result in seroconversion

when injected into guinea pigs. However, feeding the ticks for a

short time or keeping them at an elevated temperature (24 to 48 h

at 37uC before trituration and inoculation) resulted in clinical

manifestation of disease. These authors postulated that the

virulence of R. rickettsii in the tick vector is linked directly to the

physiological state of the tick and defined this phenomenon as

‘‘reactivation’’ [29–32]. In 1982, reversible structural modifica-

tions of R. rickettsii were demonstrated to be linked to physiological

changes in the tick host and correlated with reactivation, i.e., the

restoration of pathogenicity and virulence infectivity [28,33].

More recently, R. rickettsii was shown to be lethal for the majority

of experimentally and transovarially infected D. andersoni [18].

However, infected female ticks incubated at 4uC presented a lower

mortality rate than those held at 21uC or 27uC. Although

temperature is a common environmental signal for the upregula-

tion of virulence gene expression, the information currently

available in the literature poorly explains the reactivation

phenomenon and its consequences for ticks [34].

In the present experiments, the temperature range (4uC, 25uC
and 37uC) approximated the temperature differentials expected to

be encountered by Rh. sanguineus in the natural environment in

southern France and more generally, in Mediterranean settings.

As confirmed in our study, infected and non-infected eggs, larval

and nymphal unfed stages are unable to survive at a cold

temperature in laboratory conditions, and the temperature exerts

considerable influence on the length of their life cycle [27,35].

Recently, the effect of low temperature (862uC) on non-infected

Rh. sanguineus eggs has been shown to be a major limiting factor for

the establishment of populations of the tick in colder regions [36].

Non-infected engorged nymphs and adults are less influenced by

daily temperature. The maximum survival of nymphs and adult

ticks occurs at 20–30uC and 85% relative humidity; the minimal

temperature threshold for molting is between 10 and 15uC [17].

Rh. sanguineus overwinter as engorged nymphs or unfed adults [35],

so our preliminary results suggest that infected ticks might not

survive the winter. This could help to explain the scarcity of

infected ticks found in the wild. Further studies investigating

whether the mortality of R. conorii conorii-infected ticks is higher

among diapaused ticks would be interest and could have

important implications for the ecology of MSF. Such studies

could be performed by exposing ticks to natural conditions or

simulating natural conditions with proper regimens of photoperiod

and temperature, as the diapause is induced where temperature is

still warm, but changes in photoperiod induces ticks to enter a state

of dormancy in a safe place, in order to survive to adverse

conditions that will come the next winter.

In regards to the ecology of Rocky Mountain spotted fever, it is

generally hypothesized that R. rickettsii is maintained in nature by

the regular establishment of new populations of infected ticks. The

probability of new populations of ticks becoming infected with

Rickettsiae is difficult to precisely calculate, but a rough estimate can

be obtained based on the assumed life span of susceptible

mammals, the antibody prevalence in mammals, the average

number of days of peak rickettsemia in infected animals and the

number of days of infectious feeding on rickettsemic animals

required to establish generalized infections in ticks [37]. It is likely

that vertebrate reservoirs play a more dominant role in the ecology

of R. conorii conorii than previously thought. Non-immune dogs,

which include puppies in endemic areas or dogs living outside

endemic areas of MSF or, at least, Rh. sanguineus, have been

suggested as potential reservoirs for R. conorii conorii [1]. Recently,

Levin et al. [38] reported that dogs are capable of acquiring R.

conorii israelensis from experimentally infected Rh. sanguineus ticks

that could also transmit infection to cohorts of uninfected ticks.

Other animals have also been found to be experimentally

susceptible to R. conorii, such as hedgehogs, Swiss mice, Hartley

guinea pigs and Spermophilus citellus (Citellus citellus) [1]. Recently,

one of 16 Rh. sanguineus collected from hedgehogs tested positive

for R. conorii [39]. In addition, the role of the European rabbit

Oryctolagus cuniculus in the epidemiology of MSF had been

suggested by pioneering rickettsiologists [1]. Rabbit ticks and

fleas, as well as that of small rodents such as Pitymys duodecimcostatus

living in rabbits burrows, are suspected to be involved in the R.

conorii conorii life cycle. Interestingly, the prevalence of infected Rh.

sanguineus may vary from one specific setting to another within

endemic areas, and the foci of MSF are usually small with a low

propensity for diffusion [1]. However, a reservoir role has not been

confirmed for any of these animals [1].

More work is needed to thoroughly decipher the relationship

between R. conorii conorii and its vector, Rh. sanguineus. Aside from

the need to definitively confirm the role of animal reservoirs in

perpetuating R. conorii conorii, continued investigations of the Rh.

sanguineus-R. conorii conorii interaction are needed to provide a better

understanding of the factors influencing the ecology and epide-

miology of MSF. In particular, studies on the poorly understood

rickettsial inactivation-reactivation phenomenon may provide a

better insight into the interaction between Rickettsiae and ticks.
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