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Abstract: Today, there are several drawbacks that impede the necessary and much needed use of robot learning 
techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. 
Second, the robot behavior during the learning phase is – by definition – bad, it may even be dangerous. Third, 
except within the lazy learning approach, a new behavior implies a new learning phase. We propose in this paper 
to use associative memories (self-organizing maps) to encode the non explicit model of the robot-world interaction 
sampled by the lazy memory, and then generate a robot behavior by means of situations to be achieved, i.e., points 
on the self-organizing maps. Any behavior can instantaneously be synthesized by the definition of a goal 
situation. Its performance will be minimal (not necessarily bad) and will improve by the mere repetition of the 
behavior.  
Keywords: Robot learning, Kohonen map, self-organizing map, autonomous robotics, associative memory 
programming, obstacle avoidance. 

 
 
1. Introduction 
 
1.1 The Future of Robotics 
Learning is a necessary component of robotics for reasons 
as serious as the time and money required to write ad-hoc 
behaviors, or simply because an accurate-enough model 
of the environment may be unavailable, as is the case of 
space exploration, sub-marine exploration, or nuclear 
powerplant assessment (after an accident). 
 
1.2 Expensive vs. Cheap learning 
The two most widely used robot learning paradigms are 
supervised learning and reinforcement learning. 
Supervised learning (Le Cun, 1985 ; Rumelhart, Hinton & 
Williams, 1986) requires the operator to define a set of 
representative examples of situation-action pairs (i.e., the 
learning base). On the other hand, reinforcement learning 
(for a review see: Kaelbling, Littman & Moore, 1996; 
Sutton & Barto, 1998) generates the learning base through 
a combination of an exploration and a reinforcement 
function. In the latter case, the operator is only asked to 
define a measure of the robot behavior performance. 
Despite the efforts to come up with a reinforcement 
function design process (Santos & Touzet, 1999a, 1999b), 
a lot of time is spent in trial and error. Moreover, a 
reinforcement function has to be defined for each desired 
behavior, which means that – even if the reinforcement 

function is perfect – a new learning base must be build for 
every single behavior. 
 
1.3 Faster learning 
Lazy learning (Aha, 1997) reduces the time required to 
build the learning base. In an initial and unique sampling 
of the robot-environment relation, lazy learning builds a 
non-explicit model of the situation-action relation. 
Coupled to a reinforcement learning technique, such as 
Q-learning, lazy learning allows a great reduction of the 
time necessary for learning. The learning iterations are 
done in simulation using the non-explicit model, much 
faster than the actual time needed by a robot to 
performed the required number of actions. Lazy Q-
learning (Sheppard & Salzberg, 1997) is becoming a 
paradigm of choice for robot learning, allowing almost 
instantaneous behavior synthesis - distributed lazy Q-
learning techniques have already been proposed in the 
multi-agent context (Darrell, 1997 ; Touzet, 2005). 
 
1.4 Limitations of lazy Q-learning 
Lazy Q-learning application development is still time 
consuming. During development, many different 
reinforcement function expressions appear valid, and 
only experimentation is able to verify the quality of the 
synthesized behaviors. Research efforts in reinforcement 
function design only help the learning to converge, but 
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there is no warranty that it will converge towards the 
desired behavior. This is due to the highly indirect way 
the behavior is synthesized. A behavior is seen as a 
mapping between situation and action, and the learning 
is a function approximation method that uses 
generalization over a subset of high utility situation-
action pairs, gathered during exploration. The utility, 
initially a qualitative information, is transformed into 
quantitative values by the training rule. Being able to 
imagine a priori the behavior that will emerge from such 
complex process is very difficult, and progress in 
exploration, training rules, and generalization are not 
going to offer a definitive solution. 
 
1.5 Goal-seeking behaviors 
On the other hand, if the desired behavior is expressed 
not as a mapping between situations and actions, but as a 
situation to achieve (a goal to seek) then there is a direct 
relation (not necessarily a bijection) between the goal to 
be achieved and the representation of this goal in the 
operator’s mind. Until today, goal-seeking methods in 
autonomous robotics have provoked little interest. They 
are mostly related to mapping applications, such as the 
go-to-the-nest application (Sehad & Touzet, 1995). They 
associate a utility value with each situation-action pair 
encountered during the learning phase, which is later 
used as an indication of which action to choose at a given 
location. If the position of the goal changes, then the 
learning must be started again. Applications to other 
domains, such as collision avoidance behavior (Touzet, 
2003), encounter the same limitation. Only one behavior 
is learned and the learned behavior cannot accommodate 
changes in the shape or size of the obstacle.  
 
1.6 Summary of the paper 
In the following section 2, we present our method used to 
immediately generate a behavior by locating intermediate 
situations to reach on the self-organizing map. 
Experiments synthesizing an obstacle avoidance behavior 
for the Nomad 200 mobile robot are presented in section 
3. Section 4 presents the related works and, finally, we 
conclude and offer a few ideas that extend and complete 
the learning method described in this paper. 
 
2. Our model  
 
2.1 Robot behavior’s definition 
We propose defining a behavior by means of a desirable 
goal for the robot to achieve. Therefore, the robot must be 
able to perceive such an achievement. The goal is then a 
robot sensory situation that is desirable. For example, it 
can be a perceived situation completely free of obstacles 
in the case of an obstacle avoidance behavior.  
 
2.2 Straight-forward limited implementation 
A behavior is a mapping between situations and actions. 
Dynamically, a behavior can be represented as a sequence 

of points in the situation-action space, each point 
belonging to the mapping. A sequence of points defines a 
trajectory, or a path. Generating the desired behavior is 
then producing the sequence of actions that will take the 
robot from its initial situation to the goal situation 
(assuming that the goal can not be achieved with only 
one action). The problem is that - due to the high 
dimensionality (usually much larger than 3) of the 
situation-action space – the number of situations for 
which an action has been tried is too small. Despite the 
use of lazy learning, the ratio of situation-action pairs 
over the search space size is extremely small. Therefore, 
for each current situation, there are extremely few similar 
ones. Most of the time, not enough situation-action pairs 
have been sampled to allow a reasonable selection - the 
number of points needed grows exponentially with the 
number of dimensions of the situation-action space. In 
conclusion, using lazy learning, there is no guarantee that 
the selected course of action will lead the robot to the 
goal.  
 
2.3 Associative memories  
Associative memories are memories accessible using part 
of their content. The self-organizing map (SOM) 
(Kohonen, 1987, 2001) is one of such associative 
memories. It is a clustering technique that adds a 
neighborhood property between the clusters (this unique 
properties explains its thousands of applications listed in 
(SOM-database, 2001 ; Oja & Kaski, 1999)). Neurons 
(clusters) can be neighbors, or not.  
The number of neighbors per neuron specifies the 
dimensionality of the map. For example, 4 neighbors 
correspond to a 2-D map. Unlike many clustering 
techniques, the number of neurons/clusters is fixed and 
predefined (at least in standard SOM versions). The 
positions of the clusters in the input space are defined by 
the input distribution and the neighbor’s positions (Fig. 
1a and 1b).  

 
Fig. 1. The 32-neuron SOM maps the 3-D space into the 1-
D SOM space (neighborhood of 2). Each neuron is 
represented by a circle and the lines drawn between 
neurons show the neighborhood. (a) The inputs are a set 
of uniformly distributed points (dots). Each neuron 
represents 1/32 (on average) of the input space (b) The 
inputs belong to 2 sets: Neurons code preferably these 2 
regions, but the continuity property forces a few neurons 
to code space regions devoid of input points. 
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The size of the clusters is directly related to the 
distribution. Each neuron corresponds to (approximately) 
the same number of input points. Therefore, regions 
where the input data are scarce will generate neurons 
with larger fields of attraction than regions of greater 
density. 
 
2.4 Associative memories implementation  
Using two self-organizing maps, we are able to provide 
the flexibility that is currently missing in goal seeking 
robot learning methods:  

• The first self-organizing map builds a 
continuous representation of the situation space 
(fig. 2). This representation, for example a 2-D 
map, can be used to find a path – a set of 
intermediate situations – towards a goal 
situation, wherever it is.  

• The second self-organizing map is used to 
generate the action that will change the sensory 
inputs from the current perceived situation to 
the computed intermediate situation.  

The ability of the maps to represent the actual 
distribution of inputs allows for a greater discreteness in 
the areas of interest, i.e., the behavior performance will 
improve with repetition. Learning occurs by the mere 
realization of the behavior. 
 

 
Fig. 2. 16 situations coded by the 16 neurons of the SOM 
after 100 iterations of learning. The behavior of the robot 
during this sampling phase is random walk. Situations 
are represented by a vector of 8 components. A value of 
1.0 (maximum) is associated to a distance to the obstacle 
shorter than 2 cm. A value of 0.0 is associated to an 
absence of obstacle (or an obstacle at least 5 cm away). 
For example, neuron N1 codes for an obstacle 2 cm away 
on the right side of the robot ; N2 codes for larger obstacle 
in the same direction. Similar situations are coded by 
neighbor neurons. 

2.5 Algorithm: associative memory programming (fig. 3) 
1. The neighborhood conservation property allows 

the definition of a metric on the input space. Let 
us say that the first SOM maps the situation 
space, then it becomes possible to choose among 
the neurons a neighbor neuron/situation closer 
to the goal, which will be the intermediate 
situation to achieve.  

2. Having found the intermediate achievable 
situation, we can now obtain the action that will 
move the robot into that desired intermediate 
situation using a second SOM.  

3. This procedure must be repeated until the robot 
is in the desired goal situation.  

 
3. Simulations 
 
Experiments (fig. 4 & 5) have been conducted in 
synthesizing an  obstacle  avoidance  behavior  for the 
Nomad 200 mobile robot (fig. 6). The goal is defined as a 
perceived free-of-obstacle sensory situation. The resulting 
behaviors do not bump into obstacles and are of a similar 
quality as the best results achieved with reinforcement 
learning (Touzet 1997, 2003), but need no learning 
iterations. The associative memories (16 neurons per 
SOM) use the knowledge gathered by a random 
exploration of - only - 100 moves (compared to 200 
minimum for Q-learning). And the same 100 iterations 
can be used to generate another behavior 
instantaneously, such as an obstacle avoidance that 
avoids by the right side, wall following or go-to-the-nest 
behaviors. 

 
Fig. 4. Example of an obstacle avoidance sequence of 
situations. In the box (bottom left), the obstacle and 
successive positions of the robot are shown. The values of 
the 16-sensor sonar ring of the Nomad 200 are displayed. 
The histograms show the sensory differences between 
two neighboring situations (St – St-1). These differences 
are the inputs for probing the second SOM to retrieve the 
actions. 



International Journal of Advanced Robotic Systems, Vol. 3, No. 2 (2006) 
 

168 

 
Fig.3. The lazy memory (top left) is used to build the 1st SOM that maps the situation space, and the 2nd SOM that maps 
the difference between sensory inputs vs. the action. The samples of the two learning bases have been obtained using a 
random action selection policy for the robot. The behavior is generated through the following process: (1) Find the 
neuron corresponding to the desired goal situation. (2) Find the neuron corresponding to the current situation. (3) Find a 
neighbor neuron (of the current situation neuron) closer to the “goal” neuron which will represent the intermediate 
situation to achieve. (4) Probe the 2nd SOM with the sensory variation between the intermediate situation and the 
current situation to get the action that must be carried out.  
(A) is the sample base, (B) is the learning base of the 1st SOM, (C) is the learning base of the 2nd SOM, (D) is the current 
situation with an obstacle on the left, (E) is the goal situation with no obstacle in view, (F) is the intermediate situation to 
achieve, (G) is the difference between situations (F – D). 
 
 

 
Fig. 5. Obstacle avoidance behavior generated by a 
Nomad 200 (mobile robot) using its sonar sensors. The 
position of the robot is indicated by a circle. The robot 
starts in the center of the area (S: start position) and 
moves towards the right (F: final position). It avoids 
obstacles such as wall from a greater distance than the 
smaller obstacles – but it does not bump into any 
obstacle. The SOMs use the knowledge gathered by a 
random exploration of – only – 100 moves. The goal is 
defined as a perceived free-of-obstacle sensory 
situation. Both SOMs use 16 neurons and a 
neighborhood of 4. 
 

 
Fig. 6. The Nomad 200 is a mobile robot equipped with 
a ring of 16 sonar sensors. 
 
4. Related works 
 
Coiton et al. (Coiton 1991) propose a neural network 
model for a sensory-motor system composed of a 



Claude Touzet / Modeling and Simulation of Elementary Robot Behaviors using Associative Memories 
 

169 

sensory layer (a SOM) and a motor layer. The objective 
is the generation of goal directed movements using a 
real robot arm. They show that their model is actually 
able to control the displacements of the robot arm. The 
input situations are three Cartesian coordinates and the 
outputs are three joint angles. The neural model learns 
the mapping between both sets of coordinates – only 
one behavior is possible. It is important to note that in 
our approach any behavior can be generated.  
Smith (Smith 2002) in a tentative to achieve 
situation/action mapping in reinforcement learning, 
proposes to use two SOMs, one to map the situation 
space, the second to map the action space. Q-learning is 
used to compute the utility of each (situation, action) 
pair. As in the previously cited work by Coiton et al., 
his experiments involved the learning of a mapping 
from goal space to arm space, with an arm having as 
much as 20-dimensions. The reinforcement signal used 
is related to the distance (but not direction) to 
optimality. Despite the fact that two SOMs are used, 
only a single behavior can be learned, and it must be 
learned from scratch. 
Laurence, Trappenberg and Fine (Laurence et al., 2005), 
following an initial idea from Lisman (Lisman, 1999) 
propose to use a pair of connected recurrent associative 
networks to generate simple temporal sequences of 
patterns. The various elements of a sequence are 
recalled one after the other. As soon as one of the 
associative memories converges towards a learned 
element, this element pattern is used as input for the 
second associative memory to force convergence 
towards the following element of the sequence, and so 
on. 
 
5. Conclusion and future research 
 
5.1 Immediate synthesis of elementary behaviors 
Using a set of two cooperating self-organizing maps, 
we have been able to demonstrate that any behavior – 
in fact any relation between situations and actions – can 
be generated. This solves the problem stated in the 
introduction: immediate behavior synthesis with goal 
seeking methods. Many different behaviors can be 
obtained using the same SOMs, by simply defining 
various goal situations, such as wall following or 
following another robot. The defined goals are 
independent of the robot geometry or actuators. The 
amount of supervision required by the human operator 
is minimal compared to other approaches such as 
supervised learning or reinforcement learning. 
 
5.2 Chaining elementary behaviors 
More than one sensory modality can participate in the 
expression of a behavior (e.g., color, odor, space, 
landmark, etc.). In our framework, each sensory 
modality will be taken care of by a couple of SOMs. 
These maps, carrying diverse representations, must be 

put together from time to time (at least to generate 
intelligent behaviors). As stated by Gallistel (Gallistel 
1990), space and time are two predominant aspects of 
reality and must therefore be part of any stored record 
(i.e., situation-action pair). These two coordinates link 
the separate records within the same SOM (if the 
neighborhood property is not sufficient) and between 
SOMs. This linking between records is what could 
enable complex behaviors to occur. Note that the 
linking of records is accomplished a posteriori, at the 
time of the retrieval and that there is no implication of 
the retrieval process in the memorization process. A 
desired behavior is generated by positioning a goal in a 
map, whose spatial and/or temporal coordinates will 
then be used to retrieve other records in the same or 
different maps, generating automatically a sequence of 
sub-goals to achieve, i.e., the action plan. We are 
continuing our investigation in this direction. 
 
5.3 Human behaviors 
The universally known Penfield’s Homunculus (fig. 7) 
(Penfield 1975) demonstrated that sensory inputs are 
mapped by the left cortex and motor outputs are 
mapped by the right cortex. Knowing that:  

• a SOM is a plausible model for the neural 
organization of the cortex,  

• our model is implemented by two SOMs, one 
for situations, one for difference in situations 
and the corresponding action,  

we cannot avoid to hypothesize that some elementary 
behaviors in animals and humans may be generated by 
the same means (goal seeking behaviors). This could be 
in particular the case of small movements involved in 
pointing behaviors. 
 

 
 
Fig. 7. The Penfield’s Homunculus. Cortical surface 
areas are proportional to the number of sensors of the 
body part (and not proportional to the skin surface). 
Adjacent body parts are adjacent on the cortical map. 
The sensory cortex (left hemisphere) is devoted to 
sensory input representation ; the motor cortex (right 
hemisphere) is devoted to the control of action. 
Kohonen’s SOM model (cf. §2) explains how such maps 
can self-organize. 
 



International Journal of Advanced Robotic Systems, Vol. 3, No. 2 (2006) 
 

170 

6. References 
 
Aha, D. (ed.). (1997). Lazy Learning, Kluwer Academic 

Pub.  
Coiton, Y.; Gilhodes, J. C.; Velay, J. L. & Roll, J. P. 

(1991). A neural network model for the intersensory 
coordination involved in goal-directed movements. 
Biological Cybernetics, 66:167-176.  

Darrell, T. (1997). Reinforcement Learning of Active 
Recognition Behaviors. Interval Research Technical 
Report 1997-045. 

(http://people.csail.mit.edu/trevor/papers/1997-045/TR-
1997-045.ps.gz ; verified July 29, 2005) - Portions of 
this paper previously appeared in Advances in 
Neural Information Processing Systems 8, (NIPS 
'95), pp. 858-864, MIT Press, and Intelligent Robotic 
Systems, M. Vidyasagar ed., pp. 73-80, Tata Press, 
1998.  

Gallistel, R. (1990). The Organization of Learning, MIT 
Press. 

Kaelbling, L.; Littman, M. & Moore,. A. (1996). 
''Reinforcement Learning: A Survey,'' Journal of 
Artificial Intelligence Research 4:237-285. 

Kohonen, T. (1987). Self-Organization and Associative 
Memory, Second Edition, Springer Series in 
Information Sciences, Vol. 8, Springer Verlag, Berlin. 

Kohonen, T. (2001). Self-organising maps 3rd edition, 
Springer, Berlin.  

Lawrence, M..; Trappenberg T. & Fine, A. (2005). A 
multi-modular associator network for simple 
temporal sequence learning and generation, 
Proceedings of the 13th European Symposium on 
Artificial Neural Networks (ESANN'05), April 
2005, Bruges, Belgium. 

Le Cun, Y. (1985). A learning scheme for asymmetric 
threshold networks, Proceedings of Cognitiva'95, 
Paris, France, 599-604. 

Lisman, J.E. (1999). Relating hippocampal circuitry to 
function: Recall of memory sequences by reciprocal 
dentate-ca3 interactions. Neuron, 22(2):233–242. 

Oja, E. & Kaski, S. (Eds.), (1999). Kohonen maps. 
Amsterdam: Elsevier.  

Penfield, W. (1975). The Mystery of the Mind, Princeton 
University Press, (Toronto, Little, Brown & Co.). 

Rumelhart, D. E.; Hinton, G. E. & Williams, R. J. (1986). 
Learning internal representations by error 
propagation In: Parallel Distributed Processing, Vol. 
1, D. Rumelhart & J. Mc Clelland Eds. Cambridge, 
MIT Press, 318-362. 

Santos, J. M. & Touzet, C. (1999a). Exploration Tuned 
Reinforcement Function. Neurocomputing, 28(1-
3):93-105.  

Santos, J. M. & Touzet, C. (1999b). Dynamic Update of 
the Reinforcement Function during Learning. 
Connection Science, Special issue on Adaptive 
Robots, Carme Torras guest editor, 11(3-4). 

Sehad, S. & Touzet, C. (1995). Neural Reinforcement 
Path Planning for the Miniature Robot Khepera, 
Proceedings of the World Conference on Neural 
Networks (WCNN'95), Washington D.C., USA. 

Sutton, R. & Barto, A. (1998). Reinforcement Learning, 
MIT Press Bradford Book. 

Sheppard, J. W. & Salzberg, S. L. (1997). A Teaching 
Strategy for Memory-Based Control, In: Lazy 
Learning, D. Aha (Ed.), Kluwer Academic 
Publishers, 343-370.  

Smith, A. J. (2002). Applications of the self-organising 
map to reinforcement learning. Neural Networks 
15:1107–1124.  

SOM-database (2001) www.cis.hut.fi/research/som-bibl/ 
Touzet, C. (1997). Neural Reinforcement Learning for 

Behaviour Synthesis. Special issue on Learning 
Robot: the New Wave, N. Sharkey (Guest Ed.), 
Robotics and Autonomous Systems, 22(3-4):251-281.  

Touzet, C. (2000). Robot Awareness in Cooperative 
Mobile Robot Learning. Autonomous Robots, 
8(1):87-97.  

Touzet, C. (2003). Q-learning for robots, In: The 
Handbook of Brain Theory and Neural Networks 
(Second Edition), M. Arbib (Ed.), MIT Press, 934-
937.  

Touzet, C. (2004). Distributed Lazy Q-learning for 
Cooperative Mobile Robots. International Journal of 
Advanced Robotic Systems, 1(1):5-13. 


