
HAL Id: hal-01337605
https://amu.hal.science/hal-01337605

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Lazy Q-learning for Cooperative Mobile
Robots

Claude Touzet

To cite this version:
Claude Touzet. Distributed Lazy Q-learning for Cooperative Mobile Robots. International Journal of
Advanced Robotic Systems, 2004, 1, pp.5-13. �10.5772/5614�. �hal-01337605�

https://amu.hal.science/hal-01337605
https://hal.archives-ouvertes.fr


5 

Distributed Lazy Q-learning for Cooperative Mobile Robots 

Claude F. Touzet 
University of Provence, Integrative and Adaptative Neurobiology Laboratory (UMR 6149) 

Case 362, 52, St Jerome Faculty, F-13397 Marseille Cedex 20, France  
Claude.Touzet@up.univ-mrs.fr 

Abstract: Compared to single robot learning, cooperative learning adds the challenge of a much larger search space 
(combined individual search spaces), awareness of other team members, and also the synthesis of the individual 
behaviors with respect to the task given to the group. Over the years, reinforcement learning has emerged as the main 
learning approach in autonomous robotics, and lazy learning has become the leading bias, allowing the reduction of 
the time required by an experiment to the time needed to test the learned behavior performance. These two approaches 
have been combined together in what is now called lazy Q-learning, a very efficient single robot learning paradigm. We 
propose a derivation of this learning to team of robots : the «pessimistic»  algorithm able to compute for each team 
member a lower bound of the utility of executing an action in a given situation. We use the cooperative multi-robot 
observation of multiple moving targets (CMOMMT) application as an illustrative example, and study the efficiency of 
the Pessimistic Algorithm in its task of inducing learning of cooperation. 
Keywords: Cooperative robotics, cooperative learning, CMOMMT, Q-learning, lazy learning, reinforcement learning, 
heterogeneous robots 

1. Introduction  
 
Learning in cooperative robotics is a recent research area. 
Its promises are beguiling: a way to program a set of 
robots without having to explicitly model their 
interactions with the world - including the other team 
members - to achieve cooperation. Despite attracting lot 
of interest from researchers involved in cooperative 
robotics, we must recognize that, today, results are scarce 
(Cao Y. et al, 1997). In particular, it is our opinion that 
learning techniques should be as automatic as possible 
and therefore avoid as much as possible the involvement 
of the human operator, e.g., the description of a model of 
the interactions between the robots and the world. To 
achieve this goal, a sub-symbolic approach is mandatory. 
Among the possible sub-symbolic paradigms, 
reinforcement learning (Watkins C., 1989) (Sutton R. & 
Barto A., 1998) is certainly the most used in autonomous 
robotics today. It offers the automatic building of the 
representative learning base of examples using a measure 
of the performance of the desired behavior (Kaelbling L. 
et al., 1996), (Dorigo M., 1996), an important 
improvement compared to the supervised learning 
approach (see for example Heemskerk J. et al., 1996). 
Reinforcement learning will be our paradigm of choice. In 
the cooperative robotics context, the reinforcement 

function measures the performance of the whole team of 
robots.  
Cooperative robot learning raises, at least, all the issues 
of robot learning, plus a number of new ones: (1) 
usually a much larger search space (combined 
individual search space), (2) the need for  
communication or at least awareness of other team 
members, and also (3) the synthesis of the individual 
behaviors with respect to the task given to the group.  

(1) Robots are real artifacts using sensors and 
actuators to deal with the real world. The sensor 
and actuator specifications allow to approximate a 
computational measure of the search space size. If 
d is the number of sensors, p the discreteness of a 
sensor measure, and we assume that all sensors 
share the same p, then the search space size is 
equal to pd * #actions.  

(2) Cooperation usually implies that the robots must be 
aware of other members of the team. 
Communication among the team members is, by 
far, the most commonly assumed mechanism and 
involves an emitter, a receiver, a message, etc. On 
the other hand, awareness of other robots in the 
team (Touzet C., 2000) is a simpler, but sufficient, 

Touzet, C. F. / Distributed Lazy Q-learning for Cooperative Mobile Robots, pp. 5-13, Inernational Journal of Advanced 
Robotic Systems, Volume 1 Number 1 (2004), ISSN 1729-8806 



6 

mechanism to allow cooperation in cooperative 
multi-robot observation of multiple moving targets 
(CMOMMT) applications.  

 
(3) In a multi-robot system, the individual behavior of a 

robot can interact in complex and intricate ways with 
the task assigned to the team. In such systems, it is 
generally assumed that a robot must take into 
account the behaviors of the other team members to 
demonstrate an effective action selection. Since we 
assume a very simple cooperation mechanism (i.e., 
awareness) and we want to explicitly avoid 
modeling, our solution to guarantee team 
coordination is by distributing the only available 
group information - the reinforcement function value 
- to each individual robot.  

 
The CMOMMT domain is representative of an interesting 
class of applications - even if seldom tackled. Because of 
the limited field of view of each robot, and the poverty of 
the information offered by the awareness process (instead 

of communication), it is impossible to predict the 
acquisition of new (unseen) targets. If we define the 
reinforcement function as positive if one or several 
targets have been acquired by the group, and negative if 
one or several targets have been lost, then an increase in 
system performance can only be sought by reducing 
negative rewards. To this end, we propose a 
«pessimistic»  algorithm able to compute for each team 
member a lower bound of the utility of executing an 
action in a given situation. Two learning paradigms 
have been blended together to this end: reinforcement 
learning and lazy learning.  
 
In the following section (section 2), we review the 
specifics of cooperative robot learning and the related 
advantages and limitations of reinforcement learning 
and lazy learning. In section 3, we describe the 
CMOMMT application, and in section 4 we report 
analytical and experimental results on the possibilities 
of predicting positive

, null and negative rewards. The Pessimistic Algorithm 
presented in section 5 allows the distribution of the global 
reward to each of the team members. Beginning in section 
6, we use CMOMMT as an illustrative application to 
report on the performance of the Pessimistic Algorithm in 
cooperative robot learning with a homogeneous team of 
robots. We review related work in section 7. Finally, we 
summarize and offer concluding remarks.  
 

2. Lazy learning and Q-learning 

Cooperative robot learning can be defined as «the 
automatic modification of the team robot behaviors to 
improve their performance in their environment.» 
Cooperative learning presents all the constraints 
associated with individual robot learning, plus several 
specific ones. In particular, the search space size is 
increased by the necessity to involve the other team 
members in the situation. On the other hand, the number 
of situations that can be explored during a given time does 
not change at all (compared to a single robot) due to the 
mechanical nature of the actuators. Therefore, the ratio of 
number of explored situations versus the size of the 
search space is even smaller and the time needed to 
complete the exploration phase in reinforcement learning 
becomes impractical. Generalization - already a necessary 
component of robot learning (Touzet C., 1997) - is not 
able to account for such drastic ratio variations in the 
number of samples over the search space size: the number 
of samples needed to estimate a function of several 
variables to a given level of accuracy grows exponentially 
(in the worst case) with the number of variables. 
Incorporation of initial knowledge may help reduce the 
exploration time required by pointing to specific search 
space regions, but it constitutes an ad-hoc solution.  
 
Lazy learning (Aha D., 1997), also called instance-based 
learning, promotes the principle of delaying the use of the 
gathered information until the necessity arises (Fig. 1). 

The same pool of information (i.e., memory) is used for 
different behavior synthesis. The lazy memory could be 
considered as a way to reduce the duration of any 
robotic learning application. In the context of 
reinforcement learning, lazy learning provides 
instantaneously (after the initial and unique sampling 
phase) a set of situation-action pairs that can be 
considered as the result of a random exploration   phase.     
Lazy   learning   samples   the 
situation-action space, storing the succession of events 
in memory (1) and, when needed, probes/searches the 
memory for the best move (2). 
 

World  

Action 

Randomly built  
lookup table: 
situation, action 

Situation 
matcher

Reinforcement 
function

Evaluation 
function

Situation

 
 
Fig. 1. Lazy learning: Randomly sampled situation-
action pairs in the lookup table are used by the situation 
matcher to select the action to execute in the current 
situation. The reinforcement function qualifies the 
actions proposed, helping to select the best one. 
 
 
(1) The sampling process stores the successive 
situation-action pairs generated by a random action 
selection policy. The exploration phase is done only 
once, stored and used later by all future experiments. By 
storing situation-action pairs, a lazy memory builds a 
model of the situation transition function. Two 
questions immediately arise about the legitimacy of 
considering lazy learning as a model, and if so, about 
the quality of the model:  
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- Lazy learning assumes that the environment is not 
changing. Any change in the environment diminishes 
the quality of the lazy memory. However, basic 
features, such as the effects of moving forward or 
backward in front of an obstacle, tend to persist despite 
environment variations and are, in any case, important 
usable knowledge.  

 
- It has been demonstrated (Whitehead S. et al., 1993) 

that random exploration might be dangerous and in 
some environments is an immensely ineffective method 
of gathering data, requiring exponentially more data 
than a system that interleaves experience gathering with 
policy-building more tightly. However, as the author 
remarks these results only apply to the «go to a 
particular location»  type of applications. They do not 
generalize to more «reactive» behaviors like obstacle 
avoidance or target observation.  

 
(2) In order to express a behavior, the memory must be 
searched. (Sheppard J. & Salzberg S., 1997) propose to 
search the memory with the reinforcement function. Their 
objective is to provide a method for predicting the 
rewards for some state-action pairs without explicitly 
experiencing them. They call their algorithm lazy Q-
learning. For the current real world situation, a situation 
matcher locates all the states in the memory that are 
within a given distance. If the situation matcher has failed 
to find any nearby situations, the action comparator 
selects an action at random. Otherwise, the action 
comparator examines the expected rewards associated 
with each of these situations and selects the action with 
the highest expected reward. This action is then executed, 
resulting in a new situation. There is a fixed probability 
(0.3) of generating a random action regardless of the 
outcome of the situation matcher. New situation-action 
pairs are added to the memory, along with a Q-value 
computed in the classical way. Among similar situation-
action pairs in the memory, an update of the stored Q-
values is made.  
 
There is a limit to the usefulness of this lazy memory 
because the Q-values associated with the situation-action 
pairs only apply for a particular behavior. With the desire 
of reducing as much as possible the learning time and also 
of preserving the usefulness of the lazy memory, we 
modified the algorithm in the following way: the situation 
matcher always proposes a nearest situations set and there 
is no random selection of actions by the action 
comparator. Also, the Q-values are not stored with the 
situation-action pairs, but are computed dynamically as 
the need arises.  
In a lazy Q-learning experiment, the exploration phase is 
only done once, stored and used later by all future 
experiments. Therefore, an experiment only requires a test 
phase: a measure of the performance of the learning. The 
learning phase corresponds to the probing of the memory 
and involves lots of computations. However, the 
computation time requirements are negligible compared 
to the robot mechanical time requirements: an experiment 

with lazy learning and a group of robots can be shorter 
(effective time) than an experiment involving just one 
robot and eager learning.  
 
3. The CMOMMT Application 

We choose to illustrate our work with the cooperative 
multi-robot observation of multiple moving targets (or 
CMOMMT for short) problem (Parker L. E. & Touzet 
C., 2000) (Parker L. E. et al., 2002). In a bounded arena 
(Fig. 2), a team of robots with 360° field of view of 
limited range has to maximize  the  observation  time  of  
a  set  of targets moving randomly (5% probability of 
change of direction, maximum speed less than the 
maximum robot speed). 
 
 

target

robot

 
 
Fig. 2. Bounded arena, with 4 robots moving randomly 
(circle). The radius of the arena is 5, the radius of the 
sensory perception range of the robots is 1. There are 9 
targets (square), also randomly moving. The dotted lines 
indicate the paths followed by the robots and the targets. 
The targets have different speeds: the closer the dots, 
the lower the speed. 
 
We say that a robot is monitoring a target when the 
target is within the robot's sensory field of view. The 
objective is to maximize the collective time during 
which targets are being monitored by at least one robot. 
The radius of the sensory robot range is less than the 
size of the arena, implying that robots have to move to 
maintain observational contact.  
Each robot situation is a vector of two times 16 
components. The dimensionality of the search space is 
thus 32. The first 16 components code the position and 
orientation of the targets. It simulates a ring of 16 
sensors uniformly distributed around the robot body. 
Each sensor measures the distance to the nearest target. 
The sensor position around the body gives the 
orientation. The second ring of 16 components codes in 
the same manner the position and orientation of 
neighbor robots. The maximum range allowing a target 
or a robot to be seen is 1/10 of the diameter of the arena. 
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The robot actions are rotation and forward move distance. 
 
4. Predictions in CMOMMT 

The lazy memory is built using a random action selection 
policy for the robots, and recording at each time step the 
total number of targets under observation by the team. It 
is important to be able to ascertain the quality of the lazy 
memory: in fact the quality of the non-explicit model that 
has been built. Certainly, the larger the number of 
samples in the memory, the better the performance we can 
expect from the following Q-learning phase. However, we 
need to know before the Q-learning phase starts, that the 
memory will prove useful. The coherence of the memory 
can be measured and compared to an incoherent memory. 
The coherence of the memory is demonstrated by the 
consistency with which positive rewards lead to positive 
reward in similar situations, null rewards lead to null 
rewards in similar situations and negative rewards lead to 
negative rewards in similar situations. The larger the 
number of similar situations the better the quality of the 
demonstration. It is important to note that the maximum 
number of situations that can be considered as similar is 
directly proportional to the size of the memory (the larger 
the better).  
The graphs shown in Fig. 3 report the coherence of the 
non-explicit model. The X-axis represents the number of 
similar situations considered (from 1 to 10); the Y-axis 
represents the percentages of positive, null and negative 
rewards. Since we are using every situation of the 
memory as input, if the size of the unit is one, then the set 
is reduced to the current situation. Note that if one of the 
situations in the set is negative then the whole set is 
considered as being of negative reward value; if there is 
no negative reward and at least one null reward, then the 
whole set of similar situations is considered of null 
reward value; otherwise there are only positive rewards 
associated with the situation set and the corresponding 
value is positive. The memory has been built using 10,000 
situation-action pairs. Then, each point is computed using 
10,000 sets of «similar» situations. An incoherent 
memory can be obtained through a random selection of 
the situations belonging to the sets of «similar»  
situations. The results obtained in this case (dotted lines in 
the Fig. 3) are in complete accordance with the values 
analytically derived. The computation of the different 

probabilities is presented here (using the following 
pseudo-code): 
 

r+(1) = 0.210; r0(1) = 0.578; r-(1) = 0.212; 
for (i = 2; i<=10; i++) 
{  
r+ (i) = r+(i-1) * r+(i-1);  
r0(i) = 2*( r+(i-1) * r0(i-1)) + r0(i-1) * r0(i-1);  
r- (i) = 2*( r+(i-1) * r-(i-1)) + 2*( r0(i-1)* r-(i-1))     +  

r-(i-1) *  r-(i-1);  
}  

Where r+(1), r0(1), and r-(1) are the numbers of positive, 
null and negative rewarding situations in the entire 
memory. r(1) is the percentage of rewards in the 
memory when considering i similar situations. 
 

%

# of similar situations considered

r0

r-

r+

 
 
Fig. 3. Coherence of the non-explicit model built by the 
memory. In dotted lines, the incoherent memory; in 
plain lines the actual measures. The differences between 
incoherent memory and the actual one suggest that 
negative situation-action regions are continuous as are 
null-reward regions. There is no coherence for the 
positive rewards, which means there is no (represented) 
region in the memory that is rewarding. Even a small 
difference (coherent-incoherent) can have a tremendous 
impact on the robot performance behaviors: a little gain 
for each selection of an action can be overwhelming. 
 
 

a b c

Memory 
size

# of similar 
situations

% of positive 
rewards

% of null 
rewards % of negative 

rewards

# of similar 
situations

# of similar 
situations

Memory size Memory size

 
 
Fig. 4. Differences between the actual memory and its incoherent version. (a) Positive rewards are very similar-
impossible to predict. (b) Null rewards are more numerous, and (c) Negative rewards are less numerous: there 
are specific regions of the search space that encode null rewards and others that encode negative rewards. The 
memory size has to be multiplied by 100 ([100 .. 2000]).  
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As we can see, the measured values (plain lines in the 
Fig. 3) are identical to the incoherent memory ones for 
the positive rewards. This suggests that it is impossible to 
predict (using the information in the memory) how to 
acquire new targets. There is no particular rewarding 
location (i.e., region) in the search space. On the other 
hand, there is a significant difference with the incoherent 
memory for null and negative rewards. This means that 
negative rewards tend to be associated with similar 
situations. It shows that negative situations belong to the 
same regions of the situation space and therefore a 
learning technique that will be able to avoid these regions 
will exhibit learning (over a purely random action 
selection policy). Because it is a global and static 
measure, the difference between a coherent and an 
incoherent memory gives no indication of how good the 
final performance of a given learned behavior will be.  
Fig. 4 presents the differences (Z-axis) in percentages of 
positive, null and negative rewards (measured values - 
incoherent memory), with respect to the size of the 
memory and the size of the «similar»  situation sets. As 
we can see, gain is directly proportional to the size of the 
memory and to the size of the set of similar situations. 
Also, a large memory tends to smooth the surface (by 
reducing the standard deviation).  

5. The Pessimistic Algorithm 

The principle used to select the best action to execute for 
a given robot in its current local situation is the 
following: «Find the lower bounds of the utility value 
associated with the various potential actions that may be 
conducted in the current situation; then, choose the action 
with the greatest utility». A lower bound is defined as the 
lowest utility value associated with a set of similar 
situations.  
The idea behind the Pessimistic Algorithm is that the 
local situation (to a given robot) is an incomplete 
observation of the true state of the system, and the fact 
that - instead of trying to solve the observation problem 
by completing the observation - we are only interested in 
ranking the utility of the actions, i.e., the utility of the 
achieved situations. If we use a unique instance of the 
robot memory to obtain the utility of the situation, then 
chances are that the utility attributed to this local 
situation is due in fact to other robot's actions. This 
probability decreases proportionally with the number of 
similar situations that are taken into account. If a large 
number of situations are considered, then there must be 
at least one for which the reward directly depends on the 
local situation. By taking the minimum utility value of 
the set of similar situations, we are guaranteed that, if the 
value is null, then this situation achieved is not related to 
the loose of one target, or more. 
The utility U associated with a given situation can be 
computed in many ways. It can be the exact value of the 
reinforcement function for this particular situation-action 
pair, or it can be a more elaborate variable. For example, 
in our experiments we store the situation-action pairs, 
plus the number of targets under observation in the 
lookup table (M). However, the value  that  is  used  as  

utility  is  +1  if  one  (or  more) targets have been 
acquired compared to the previous situation, -1 if one (or 
more) targets have been lost, or 0 otherwise. An exact Q 
could be used, but it would require to run the Q-learning 
algorithm with all the samples stored in the memory, 
several times (in a way very similar to Dyna-Q (Sutton 
R., 1991)).  
The key to successful application of the lazy Q-learning 
algorithm is the identification of similar situations. We 
use a measure of similarity of the following form:   

 

similarity(a,b) = Σi

p
|sa(i) – sb(i)|  

 
Where sa and sb are two situations and p is the number of 
components of the situation. The smaller the value 
measured, the greater is the similarity. Depending on the 
size of the memory, similarity between situations (fig. 5) 
can be computed using brute force (small memory) or in 
a more elaborate way using a clustering method to pre-
select the situations.  
 
6. Experiences 

Our first experiment is dedicated to verifying that in the 
CMOMMT context there is a positive effect on the 
performance due to cooperation. The existence of such 
cooperation leverage justifies the need for several robots 
cooperating together. In a second experiment, the impact 
of the Pessimistic Algorithm will be demonstrated by 
comparing the performance of two groups of robots. One 
uses a memory built by several robots (and targets) and 
therefore requires a «distribution»  mechanism of the 
rewards, and the second uses a memory built with a 
single robot (and several targets): no uncertainty in the 
situation observation - but no possible cooperation.  

6.1. Cooperation effect 
A-CMOMMT (Parker L.E. & Touzet C., 2000) is today 
the most effective human-designed robot policy for 
CMOMMT applications. It combines low and high level 
control algorithms. Local control of a robot team member 
is based upon a summation of force vectors, which are 
attractive for nearby targets and repulsive for nearby 
robots. High-level reasoning control involves the 
computation of a probability that no other  
robot is already monitoring the target and a probability 
that a target exists, modeled as a decay function based 
upon when the target was most recently seen, and by 
whom. The number of available targets has no effect on 
the results since the built-in awareness in A-CMOMMT 
allows the team to have only the nearest robot following 
a given target.  
In figure 6, we plot the performance of a non-cooperative 
team (i.e., no awareness) vs. the size of the arena vs. the 
number of robots. Using A-CMOMMT policy for the 
robots (i.e., adding cooperation through awareness), we 
obtain the results displayed in figure 7 (same conditions 
as Fig. 6). Figure 8 reports the gains in performance due 
to cooperation (results of Fig. 7 - Fig. 6). Each 
performance graph has been obtained under the same 
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conditions: 15 randomly moving targets (5% probability  
of  changing  direction,  maximum  speed  
 

n=3

Sim(sit) Simfollow(sit)

s     a  r  

t+1
t

 
 
 

3
2
1

sit

follow(sit)

 
Fig. 5. Illustration of the Pessimistic Algorithm: Building 
the sets of similar situations. 
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Fig. 6. Performance of a «no cooperation»  group of 
robots. Each robot is equipped with a behavior that 
places it at the geographical center of the sensed targets, 
but it does not take into account the other robot positions.  
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Fig. 7. Performance of a cooperating team. Each robot 
uses the A-CMOMMT policy, and therefore is aware of 
the position of the other robots in its sensor field of 
range.  
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Fig. 8. Gain of performance due to cooperation (i.e., Fig. 
7 - Fig. 6): taking into account the other robots improves 
the overall performance of the team.  

less than the maximum robot speed), sensory perception 
radius for each robot set to 1. The results displayed are 
the mean of 5 different experiments (each one of 600 
iterations). 

6.2. Distributed lazy Q-learning 
An increase in the performance due to awareness of other 
team members has been demonstrated in the previous 
section. This justifies the building of a lazy memory 
using a team of robots, and the necessary distribution of 
the global reward information to the individual robots. 
We verify the efficiency of the Pessimistic Algorithm by 
comparing the performance of a team of robots using a 
memory built by one robot (no cooperation case) and a 
team of robots using a memory built by a group of 
robots.  
Our first experiment, however, is intended to verify that 
the lazy Q-learned behavior is consistent, at least better 
than a random action selection policy. Let us remember 
that each robot situation is a vector of two times 16 
components. The first 16 components code the position 
and orientation of the targets. It simulates a ring of 16 
sensors uniformly distributed around the robot body. 
Each sensor measures the distance to the nearest target. 
The sensor position around the body gives the 
orientation. The second ring of 16 components code in 
the same manner the position and orientation of 
neighboring robots. The maximum range for a target or a 
robot to be seen is 1 (arena radius is 5). The actions of 
each robot are rotation and forward movement. Fig. 9 
shows the performance of a lazy (Q-)learning policy, a 
purely random action selection policy, a user-defined non 
cooperative policy and A-CMOMMT versus the size of 
the lazy memory (from 100 to 900 situation-action pairs).  
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Lazy learning

Collective user-defined
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Fig. 9. Performances of the cooperative lazy (Q-)learning 
compared to a random action selection policy, a user-
defined non cooperative policy and     A-CMOMMT. 
The size of the lazy memory varies between 100 to 900 
situation-action pairs. There are 10 robots and 10 
randomly moving targets. The results are the mean of 10 
different experiments per point for lazy learning policy, 
and 100 experiments for the other 3 policies. Each 
experiment duration is 1000 iterations.  
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The measure of performance is an «objective»  measure: 
the mean observation time of all targets. Each point is the 
average of 10 experiments. The standard deviation is also 
plotted on the graph. The lazy memories are obtained 
through an initial exploration involving from 15 to 25 
targets and a single robot. 
During the sampling, the targets are fixed and the robot's 
policy is random action selection (5% chances of 
direction and orientation changes). The reinforcement 
function returns +1 if the total number of targets under 
observation increases, -1 if this number decreases, or 0 
otherwise. 
As we see there is an important performance gain 
associated with the lazy Q-learning over a purely random 
selection policy. This clearly demonstrates the 
importance of lazy Q-learning as a learning technique. 
Even more interestingly, lazy Q-learning performs better 
than the user-defined non-cooperative policy. It is 
important to note that neither policy is aware of the 
existence of the other robots. Both policies use the same 
sensory information, i.e., the distance and orientation of 
nearby targets. It is our opinion that the variation of 
performance is due to the fact that the lazy Q-learned 
behavior is somewhat less rigid than the user-defined 
policy. A lazy Q-learning guided robot will follow a 
target not as close as it could be, and doing so, will 
exhibit an erratic path, moving from one side of the 
target to another, back and forth without losing the target 
(see Fig. 10). In doing so, the surface under observation 
per unit of time is larger than the covered surface by the 
more rigid center-of-gravity-oriented robot. On the other 
hand, because it does not take into account the 
neighboring robots, it is easy to understand why the lazy 
Q-learned behavior performance cannot reach the level 
of the A-CMOMMT performance.  
 

 
 
Fig. 10. Bounded arena, with 10 robots using the lazy Q-
learned behavior (no awareness involved). The radius of 
the arena is 6, the radius of the sensory perception range 
of the robots is 1. There are 10 randomly moving targets. 
The dotted lines indicate the paths followed by the robots 

and the targets. The targets have different speeds: the 
closer the dots, the slower the speed. 
Relative to the lazy Q-learned behavior, it is logical that 
a larger size of the lazy memory implies a smaller 
standard deviation. This is related to the fact that the 
larger the number of samples, the greater the probability 
that the sampling will effectively be representative. As to 
decide what memory size fits better for a given 
application, we are only able to point out that the larger 
the better.  
Due to the huge number of possible situation-action 
pairs, there is no hope of achieving an exhaustive 
sampling, therefore the performance should always be 
increasing (even by extremely small values). However, 
as shown by the discrepancy between collective user-
defined and lazy learning policies, even a small memory 
can bring an important increase in performance. 
Figure 11 shows the increase in performance associated 
with robot awareness vs. a purely collective behavior. 
Each robot behavior (cooperative or collective) is learned 
through lazy Q-learning, but only the cooperative team 
uses the distributed version (i.e., the Pessimistic 
Algorithm). The dimensionality of the search space is 32 
(targets + robots) for cooperative behavior, and only 16 
(targets) for collective behavior. The lazy memory is 
obtained through an initial exploration (length 120 
iterations) involving 10 targets and 5 robots. The policies 
for targets and robots were random action selection. Each 
iteration the probabilities of direction change for a target 
was 5%, where it was 100% for a robot. The total 
number of situation-action pairs in the associative 
memory is 600 (=  120 * 5). The reinforcement function 
is provided to the group as a whole: it returns +1 if the 
total number of targets under observation increases, -1 if 
this number decreases, 0 otherwise. 
Compared to Fig. 8, we see that the impact of 
cooperation is less noticeable in our learning experiment: 
a maximal improvement of 25% (compared to 60%). 
However the shapes of both surfaces are similar: the 
preferred arena size is between 2 and 6, and the greater 
the number of robots, the more important the impact on 
the performance. The counter-effect of very large arenas 
is easily spotted, in particular for small numbers of 
robots. 
 
7. Related work 

(Schmidhuber J. & Zhao J., 1997) study systems of 
multiple reinforcement learners. They use a simple 
backtracking method called the «success-story 
algorithm»  (SSA) to evaluate the learning modifications 
that have occured since the last evaluation at certain 
times, and undo all those previous modifications that 
were not empirically observed to improve the 
performance. The SSA is a principle, like the Pessimistic 
Algorithm, that can be plugged into a wide variety of 
learning algorithms. The main difference is that SSA 
uses a criterion related to the increase of positive 
rewards, where our algorithm is using lower utility 
bounds. The SSA does not apply to a CMOMMT 



12 

application because, as we have shown, positive rewards 
are impossible to predict and will elude any policy that 
would attempt to maximize the rewards.  
The problem of distributing the global reward to the 
individual robots is related to the fact that the situation 
observed by any robot is local. It is an observation that is 
incomplete. It can be considered as a Partial Observable 
Markov Decision Problem (POMDP). Apart from the 
naive strategy that consists of ignoring the problem and 
treating observations as if they were the states of the 
environment, a number of algorithms have been 
developed by the POMDP community (Littman M., 
1996) (Singh S. et al., 1994). However, all these 
algorithms (a representative example is provided by the 
Witness Algorithm (Cassandra A., 1994)) aim to reduce 
the uncertainty on the observation, principally by using 
contextual information (like previous sequences of 
observations). We have shown that a CMOMMT 
application does not allow to predict an action that will 
allow the acquisition of a new target. Therefore, there is 
no way to generate positive rewards and this is not due to 
an absence of precision on the situation. Relative to 
negative and null rewards, the pessimistic algorithm uses 
the whole memory to find similar situations, where the 
POMDP algorithms usually use the last few encountered 
situations.  
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Fig. 11. Percentage of observed targets due to the 
distributed (i.e., Pessimistic Algorithm) version of the 
lazy Q-learning (cooperative minus non cooperative) vs. 
the number of robots (N  = (1 , 30)) and vs. the radius of 
the bounded arena (1, 9). There are 15 randomly moving 
targets. The sensory perception radius for each robot is 1. 
This graph is obtained in similar conditions as those of 
Fig. 8, except for the behaviors, which are all lazy Q-
learned here.  
 
(Darrell T., 1998) use hidden-state reinforcement 
learning techniques to solve decision tasks in POMDP. 
They apply their learning technique to face recognition, a 
problem that  involves  taking  actions (adjusting the 
perceptual apparatus or other effectors) depending on the 
situation (image). To avoid perceptual aliasing while 
learning, all similar experiences are combined when 
computing the utility of a possible action, including 
experiences with both target and distractor patterns. 
Using McCallum's Nearest Sequence Memory 
(McCallum R., 1995), they find the K nearest neighbors 
in the memory for a given action, and compute their 
average Q value. In a CMOMMT application, where if n 
is number of robots in the team, there is an average 

chance of 1/n  that the reward belongs to this individual, 
averaging rewards will not solve the problem. That is 
why the Pessimistic Algorithm uses a lower bound of the 
utility (i.e., the worst hypothesis).  
 
(Michaud F. & Mataric M., 1998) use a set of initially 
given «behavior producing» modules to choose from, 
and a memory-based approach to dynamically adapt the 
selection of these behaviors according to their history of 
use. The experimental set-up is a multirobot foraging 
task. Their use of behaviors-instead of actions-allows 
reducing the search space. There are very few behaviors 
compared to actions. Also, a comparison of performance 
with approaches synthesizing behaviors at the action 
level is difficult. What they learned is a controller policy 
of the type: «which behavior to activate». The selection 
of the behavior is based on the sum of the expected 
rewards, multiplied by a frequency variable (their 
objective is to learn in non-stationary conditions). It must 
be noted that the other robots were to provide non-
stationary conditions in the environment and cooperation 
was not sought.  
 
(Mataric M., 1997) points out that learning social rules 
appears to require a non-greedy approach. She presents 
results which tend to confirm that vicarious (global) 
rewards are necessary to achieve learning with a group a 
mobile robots learning to yield and share information in a 
foraging task. As with the previously cited work, it is not 
the actions, but instead the behaviors that are to be 
selected. There are only 5 behaviors and 6 situations to 
consider.  
 
8. Conclusion 

Effective cooperation requires that the global problem-
solving state influence the local control decisions made 
by a robot. A robot with a purely local view of the 
problem cannot learn effective cooperative control 
decisions that may have global implications, due to the 
uncertainty about the overall state of the system. In a 
reinforcement learning paradigm, the only available 
global information is the reinforcement function that 
measures the performance of the group during a learning 
phase. CMOMMT application does not provide global 
information in the test phase. So, learning must be 
accomplished using the information gathered during the 
initial stage. A lazy memory is then a logical choice. 
However, to use that memory, one has to distribute the 
reward associated with the team behavior to each 
individual robot. We have proposed a distribution 
mechanism for the lazy Q-learning: the Pessimistic 
Algorithm, which is able to compute for each team 
member a lower bound of the utility of executing an 
action in a given situation. The results show that this 
algorithm accounts for increased performance of the 
group of robots vs. a non-cooperative group.  
To our knowledge, this is the first successful attempt to 
apply «true» sub-symbolic learning with a team of 
robots. The related work either assumes the existence of 
a model and tries to eliminate the uncertainty associated 
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with a situation (POMDP); uses local indicators that help 
individual robots to perform their tasks; or deals with a 
symbolic level of representation as in the multi-agent 
domain.  
Apart from the distribution of the rewards, there are 
several issues of importance for lazy Q-learning. The 
first is the quality of the reinforcement function (Santos 
J. M. & Touzet C., 1999), the second is the quality of the 
sampling (size, representativity), and the third is the 
quality of the probing process (generalization). The state-
of-the-art in these domains only allows us to assume that 
non-optimal values and criterion were used in the 
experiments reported here. However, it is our opinion 
that this does not alter the illustrative quality of the 
results presented here (see Fig. 11). We will nevertheless 
continue our research in each of these three issues, as we 
will also validate the Pessimistic Algorithm in more 
challenging conditions.  
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