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Abstract. Most of the straight-forward learning approaches in cooperative robotics imply for each
learning robot a state space growth exponential in the number of team members. To remedy the ex-
ponentially large state space, we propose to investigate a less demanding cooperation mechanism—i.e.,
various levels of awareness—instead of communication. We define awareness as the perception of other
robot’s locations and actions. We recognize four different levels (or degrees) of awareness which imply
different amounts of additional information and therefore have different impacts on the search space size
(©(0), ©(1), O(N), o(N)!, where N is the number of robots in the team). There are trivial arguments in
favor of avoiding binding the increase of the search space size to the number of team members. We advo-
cate that, by studying the maximum number of neighbor robots in the application context, it is possible
to tune the parameters associated with a ©(1) increase of the search space size and allow good learning
performance. We use the cooperative multi-robot observation of multiple moving targets (CMOMMT)
application to illustrate our method. We verify that awareness allows cooperation, that cooperation shows
better performance than a purely collective behavior and that learned cooperation shows better results
than learned collective behavior.

Keywords: Cooperative robotics, cooperative learning, robot awareness, CMOMMT, lazy reinforce-
ment learning

ified by a designer, a multiple-robot system dis-
plays cooperative behavior if, due to some under-

1. Introduction

Cooperative behavior is a subclass of collective be-
haviors (i.e., any behavior of robots in a system
having more than one robot). Cao et al. (1997)
in their recently published extended survey of the
cooperative mobile robotics field define coopera-
tive behavior as follows: “Given some task spec-

*This research is funded in part by the Engineering Re-
search Program of the Office of Basic Energy Sciences,
U.S. Department of Energy, under contract No. DE-ACO05-
960R22464 with Lockheed Martin Energy Research Cor-
poration.

lying mechanism (i.e., the “mechanism of cooper-
ation” ), there is an increase in the total utility of
the system.” The mechanism of cooperation may
lie in the imposition by the designer of a control
or communication structure, in aspects of the task
specification, in the interaction dynamics of robot
behaviors, etc. We dismiss the obvious choice of
“communication”, preferring to promote “robot
awareness”—a less complicated issue—as the nec-
essary basic component for cooperation. Aware-
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ness encompasses the perception of other robot’s
locations and actions.

No previous research has investigated aware-
ness in the context of learning. Related work in
robot awareness includes Parker (1995) but that
study was restricted to the human-designed pol-
icy case. Learning involves the exploration of the
search space to gather information about the task,
and exploitation of the data, usually through gen-
eralization. The main restriction to the use of
learning comes from the size of the search space—
the larger the search space the more difficult the
generalization. Awareness of other robots implies
the addition of several dimensions to the search
space (compared to an application involving a
unique robot or to a pure collective behavior).
We recognize four degrees of awareness of other
team members and each one impacts the search
space size differently. In this paper, we propose
a method to select—before starting the learning
and in relation with the application—the aware-
ness degree and set its parameter. The cooper-
ative multi-robot observation of multiple moving
targets (CMOMMT) application will serve as an
illustration.

Since cooperative robot learning raises, at least,
all the issues attached to robot learning, we review
in the following section 2 several considerations as-
sociated with single robot learning. In section 3,
we describe four different degrees of awareness and
how they impact the search space size. The follow-
ing sections are devoted to the setting of aware-
ness parameters that will allow cooperation with-
out an unmanageable search space size. Experi-
mental results presented in section 4 describe the
effects of a limited range and a bounded arena on
the robot’s awareness. Section 5 studies the rela-
tion between the total number of neighbor robots
and the robot policy. Beginning section 6, we use
the CMOMMT as an illustrative application to
report on the performance associated with robot
awareness. Our first experiment verifies the posi-
tive effect of awareness on the performance using
human-design policies. In the following section 7,
we plot the relation between the robot awareness
range and the performance in CMOMMT. Then,
section 8 presents the results obtained using a lazy
reinforcement learning approach. We review re-
lated works in section 9. Finally, we summarize
and offer concluding remarks.

2. Cooperative robot learning

Cooperative robot learning can be defined as the
automatic modification of the robot behaviors to
improve the team performance in its environment.
At least, cooperative learning presents all the is-
sues associated with individual robot learning.
These issues are related to the intrinsic nature of
the robots, the complexity of the task to learn and
the necessary involvement of generalization.

2.1. Robot’s nature

Robots are by definition artifacts using numerical
sensors and actuators to deal with the real world.
They are requested to either address today’s un-
solved symbol grounding problem [Brooks 91], or
to rely on sub-symbolic processing. As long as the
grounding problem of symbols is not solved, sym-
bolic methods cannot be used (at least alone). So,
the burden of cooperative learning in robotics falls
on the sub-symbolic approaches. Numerical sen-
sors and actuators allow us to define—roughly—a
computational measure of the search space size.
If d is the number of sensors, p the number of
possible sensor readings, and we assume that all
sensors share the same p, then the search space
size is equal, in a first approximation, to p?.

2.2.  Ezxploration technique

The primary goal of learning is to provide—
automatically—an increase of the performance of
the robot behavior. There are two main sub-
symbolic approaches used in robot learning, they
differ by the way the exploration is accomplished.
Supervised learning lets the human operator do
the exploration of the search (or situation) space.
The learning algorithm will convert it to an ex-
ploration of the space of possible policies. Then,
the effective size of the search space has no influ-
ence on the learning—as long as the selected ex-
amples are representative. The number of learning
samples depends on the size of the possible poli-
cies space, but not (at least not directly) on the
situation space size. Supervised learning implies
that the human operator knows how to execute
the task given to the robot, or at least knows how
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to select the relevant examples representative of
the task.

Reinforcement learning [Watkins 89] [Sutton et
al. 98] changes the task description level, only re-
quiring from the human operator a performance
measure of the desired behavior [Kaelbling et al.
96], [Dorigo 96]. In reinforcement learning, explo-
ration is a necessary step. In the absence of bias
(discussed in the next paragraph), the exploration
process searches the entire situation-action space.

Due to the difficulties associated with build-
ing the learning sample base in supervised learn-
ing, even for applications involving a unique robot
[Heemskerk et al. 96], we select reinforcement
learning as our paradigm for cooperative learning.

2.3.  Limited number of samples

Even without involving the battery life time,
which is restricted in the better case to a few
hours, the mechanical nature of the actuators only
allows a limited number of actions to be performed
during an experiment. To insure the convergence
of the learning phase, despite this limited num-
ber of available samples, two—non exclusive—
different approaches are proposed: generalization
and biases. Neural-based reinforcement learn-
ing implementations have demonstrated high effi-
ciency in generalization [Lin 92], [Sehad et al. 94],
[Kretchmar et al. 97]. The number of samples
needed to estimate a function of several variables
to a given level of accuracy grows exponentially
with the number of variables. Therefore, the gen-
eralization performance is proportional to the ra-
tio number of samples over the search space size.
A huge search space normally limits the perfor-
mance of the learning and it is common practice
to reduce the search space size by using biases
[Santos et al. 98]. Numerous biases have been
described in the literature and can be ranked us-
ing the amount of the search space left for explo-
ration [Touzet 98]. The most drastic ones reduce
so much the size of the situation-action space that
a complete, or near complete, exploration becomes
possible [Mataric 97a]. In [Mataric 97b] for exam-
ple, there are efficient foraging policies that take
into account the local distribution of the pucks,
or the other robot’s positions, and which cannot
be obtained by the a priori given repertoire of

fixed behaviors (safe wandering, dispersion, rest-
ing, homing) and the predicate conditions (have
puck, at home, near intruder, night time). In
Mataric’s case, the small size of the search space
impedes the development of unforeseen learned so-
lutions, and learning does not apply when a com-
plete modelization or a complete exploration is
available. A more limited use of biases—at the
cost of the necessary involvement of generalization
techniques [Touzet 97]—reduces the search space
size without jeopardizing the learning.

3. Robot awareness degree and the search
space size

Specifically associated with cooperative mobile
robotics is the need for each robot to take into
account the others. Communication, because it
implies an emitter, a receiver, a message, etc., is
a very complex way to achieve cooperation. It
is our opinion that awareness of other team mem-
ber’s positions and actions is more appropriate, in
particular in the context of sub-symbolic learning.
It may not be always feasible to obtain awareness
without communication, but this is an indepen-
dent issue. Parker (1995) distinguishes three ap-
proaches of robot awareness from implicit aware-
ness through a teammate’s effect on the world (no
explicit interaction between the robots), to pas-
sive observation of a teammate’s actions or goals
(result from robots sensing one another), to ex-
plicit communication of a teammate’s actions or
goals.

Such taxonomy is interesting to classify between
cooperative robotics applications, but it does not
help when it comes to building a cooperative
learning application. It is more useful to eval-
uate robot awareness through its impact on the
number of the robot inputs and, therefore, on the
search space size. In Fig. 1, we distinguish four de-
grees of robot awareness of other members of the
team. Fig. 2 displays the number of dimensions
d (i.e., robot’s inputs) of the search space size vs.
the number of robots for each degree of awareness.
Let us remember that the search space size = p¢,
with p the number of possible sensor readings.
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3.1. ©(0) additional information

This case is the lower bound in term of search
space size increase (i.e., no increase). The ex-
isting situation inputs (n) are sufficient for cod-
ing information about the other group members.
This is the interaction via environment case. The
problem is to extract (before any cooperation) the
information relative to the other robots from the
input world situation—not an easy task. For ex-
ample, when Premvuti and Yuta (1996) consider
communication for mobile robots, they emphasize
the need of so-called implicit communication dur-
ing cooperation, but not surprisingly, the authors
conclude suggesting that, with the current tech-
nology, “implicit communication” should be done
through the help of communication network of the
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Fig. 1. 'The four degrees of awareness that a robot can ex-
hibit (relative to the other N members of the group) and
their impact on the number of inputs of the search space
size of the individual robot. n is the number of sensors used
to perceive the world situation. ¢ is a fixed set of additional
inputs to represent the knowledge about all the other mem-
bers of the group (6 < N). o is a set of additional inputs
used for each other member (N <o < n=* N).

# of dinensions
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100f g
o(N)
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0 : : : : i : ©(0)
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# of robots (N)
Fig. 2. Number of dimensions of the search space size vs.

number of robots (N) for each of the 4 degrees of aware-
ness (0(0), o(N), ©(N), ©(1)). The parameter values (cf.
Fig. 1) are n =16, § = 16, 0 = 2 and N = [1, 30].

robot

multiple robot system—i.e., explicit communica-
tion.

3.2. o(N) additional information

This case is the upper bound in term of search
space size increase (i.e., maximum increase). The
objective is to get as much information as possi-
ble, for example by sharing the n inputs of the
other NV robots. The result is comparable as hav-
ing duplicated sets of central supervisors, one for
each individual. The search space size is the com-
bination of the individual search spaces (n * N).

3.3. O(N) additional information

A less demanding case compared to o(V) is to use
a limited awareness. For example, our application
field being mobile robotics, we can choose to use
orientation and distance to another robot as the
pertinent information. The number of inputs as-
sociated (here (o = 2) is much smaller then the
n previously requested. The search space size is
o % N. Each robot of the team is taken into ac-
count.

3.4. ©(1) additional information

With the previous degree of awareness, the num-
ber of robots has a direct, and dramatic, influence
on the search space size. We would like to be able
to provide awareness independently of the number
N of robots, for example by using a fixed set of
additional inputs (J) to represent the knowledge
about the other members of the group (how to
obtain such knowledge is not relevant in this pa-
per). The limitation (related to a fixed amount of
additional knowledge space) is that the individual
labeling of each group member is impossible as
soon as the number of robots surpasses the num-
ber of added inputs. This will not be a problem
if we can verify that cooperation is nevertheless
achieved using this awareness level. The question
to answer is ” What should be the value of § so that
there is no difference in awareness quality with de-
gree O(N) (with 6 <o x N <nx*N)?”.
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4, Number of neighbor robots

cooperative policy)

(non-

Real applications imply a limited range of the
robot awareness, which means that certainly only
a subset of all the team members can be sensed at
a given time by a member of the team. We will
use that observation to compute the value of the

Ig. 3. Bounded arena with 14 robots moving randomly.
The radius of the arena is 5, the radius of the sensory
perception range of the robots is 1. At the top of the
figure, 3 robots sense each other.

Maxi mum nunber of
sensed robots

15l

10

5 '
0

5
Size of the arena
30 9 (tines the radius
of the sensory
robot radi us)

5 10 ¢

Total number of robots

Fig. 4. Maximum number of robots perceived by a robot
vs. the number of robots (N = [1,30]) and vs. the radius
of the bounded arena [1,9]. The behavior of the robots is
random walk. The sensory perception radius for each robot
is 1. The results displayed are the maximum of 5 different
experiments, each one of 600 iterations. Remember that for
a robot at the border of the arena the sensory perception
area is not maximum (part of it lays outside the arena),
which explains why, for an arena size of 1, the number of
perceived robots is not equal to the team size.

parameter 6. A bounded arena, by limiting the
spreading of the robots, has certainly a counter-
effect. Fig. 3 shows the bounded arena and the
robots equipped with a 360° field of view of lim-
ited range.

The mean value of the number of robots sensed
by any member of the group can be easily com-
puted. However, cooperation and, therefore robot
awareness, is particularly needed when there are
a lot of neighbor robots. So, instead of the mean
value of the number of robots, we prefer to study
the maximal number of sensed robots by a team
member. Over an infinite period of time, the max-
imal number of sensed robots would be the num-
ber of team members (less one). However, typical
application time length is much shorter (a time pe-
riod of 600 moves (per robot) has been selected).
Fig. 4 shows the maximum number of robots per-
ceived by a robot in respect to the size of the arena
and the total number of robots. The robot pol-
icy is random walk, the robots are initially spread
randomly (uniform distribution) over the entire
arena. These experimental conditions will also be
the initial conditions of the learning (exploration
phase). A value of 6 = 16 seems appropriate. We
will verify in the next sections that it is appropri-
ate under conditions closer to the selected appli-
cation (CMOMMT).

5. Number of neighbor robots (coopera-
tive policy)

In the previous sections (4 & 5), we assume that
the robot policy is random walk. A number of
policies would certainly allow a better spatial dis-
tribution of the robots, but will they reduce de
facto the number of robots within sensory range?
In the CMOMMT [Parker 97] application, a team
of robots with 360° field of view sensors of lim-
ited range has to maximize the observation time
of a set of targets moving randomly (5% probabil-
ity to change direction, maximum speed less than
the maximum robot speed), in a bounded arena.
We say that a robot is monitoring a target when
the target is within that robot’s observation sen-
sory field of view. The objective is to maximize
the collective time during which targets are being
monitored by at least one robot. The radius of
the sensory robot range is less than the size of the
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arena, implicating that robots have to move to
maintain observational contact. In this context,
A-CMOMMT [Parker 97] is certainly the most ef-
fective human-designed robot policy. It combines
low and high level control algorithms. Local con-
trol of a robot team member is based upon a sum-
mation of force vectors, which are attractive for
nearby targets and repulsive for nearby robots.
High-level reasoning control involves the compu-
tation of a probability that no other robot is al-
ready monitoring the target and a probability that
a target exists, modeled as a decay function based
upon when the target was most recently seen, and
by whom.

Results displays in Fig. 5 show that for a large
number of robots (5 to 30), as long as the radius of
the arena is not ridiculously small (e.g., 30 robots
in an arena of size 1), the number neighbor robots
does not vary very much (around 7). This sug-
gests that cooperation policy (here A-CMOMMT)
has an impact on the distribution of the robots,
and therefore on the maximum number of sensed
robots.

However, it must be emphasized that learning—
in particular, in its early exploration stage if
starting in tabula rasa condition—will be much
closer to non-cooperative policy than cooperative
ones. Therefore, a selection of § based on a non-
cooperative behavior is coherent. The number of
available targets has little effect on the results
since the built-in awareness in A-CMOMMT al-
lows only the nearest robot to follow a given tar-
get. On the contrary, the behavior of the targets

Maximum number of
sensed robots

.
=g Size of the arena
(times the radius
of the sensory
robot radius)

15 55
20 P T
Total number of robots

Fig. 5. Maximum number of robots perceived by each
robot vs. the number of robots (N = [1,30]) and vs. the
radius of the bounded arena [1,9]. Each robot uses an A-
CMOMMT policy. The sensory perception radius for each
robot is 1. The results displayed are the maximum of 5
different experiments, each one of 600 iterations. Com-
pared to Fig. 4, we see that the highest values are almost
identical, which confirm our previous conclusion

(e.g., targets avoiding robots) may have a huge
impact on the number of robots within sensory
range—but it will have no influence during the
early stage (exploration) of the learning.

6. Collective vs. cooperative policies

An important issue is to verify that robot’s aware-
ness has an impact on the team performance when
accomplishing its task. We use CMOMMT as a
benchmark application. In Fig. 6, we plot the per-
formances of the team with no robot awareness vs.
the size of the arena and vs. the number of robots.
The performance is computed as the percentage of
observed targets (by the group). There are 15 tar-
gets. Each robot is equipped with a behavior that
places it at the geographical center of the sensed
targets; it does not take into account the other
robot positions.

The experimental results point out several sur-
prising things: the performance variation is, on
the average, small; the influence of the number of
robots is only slightly perceptible; the initial drop
of performance for very small arena sizes (1-2) is
huge and very large arena sizes allow better per-
formances than smaller ones.

The logical explanation consistent with these
results is that, having no knowledge about other
robot positions, a robot often chooses to track an
already tracked target. Despite the fact that ini-

% of observed
targets

Total number

9
of robots 30

Size of the arena
(times the radius of the
sensory robot radius)

Fig. 6. Percentage of observed targets (by the group) vs.
the number of robots (N = [1,30]) and vs. the radius of the
bounded arena [1,9]. Each robot uses a non-cooperative
policy that tries to place it at the geographical center of
the sensed targets. There are 15 randomly moving targets.
The sensory perception radius for each robot is 1. The
results displayed are the mean of 5 different experiments,
each one of 600 iterations.
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tialization spreads robots and targets uniformly
over the entire arena surface, during the 600-
iterations experiment there are lots of opportu-
nities for a robot to become useless in following
already tracked targets. However, this explana-
tion does not work for larger arena results. In
fact, in this case, there is less chance for a given
robot to encounter already tracked targets. The
initial impressive performance for an arena size of
1 comes from the fact that, since the robot per-
ception radius is also 1, there is only a very small
influence of the robot policy on performance.

Using A-CMOMMT policy for the robots (i.e.,
adding robot awareness), we obtain the results dis-
played in Fig. 7 (same conditions as Fig. 6). Here,
the performance is monotonic in respect to the size
of the arena and the number of robots. A max-
imum value of 100% is easily reached for small
arenas, and an increased size for the arena surface
implies a continuous decrease for the percentage of
targets under observation. There are only 15 tar-
gets in the arena, so the advantage of additional
robots after 8-10 is limited.

Fig. 8 plots the increase in performance as-
sociated with the use of robot awareness (A-
CMOMMT policy, Fig. 7) vs. the purely col-
lective behavior (cf. Fig. 6). The difference in
performance can reach 60%. The impact of robot
awareness is particularly notable with small arena
sizes (2-6), pointing out the advantage of being
able to maintain a minimal distance between team
members and being able to select untracked tar-

% of observed
targets

0L a0

9

1 5 10 15 20 25 30 0 Sizeof

the arena

Total nunber of robots

Fig. 7. Percentage of observed targets (by the group) vs.
the number of robots (N = [1,30]) and vs. the radius of the
bounded arena [1,9]. Each robot uses the A-CMOMMT
policy, and therefore is aware of the position of the other
robots in its sensor field of range. There are 15 randomly
moving targets. The sensory perception radius for each
robot is 1. The results displayed are the mean of 5 different
experiments, each one of 600 iterations.

gets. The effect of the number of robots is logically
positive for small arena size (2-6), and becomes
null for large arenas, where robots (and targets)
have so much space available that they do not
come close to each other anymore. The limited
robot awareness range implies that after a given
size of the arena (8-9), robot awareness is of no
more use. The effect of large robot numbers is to
slow the disappearance of the usefulness of robot
awareness (particularly visible for arena sizes be-
tween (2-7)).

It must be note that despite the impression that
multi-robots systems performs well only for small
values of arena size, the performance of mobile
robots is way above that of stationary ones (even
well placed). Let us compute the ratio arena un-
der observation versus arena surface for a group
of stationary non overlapping robots. We take the
case of a group of 30 robots, an arena of radius 10
and 15 targets (cf. Fig. 7). The ratio is equal to
30% of the surface under observation, which ac-
count for an average number of 4.5 targets under
observation, to compare with the number of 7.5
reported on figure 7.

7. Influence of the robot awareness range
on the performance

The previous section has reported the large im-
pact on the performance of the robot awareness.
Certainly, the larger the robot awareness range,
the better the performance is. However, a large
robot awareness range implies a large number of
neighbor robots to take into account. It is not
desirable to allow a too large number of sensed
robots, because of its effect on the dimensionality
of the search space. In fact, it would be interest-
ing to be able to reduce as much as possible the
robot awareness range.

In this section, we study the influence of the
robot awareness range on the performance. In the
case of A-CMOMMT policy, the repulsive force
between the robots is defined in Fig. 9. If the
robots are too close together (< dp), they re-
pel strongly. If the robots are far enough apart
(> dy), they have no effect upon each other in
terms of the force vector calculations. The repul-
sive force magnitude scales linearly between these
cases ([d1,d2]).
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% of observed
targets due to
robot awareness

60 /l///
40 b7 7,
20 /’;/"/é/%//l'/
o e o i}
15 20 25 30 9 Ssize of the
Total number of robots arena

Fig. 8. Percentage of observed targets due to robot aware-
ness vs. the number of robots (N = [1,30]) and vs. the
radius of the bounded arena [1,9]. Each robot uses the
A-CMOMMT policy, and therefore is aware of the posi-
tion of the other robots. There are 15 randomly moving
targets. The sensory perception radius for each robot is 1.
This graph shows the difference between Fig. 6 results and
Fig. 7 results (i.e., cooperation vs. collective policies).

The increase in the surface awareness area is
proportional to the square of the robot awareness
range (e.g., if the range is multiplied by 2, then
the surface is multiplied by 4). Fig. 10 displays
the additional percentage of observed targets due
to a robot awareness range multiplied by 2 (from
a range of 0.5 to a range of 1). The robot poli-
cies are A-CMOMMT and there are 15 randomly
moving targets. We see that a larger robot aware-
ness range automatically implies a better perfor-
mance. Reducing the dimensionality of the search
space—the number of neighbor robots—by a de-
crease of the robot awareness range has a direct
negative impact on the performance and should be
avoided. A compromise has to be found between
a too large number of neighbors and a too small
number of neighbors.

Magnitude of
force vector

+1

dy dy

Distance between robots

Fig. 9. Function defining the magnitude of the repulsive
force vector to nearby robots.

8. Cooperative vs. collective learning

Until now, we have studied the impact of robot
awareness upon learning (in fact, the search space
size) without the help of any learning experiment.
Our case study sets the parameter d (so that we
are in a ©(1) awareness degree) to 16. Therefore,
we will use 16 additional inputs to represent the
information about neighbor robots in CMOMMT
learning experiments. Each robot situation is a
vector of 2 * 16 components®. The first 16 com-
ponents code the position and orientation of the
targets. It simulates a ring of 16 sensors uni-
formly distributed around the robot body. Each
sensor measures the distance to the nearest tar-
get. The sensor position around the body gives
the orientation. The second ring of 16 compo-
nents codes in the same manner the position and
orientation of neighbor robots (how to distinguish
between targets and robots is not relevant here,
but certainly the sonar values have to be com-
pleted with other information). The maximum
range allowing a target or a robot to be seen is
1. The actions of each robot are rotation and for-
ward move distance. With the objective of reduc-
ing the number of actual moves during the behav-
ior synthesis—and therefore the time required by
an experiment—we use a lazy learning approach
[Aha 97].

% of additional

observed targets due

to an increased
range of the robot

awar eness
o
15
10

“ 10 Size of
the arena

5 10 15 200 25 30
Total nunber of robots

Fig. 10. Percentage of additional observed targets due to
a robot awareness range multiplied by 2 (from a range of
0.5 to a range of 1) vs. the number of robots (N = [1,30])
and vs. the radius of the bounded arena [1,9]. The robot
policies are A-CMOMMT and there are 15 randomly mov-
ing targets. The sensory perception radius for each robot
is 1. The results displayed are the mean of 5 different ex-
periments, each one of 600 iterations.
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8.1. Lazy learning

In a lazy learning approach, the computation of
the inputs is delayed until the necessity arises. In
a first phase, lazy learning samples the situation-
action space and stores the succession of events in
memory. In a second phase, lazy learning probes
the associative memory for the best move. The
sampling process stores the successive situation-
action pairs generated by a random action selec-
tion policy, whereas the questioning of the mem-
ory involves complicated computations: cluster-
ing, pattern matching, etc. Using lazy learning
and reinforcement function probing in the associa-
tive memory [Sheppard et al. 97], the exploration
phase can be done only once, stored and used later
by all future experiments. This way, an experi-
ment only requires a test phase: a measure of the
performance of the learning. The learning phase
occurs during the probing of the memory and in-
volves lots of computations. However, the compu-
tation time requirements are negligible compared
to the robot mechanical time requirements. This
way, an experiment in cooperative robotics is even
shorter (effective time) than an experiment involv-
ing just one robot and eager learning. It must be
emphasized that, because it is independent of the
nature of the desired behavior, in lazy learning the
initial exploration phase is unique.

Sheppard et al. (1997) propose to probe the
memory with the reinforcement function. Their
objective is to provide a method for predicting
the rewards for some state-action pairs without
explicitly generating them. They call their algo-
rithm lazy Q-learning. For the current real world
situation, a situation matcher locates all the states
in the memory that are within a given distance. If
the situation matcher has failed to find any nearby
situations, the action comparator selects an ac-
tion at random. Otherwise, the action compara-
tor examines the expected rewards associated with
each of these situations and selects the action with
the highest expected reward. This action is then
executed, resulting in a new situation. There is
a fixed probability (0.3) of generating a random
action regardless of the outcome of the situation
matcher. New situation-action pairs are added to
the memory, along with a Q-value computed in
the classical way. Among similar situation-action
pairs in the memory, an update of the stored Q-

values is made. There is a limit to the gener-
icness of this lazy memory because the Q-values
associated with the situation-action pairs only ap-
ply for a particular behavior. With the desire of
reducing as much as possible the learning time
and also of preserving the genericness of the lazy
memory, we modified the algorithm in the follow-
ing way: the situation matcher always proposes
the set of nearest situations—no maximum dis-
tance is involved—and there is no random selec-
tion of actions by the action comparator. Also, the
Q-values are not stored with the situation-action
pairs, but are computed dynamically as the need
arises.

The key to successful application of the lazy Q-
learning algorithm is the identification of similar
situations. We use a measure of similarity of the
following form:

14

similarity(a,b) = > (|sa(i) — (i) (1)

i

where s, and s, are two situations and p is the
number of components of the situation. The
smaller the value measured, the greater is the sim-
ilarity.

8.2.  Cooperative lazy learning

Cooperative reinforcement learning requires a
method to distribute the reinforcement values
among the group members. We, and others from
the multi-agent community in particular, are pur-
suing our research efforts in this direction, but
our results have not yet reached the quality of the
human-defined A-CMOMMT. They will neverthe-
less allow us to demonstrate the impact of robot
awareness in CMOMMT applications. Fig. 11
shows the increase of performance associated with
robot awareness vs. a purely collective behavior?.
Each robot behavior (cooperative or collective) is
learned through lazy reinforcement learning. The
dimensionality of the search space is 32 (targets
+ robots) for cooperative behavior, and only 16
(targets) for collective behavior. The lazy memory
is obtained through an initial exploration (length
120 iterations) involving 10 targets and 5 robots,
the policies for targets and robots were random
action selection. The reinforcement function we
use is the following: +1 if one (or more) targets
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have been acquired compared to the previous situ-
ation, —1 if one (or more) targets have been lost,
or 0 otherwise. Each iteration the probabilities
of direction change for a target was 5%, where
it was 100% for a robot. The total number of
situation-action pairs in the associative memory
is 600(= 120 % 5).

Compared to Fig. 8, we see that the impact
of robot awareness is less noticeable in our learn-
ing experiment: a maximal improvement of 25%
(compared to 60%). However the shape of both
surfaces are similar: the preferred arena size is
between 2 and 6, and the greater the number of
robots, the more important the impact on the per-
formance. The counter-effect of very large arenas
is easily spotted, in particular for small numbers
of robots. In this case, awareness seems to slightly
hurt the performance. This is due to the fact
that the collective behavior is learn with a smaller
search space size (©(0)) compared to (©(1)) for
the cooperative behavior. Since there is very lit-
tle, or no effect of cooperation, the ratio of the
search space size vs. the number of learning sam-
ple is smaller for the collective behavior learning
case (allowing better learning performance).

9. Related works

Ono and Fukumoto (1997) are interested in reduc-
ing the search space size so as to allow multi-agent
reinforcement learning. The main idea underlying
their approach is that each agent’s learning com-
ponent is decomposed into independent modules,
each focusing on one agent. The learning results
of these components are combined by a mediator
using a simple heuristic procedure (the greatest
mass merging strategy). Their approach is based
on a reduction of the search space size by a decom-
position into multiple sub-goals, initially proposed
by [Whitehead 93] for one agent. They illustrated
the use of their modular architecture with a mod-
ified version of the pursuit problem: in a 20 x 20
toroidal grid world, a single prey and four hunter
agents. The behavior of the prey is random walk.
A hunter has a limited field of view and can differ-
entiate between prey and hunters. For each other
agent, a module is used that takes into account
(only) the relative position of that agent and the
prey: this is an awareness associated with a © (V)

% of observed
targets due to

robot awar eness

201
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o
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Fig. 11. Percentage of observed targets due to robot

awareness (cooperative - collective) vs. the number of
robots (N = [1,30]) and vs. the radius of the bounded
arena [1,9]. Each robot learns its behavior using lazy rein-
forcement learning. There are 15 randomly moving targets.
The sensory perception radius for each robot is 1. This
graph is obtained in similar conditions as those of Fig. 8,
except for the behaviors, which are learned here.

increase in the number of dimensions. The field of
view range (i.e., robot awareness range) is small
enough to drastically reduce the search space size,
even using such awareness degree (cf. section 8).

Kube and Zhang (1994) simulations of a collec-
tive box-pushing behavior involve robots equipped
with a goal sensor, an obstacle sensor and a robot
sensor. No learning is involved—the robot policies
are user-defined. Each behavior is implemented
as a “Braitenberg vehicle” [Braitenberg 84]. The
arbitration between behaviors uses fixed priority
assignment in a subsumption approach. A sec-
ond approach tested for behavior arbitration is to
train an adaptive logic network through a super-
vised learning procedure. The authors do not give
details about the way the robot sensor intervenes;
therefore, it is impossible to determine the degree
of awareness. Moreover, the extremely small num-
ber of actions available to insure cooperation (in
follow, the robot sensor is used to direct the robot
to the nearest sensed neighbor; in slow, the robot
reduces its velocity whenever neighbor robots are
detected) tends to deny, in our opinion, the term
“cooperation” to this work.

Balch and Arkin (1994) in their desire to cre-
ate a design methodology for multiagent reactive
robotic systems have been interested in choosing
correctly the number of agents and the communi-
cation mechanisms. They define 4 levels of com-
munication: no communication where the robots
are able to discriminate between robot, attrac-
tors and obstacles, state communication where
robots are able to detect the internal state of other
robots, goal communication where the sender must

AL
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deliberately send or broadcast the information
and implicit communication which corresponds to
communication through the environment (no act
of deliberate transmission). It must be pointed
out that these authors are not interested in learn-
ing, therefore they did not address the issue re-
lated to the search space size. Interestingly, their
results demonstrate that, at least for the three ex-
perimented tasks of forage, consume and graze, co-
operation emerges with the “no communication”
paradigm. The maximum improvements are: for-
age task, goal vs. no communication (19%); con-
sume task, state vs. no communication (10%)
and graze task, state or goal vs. no communi-
cation (1%). Their conclusion is that for some
tasks, higher levels of communication can slightly
improve performance, but for other inter-agent
communication is apparently unnecessary. This
last remark agrees with our selection of “robot
awareness”—instead of “communication” —as the
necessary basic component for cooperation.

10. Conclusion

Cooperative behavior definition points out the ne-
cessity for a mechanism of cooperation that we
translate in robot awareness of other team mem-
bers. The search space size is of tremendous im-
portance for the learning ability (the smaller the
better), therefore we have presented the differ-
ent degree of awareness in respect to their in-
fluences on the search space size (no awareness:
0(0), restricted awareness: ©(1), awareness of all:
O(N) and complete communication: o(N)). We
have presented a method to elect a ©(1) aware-
ness using the fact that the sensors have lim-
ited range. The careful study of the mazimum
number of neighbor robots (instead of the total
number of robots) allows to set the parameter 4.
The maximum number of neighbor robots is de-
pendent on the arena size, the awareness range,
and also on the robot policies. The cooperative
multi-robot observation of multiple moving tar-
gets (CMOMMT) domain is used as an illustrative
application—but our method is generic and can be
applied to many applications. It consists in study-
ing the maximum number of neighbor robots in
the beginning of the learning phase (exploration)
so as to be able to determine the appropriate value

of §. Environmental conditions, like the size of the
arena or the range of the sensors, must also to be
taken into consideration.

A lazy reinforcement learning approach showed
better performance for cooperation than collective
behavior and compared well with the best-known
human-designed policy (A-CMOMMT). The in-
crease of performance is up to 25% using lazy
reinforcement learning and 60% using human-
designed policy.

The experimental confirmations were obtained
in simulation, but it is our opinion that this does
not affect the legitimacy of awareness for cooper-
ative robot learning, nor does it affect the validity
of the method.
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Notes

1. Explanations on this standard asymptotic notation can
be found in Cormen T., Leiserson and C. Rivest R.,
Introduction to Algorithms, MIT Press, 1990

2. CESAR facilities provide 4 Nomad 200 mobile robots
for cooperative robotic experiments. The Nomad 200
is equipped, among other sensory modalities, with a
ring of 16 infra-red sensors and another ring of 16 sonar
Sensors.

3. There are several issues of importance for lazy reinforce-
ment learning performance. The first is the quality of
the reinforcement function, the second is the quality
of the sampling (size, representativity), and the third is
the quality of the probing process (generalization). The
state-of-the-art in these domains only allows us to as-
sume that non-optimal values and criterion were used
in the experiments reported here. However, it is our
opinion that this does not alter the illustrative quality
of Fig. 11.
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