
HAL Id: hal-01338045
https://amu.hal.science/hal-01338045

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Q-learning for Robots
Claude Touzet

To cite this version:
Claude Touzet. Q-learning for Robots. M. Arbib. The Handbook of Brain Theory and Neural
Networks (Second Edition), MIT Press, pp. 934-937, 2003. �hal-01338045�

https://amu.hal.science/hal-01338045
https://hal.archives-ouvertes.fr

C. Touzet. Q-learning for Robots 1

Q-learning for Robots

Claude F. Touzet

Introduction

Robot learning is a challenging – and somewhat unique –
research domain. If a robot behavior is defined as a mapping
between situations that occurred in the real world and actions
to be accomplished, then the supervised learning of a robot
behavior requires a set of representative examples (situation,
desired action). In order to be able to gather such learning
base, the human operator must have a deep understanding of
the robot-world interaction (i.e., a model). But, there are many
application domains where such models cannot be obtained,
either because detailed knowledge of the robot’s world is
unavailable (e.g., spatial or underwater exploration, nuclear or
toxic waste management), or because it would be to costly. In
this context, the automatic synthesis of a representative
learning base is an important issue. It can be sought using
reinforcement learning techniques – in particular Q-learning
which does not require a model of the robot-world interaction.
Compared to supervised learning, Q-learning examples are
triplets (situation, action, Q value), where the Q value is the
utility of executing the action in the situation. The supervised
learning base is obtained by recruiting the triplets with the
highest utility.
 Because it allows the synthesis of behaviors despite the
absence of a robot-world interaction model, Q-learning
(Watkins 1989) has become the most used learning algorithm
for autonomous robotics. Although the convergence theorem
does not apply to the robotics domain (due to the limited
number of situation-action pairs that can be explored during
the life-time of the robot batteries), heuristically adapted Q-
learning has proved successful in applications such as obstacle
avoidance, wall following, go-to-the-nest, etc. This is mostly
due to neural-based implementations such as multilayer
perceptrons trained with backpropagation, or self-organizing
maps. Such implementations provide an efficient
generalization, i.e., fast learning, and designate the critic – the
reinforcement function definition – as the real issue. The
articles REINFORCEMENT LEARNING and
REINFORCEMENT LEARNING IN MOTOR CONTROL
provide background information on reinforcement learning.
Kaelbling (1996) and Sutton (1998) are two other sources of
information. For more detailed treatments, the reader should
consult Touzet (1997).

Q-learning

Figure 1 shows a functional decomposition of Q-learning.
Three different functions are involved: evaluation,
memorization and updating. Using the information stored in
the robot memory, the current situation is evaluated to select
the best action to accomplish (i.e., the most reward-promising
action). This proposition is modified so as to allow
exploration of the situation-action space. The new situation,
entered as a consequence of the execution of the action, is

qualified by the reinforcement function. Its qualitative
criterion (reinforcement) is used by the updating algorithm to
adjust the Q values in the following way:

Q(s,a)new = Q(s,a)old + ß(r +
 γ.Max(Q(s’,a)) - Q(s,a)old) (1)

where s is the situation, a is the action, r is the
reinforcement and s’ represents all situations that can be
reached from s. ß and γ are positive coefficients less than 1.

Convergence

Recent developments in the theory of reinforcement learning
have allowed proof of asymptotic convergence (Dayan 1994).
These proofs rely on several assumptions that do not apply to
robots facing real-world tasks. In particular, the asymptotic
convergence requires a discrete coding of the situation-action
pairs (look-up table storage) and to try out every action for
every situation an infinite number of times. A robot is a
mechanical device than needs at least a few hundred
microseconds to execute any action. Therefore, due to battery-
life that typically last less than 10 hours, only a few thousand
situation-action can be visited during a given experiment. This
is an extremely small number when compared to the potential
number of situation-action pairs (e.g., 1026 for the Khepera
miniature mobile robot, today the most common research
robot). Thus, generalization between similar situation-action
pairs is mandatory.

Reinforcement
function

Evaluation function Update function

World

Action Situation

Robot Memory

Reinforcement

(situation, action, Q value)

Figure 1. Q-learning method functional decomposition. In response
to the present situation, an action is proposed by the robot memory.
This action is the one that has the best probability of reward.
However, this proposition may be modified by the evaluation
function to allow an extensive exploration of the situation-action
space. After the execution of the action by the robot in the real
world, a reinforcement function provides a reinforcement value. This
value – a simple qualitative criterion (e.g., +1, -1 or 0) – is used by
the updating algorithm to adjust the utility value associated with the
situation-action pair.

C. Touzet. Q-learning for Robots 2

Generalization

Improvements emphasizing generalization have been proposed
by Mahadevan et al. (1992) who use weighted Hamming
distance to generalize between similar situations. This simple
method is limited to syntactic situation criteria (i.e., it is
dependent on the coding of the situations). A second method,
proposed by the same authors, adds the action into the
syntactic criteria, using clusters to generalize across similar
situation-action sets. One of the problems is that the clusters
have to be handpicked.

Neural Q-learning

Neural implementations offer a compact representation (i.e.,
limited memory requirement) and good generalization
performance (as demonstrated by numerous connectionist
applications). The memorization function uses the weight set
of the neural network: the memory size required by the system
to store the knowledge is defined, a priori, by the number of
connections in the network. It is independent of the number of
explored situation-action pairs. The proposed action is the
processing result of the situation by the network, plus the
addition of a random component for the exploration. The
update function uses the weight modification algorithm to
store the utility values computed by the Q-learning rule (1).
 The ideal neural implementation would provide, in a given
situation, the best action to undertake and its associated Q
value. However, training of a such network requires the
definition of an error on the output layer, i.e., knowledge of
the best action to undertake in every situation. Such
knowledge can be inferred if there is only two different
possible actions for the robot as in the cart pole balancing
problem (Barto et al. 1983). However, in the general case, the
number of actions is larger. Lin (1993) – who proposed the
first multilayer perceptron implementation of the Q-learning
(Q-Con) – uses as many perceptrons as there are actions, each
network output coding for the utility of accomplishing this
action in the current situation. Therefore, only one Q-Con
network is updated at every time step, and generalization
between networks (i.e., actions) is impossible. Other
multilayer perceptron implementations have been proposed
(Ackley and Littman 1991, Touzet 1997), but they do not yet
solve the output error definition problem.

Q-Kohon

Unsupervised learning models – such as SELF-
ORGANIZING FEATURE MAPS: KOHONEN MAPS (q.v.),
RADIAL BASIS FUNCTION NETWORKS (q.v.),
ADAPTIVE RESONANCE THEORY (ART) (q.v.), CMAC –
do not require an error definition for updating their weight
values. Q-Kohon, a Kohonen map implementation of the Q-
learning, is a method of state grouping involving syntactic
similarity and locality (McCallum 1995). Each neuron codes a
particular triplet (situation, action, Q value); therefore the
number of neurons equals the number of stored associations.
The neighborhood property of the self-organizing map
accounts for the generalization across similar situation-action
pairs.
 Q-Kohon uses the self-organizing map as an associative
memory. This associative memory stored triplets. Part of a
triplet is used to probe the self-organizing map in search of the
corresponding information. Here, situation and Q value are
used to find the action: the best action to undertake in a world
situation is given by the neuron that has the minimal distance
to the input situation and to a Q value of value +1. The
selected neuron corresponds to a triplet (situation, action, Q).
It is this particular action that should offer the best reward in
the world situation. To update the Q value, equation (1)
requires the maximum Q value of the new entered situation.
This is easily obtained by probing the map with the new
situation and a Q value of value + 1. The selected neuron Q
value will be the maximum possible value.
 A nice side effect of using clustering techniques to
implement the Q-learning is that the learned behavior can be
interpreted by looking (see SELF-ORGANIZING FEATURE
MAPS: KOHONEN MAPS) at the network weights
(something extremely difficult with multilayer
implementations). Also, because the neurons of the self-
organizing map approximate the probability density function
of the inputs, one can predict that if a correct behavior is
learned, all neurons will code positive Q values. This is most
useful to determine when a correct behavior has been learned.
This last fact results in the optimization of the stored
knowledge.

 Q-learning + Hamming + clustering Q-Comp Q-Kohon

Time length 55 mn 25 mn 30 mn 8 mn 2 mn

iterations 7500 3500 4000 2000 500

Memory size 6400 6400 1.6 106 56 176

Table 1. Comparison of various implementations. The learning time is the time in seconds needed to synthesize an obstacle
avoidance behavior. It reflects the number of real world experiments required. The number of learning iterations is the
number of updates to the memory (look-up table or neural network). The memory size is the number of floats required to
store the information.

C. Touzet. Q-learning for Robots 3

Comparisons

Experiments aimed at comparing various implementations of
the Q-learning in a task of synthesizing an obstacle avoidance
behavior for the miniature robot Khepera (Touzet 1997)
demonstrate that neural Q-learning implementations require
alot less memory, less learning examples and learn faster (cf.
table 1). The Q-Kohon implementation also exhibits the best
behavior after learning, i.e., less negative reinforcements
received than all the other implementations.

Reinforcement Function Design

The reinforcement function quality is intrinsically limited by
the expert’s abilities. When a reinforcement learning
experiment does not converge, it is impossible to know if this
is due to the fact that the experiment was too short and more
examples are needed, or if the intrinsic nature of the
reinforcement function forbids convergence. Today,
reinforcement learning researchers use a slow-and-painful trial
and error approach to define the reinforcement function. In
the meantime, efforts have been devoted to find ways to
automatically define such functions. Santos et al. (1999) have
proposed an Update Parameter Algorithm (UPA) to
automatically adjust the threshold values: θ+ and θ- within a
particular definition of the reinforcement function:

RF(s1,...,su) =
+1 if g1(s1,...,su) > θ+

−1 if g2(s1,...,su) <θ−

0 otherwise





 
where (s1 , ..., su) is the output readings of the sensors, g1()
and g2() are any functions linking the sensor data to the
rewards.
 The resulting effect is to optimize the exploration part of
the learning phase by achieving and maintaining pre-defined
ratios of positive and negative rewards. If there is no positive
reward, the evaluation function built during the learning phase
will have "0" as maximum value and the policy cannot select
effective actions. If there is no negative reward, the robot can
remain in a dead-end situation forever. If there is no null
reward, the evaluation function will be non-continuous at the
frontier between positive and negative situation-action pairs.
 A dynamic version of UPA (Santos et al. 1999) updates the
threshold values during the learning phase – exploration and
exploitation (so as to take into account the improvement of the
robot policy). It allows behavior performance improvements
without the need of some sort of external supervisor, capable
of ranking situations by difficulty and of choosing tasks of
increasing difficulty (Dorigo et al. 1998). Santos et al. have
been able to synthesize – for the first time – a wall following
behavior by reinforcement learning (cf. figure 2), a
demonstrative support for reinforcement function design
techniques.

Discussion

Q-learning is the most used (reinforcement) learning technique
for behavior-based robots (see REACTIVE ROBOTIC
SYSTEMS). Neural based Q-learning implementations
provide compactness and generalization. Clustering-based
neural based methods, such as Q-Kohon, allow drastic
reduction of the learning time and number of examples
required. Their efficiency put forward the reinforcement
function definition as one of the major issues.
 Another major issue is to be able to overcome the
exponentially growing number of required learning examples
that comes with target behaviors of greater complexity.
Battery-life time seems to impose a definite limit, and
researchers tend to promote knowledge incorporation as a
speed-up mechanism. The goal is to bias the exploration
towards “rewarding” part of the search space – at the expense
of tabula rasa methods. The drawback is that new –
unforeseen – solutions cannot be discovered.

Figure 2. The trace of the miniature Khepera robot after the
synthesis of a wall following behavior using a RBF
implementation of the Q-learning and Dynamic-UPA in a new
environment. Only about 2000 learning iterations are needed.

 Lazy learning (Aha 1997), also called instance-based
learning, provides a way to add samples without implying
bias. In a lazy learning approach, the computation of the
inputs is delayed until the necessity arises. Lazy learning
samples the situation-action space, storing the succession of
events in memory and, when needed, probes the associative
memory for the best move. The sampling process stores the
successive situation-action pairs generated by a random action
selection policy. The exploration phase is done only once,
stored and used later by all future experiments. The probing of
the memory involves complicated computations: clustering,
pattern matching, and so forth.

C. Touzet. Q-learning for Robots 4

 By storing situation-action pairs, a lazy memory builds an
non-explicit model of the situation transition function, that is
used as a bias to leverage the model-free following learning
phase (i.e., Q-learning). Sheppard et al. (1997) propose to mix
lazy learning and reinforcement learning, probing the memory
with the reinforcement function. Their objective is to provide
a method for predicting the rewards for some state-action pairs
without explicitly generating them. They call their algorithm
lazy Q-learning. For the current real world situation, a
situation matcher locates all the states in the memory that are
within a given distance. If the situation matcher has failed to
find any nearby situations, the action comparator selects an
action at random. Otherwise, the action comparator examines
the expected rewards associated with each of these situations
and selects the action with the highest expected reward. This
action is then executed, resulting in a new situation. There is a
fixed probability of generating a random action regardless of
the outcome of the situation matcher. New situation-action
pairs are added to the memory, along with their Q values
computed in the classical way. Among similar situation-action
pairs in the memory, an update of the stored Q values is made.
There is a limit to the genericity of this lazy memory because
the Q values associated with the situation-action pairs only
apply for a particular application.
 Learning is not restricted to single robots. Learning in
cooperative robotics promises are beguiling: a way to program
a set of robots without having to explicitly model their
interactions with the world – including the other team
members – to achieve cooperation. To achieve this goal,
mechanisms that relay the unique information associated with
the team behavior (reinforcement value) to the individual
robots have to be found. Results from the multi-agent research
community cannot be applied since they are usually symbolic
methods, where robot Q-learning requires a sub-symbolic
approach.
 Despite all the efforts and success around Q-learning, there
are several drawbacks associated with supervised and
reinforcement learning when in comes to real applications.
First, the time needed to achieve the synthesis of any behavior
is prohibitive. Second, the robot behavior during the learning
phase is – by definition – bad, it may even be dangerous.
Third, except within the lazy learning approach, a new
behavior implies a new learning phase. What is needed is a
learning that instantaneously synthesizes any behavior, and
which performance improves by the mere repetition of this
behavior (for further discussion see Touzet (1999)).

References

Ackley D. and M. Littman, 1991. Interactions Between Learning and

Evolution, in Artificial Life II, SFI Studies Sc. Complexity, vol.X,
(C. G. Langton & Co, eds.) Addison-Wesley, pp. 487-509.

*Aha D. (ed.), 1997. Lazy Learning, Dordrecht:Kluwer Academic
Publishers (reprinted from Artificial Intelligence Review, 11:1-5).

Barto A. G., Sutton, R. S. and Anderson, C. W., 1983. Neuron like
elements that can solve difficult learning control problems, IEEE
Trans. Sys. Man Cybern., 13:835-846.

Dayan P. and T. Sejnowski, 1994. TD(λ) convergences with
probability 1, Machine Learning, 14(3): 295-301.

*Dorigo, M. and M. Colombetti, 1998. Robot Shaping: An
Experiment in Behavior Engineering, MIT Press.

*Kaelbling L., M. Littman and A. Moore, 1996. Reinforcement
Learning: A Survey, Journal of Artificial Intelligence Research
4:237-285.

McCallum, R. A., 1995. Instance-based State Identification for
Reinforcement Learning, in Advances In Neural Information
Processing Systems 7, MIT Press.

Lin L-J., 1993. Reinforcement Learning for Robots Using Neural
Networks, Ph.D. thesis, Carnegie Mellon University, Pittsburgh,
CMU-CS-93-103.

Mahadevan S. and J. Connell, 1992. Automatic Programming of
Behavior-based Robots using Reinforcement Learning, Artificial
Intelligence, vol. 55, Nos. 2-3, pp. 311-365.

Santos J. M. and C. Touzet, 1999. Dynamic Update of the
Reinforcement Function during Learning, Connection Science,
Special issue on Adaptive Robots, (C. Torras guest ed.), (to
appear).

Sheppard J. W. and S. L. Salzberg, 1997. A Teaching Strategy for
Memory-Based Control, in Lazy Learning, (D. Aha, ed.),
Dordrecht:Kluwer Academic Publishers, pp. 343-370.

*Sutton R. and A. Barto, 1998. Reinforcement Learning, Cambridge,
MA: MIT Press.

Touzet C., 1997. Neural Reinforcement Learning for Behaviour
Synthesis, Robotics and Autonomous Systems, Special issue on
Learning Robot: the New Wave, (N. Sharkey guest ed.), vol. 22,
Nos. 3-4, pp 251-281.

Touzet C., 1999. Programming Robots with Associative Memories,
in Proc. of International Joint Conf. on Neural Networks,
Washington D.C., USA, July 10-16.

Watkins J. C. H., 1989. Learning from Delayed Rewards, Ph.D.
thesis, King's College, Cambridge, England.

	Discussion
	References

