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Q-learning for Robots 
 
Claude F. Touzet 
 
Introduction 
 
Robot learning is a challenging – and somewhat unique – 
research domain. If a robot behavior is defined as a mapping 
between situations that occurred in the real world and actions 
to be accomplished, then the supervised learning of a robot 
behavior requires a set of representative examples (situation, 
desired action). In order to be able to gather such learning 
base, the human operator must have a deep understanding of 
the robot-world interaction (i.e., a model). But, there are many 
application domains where such models cannot be obtained, 
either because detailed knowledge of the robot’s world is 
unavailable (e.g., spatial or underwater exploration, nuclear or 
toxic waste management), or because it would be to costly. In 
this context, the automatic synthesis of a representative 
learning base is an important issue. It can be sought using 
reinforcement learning techniques – in particular Q-learning 
which does not require a model of the robot-world interaction. 
Compared to supervised learning, Q-learning examples are 
triplets (situation, action, Q value), where the Q value is the 
utility of executing the action in the situation. The supervised 
learning base is obtained by recruiting the triplets with the 
highest utility.  
 Because it allows the synthesis of behaviors despite the 
absence of a robot-world interaction model, Q-learning 
(Watkins 1989) has become the most used learning algorithm 
for autonomous robotics. Although the convergence theorem 
does not apply to the robotics domain (due to the limited 
number of situation-action pairs that can be explored during 
the life-time of the robot batteries), heuristically adapted Q-
learning has proved successful in applications such as obstacle 
avoidance, wall following, go-to-the-nest, etc. This is mostly 
due to neural-based implementations such as multilayer 
perceptrons trained with backpropagation, or self-organizing 
maps. Such implementations provide an efficient 
generalization, i.e., fast learning, and designate the critic – the 
reinforcement function definition – as the real issue. The 
articles REINFORCEMENT LEARNING and 
REINFORCEMENT LEARNING IN MOTOR CONTROL 
provide background information on reinforcement learning. 
Kaelbling (1996) and Sutton (1998) are two other sources of 
information. For more detailed treatments, the reader should 
consult Touzet (1997).  
 
Q-learning 
 
Figure 1 shows a functional decomposition of Q-learning. 
Three different functions are involved: evaluation, 
memorization and updating. Using the information stored in 
the robot memory, the current situation is evaluated to select 
the best action to accomplish (i.e., the most reward-promising 
action). This proposition is modified so as to allow 
exploration of the situation-action space. The new situation, 
entered as a consequence of the execution of the action, is 

qualified by the reinforcement function. Its qualitative 
criterion (reinforcement) is used by the updating algorithm to 
adjust the Q values in the following way:  
 
Q(s,a)new = Q(s,a)old + ß(r +  
      γ.Max(Q(s’,a)) - Q(s,a)old)     (1) 
 
where s is the situation, a is the action, r is the 
reinforcement and s’ represents all situations that can be 
reached from s. ß and γ are positive coefficients less than 1.  
 
Convergence 
 
Recent developments in the theory of reinforcement learning 
have allowed proof of asymptotic convergence (Dayan 1994). 
These proofs rely on several assumptions that do not apply to 
robots facing real-world tasks. In particular, the asymptotic 
convergence requires a discrete coding of the situation-action 
pairs (look-up table storage) and to try out every action for 
every situation an infinite number of times. A robot is a 
mechanical device than needs at least a few hundred 
microseconds to execute any action. Therefore, due to battery-
life that typically last less than 10 hours, only a few thousand 
situation-action can be visited during a given experiment. This 
is an extremely small number when compared to the potential 
number of situation-action pairs (e.g., 1026 for the Khepera 
miniature mobile robot, today the most common research 
robot). Thus, generalization between similar situation-action 
pairs is mandatory.  
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Figure 1. Q-learning method functional decomposition. In response 
to the present situation, an action is proposed by the robot memory. 
This action is the one that has the best probability of reward. 
However, this proposition may be modified by the evaluation 
function to allow an extensive exploration of the situation-action 
space. After the execution of the action by the robot in the real 
world, a reinforcement function provides a reinforcement value. This 
value – a simple qualitative criterion (e.g., +1, -1 or 0) – is used by 
the updating algorithm to adjust the utility value associated with the 
situation-action pair. 
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Generalization 
 
Improvements emphasizing generalization have been proposed 
by Mahadevan et al. (1992) who use weighted Hamming 
distance to generalize between similar situations. This simple 
method is limited to syntactic situation criteria (i.e., it is 
dependent on the coding of the situations). A second method, 
proposed by the same authors, adds the action into the 
syntactic criteria, using clusters to generalize across similar 
situation-action sets. One of the problems is that the clusters 
have to be handpicked.  
 
 
Neural Q-learning 
 
Neural implementations offer a compact representation (i.e., 
limited memory requirement) and good generalization 
performance (as demonstrated by numerous connectionist 
applications). The memorization function uses the weight set 
of the neural network: the memory size required by the system 
to store the knowledge is defined, a priori, by the number of 
connections in the network. It is independent of the number of 
explored situation-action pairs. The proposed action is the 
processing result of the situation by the network, plus the 
addition of a random component for the exploration. The 
update function uses the weight modification algorithm to 
store the utility values computed by the Q-learning rule (1).  
 The ideal neural implementation would provide, in a given 
situation, the best action to undertake and its associated Q 
value. However, training of a such network requires the 
definition of an error on the output layer, i.e., knowledge of 
the best action to undertake in every situation. Such 
knowledge can be inferred if there is only two different 
possible actions for the robot as in the cart pole balancing 
problem (Barto et al. 1983). However, in the general case, the 
number of actions is larger. Lin (1993) – who proposed the 
first multilayer perceptron implementation of the Q-learning 
(Q-Con) – uses as many perceptrons as there are actions, each 
network output coding for the utility of accomplishing this 
action in the current situation. Therefore, only one Q-Con 
network is updated at every time step, and generalization 
between networks (i.e., actions) is impossible. Other 
multilayer perceptron implementations have been proposed 
(Ackley and Littman 1991, Touzet 1997), but they do not yet 
solve the output error definition problem.   

 
 
Q-Kohon 
 
Unsupervised learning models – such as SELF-
ORGANIZING FEATURE MAPS: KOHONEN MAPS (q.v.), 
RADIAL BASIS FUNCTION NETWORKS (q.v.), 
ADAPTIVE RESONANCE THEORY (ART) (q.v.), CMAC – 
do not require an error definition for updating their weight 
values. Q-Kohon, a Kohonen map implementation of the Q-
learning, is a method of state grouping involving syntactic 
similarity and locality (McCallum 1995). Each neuron codes a 
particular triplet (situation, action, Q value); therefore the 
number of neurons equals the number of stored associations. 
The neighborhood property of the self-organizing map 
accounts for the generalization across similar situation-action 
pairs.  
 Q-Kohon uses the self-organizing map as an associative 
memory. This associative memory stored triplets. Part of a 
triplet is used to probe the self-organizing map in search of the 
corresponding information. Here, situation and Q value are 
used to find the action: the best action to undertake in a world 
situation is given by the neuron that has the minimal distance 
to the input situation and to a Q value of value +1. The 
selected neuron corresponds to a triplet (situation, action, Q ). 
It is this particular action that should offer the best reward in 
the world situation. To update the Q value, equation (1) 
requires the maximum Q value of the new entered situation. 
This is easily obtained by probing the map with the new 
situation and a Q value of value + 1. The selected neuron Q 
value will be the maximum possible value.  
 A nice side effect of using clustering techniques to 
implement the Q-learning is that the learned behavior can be 
interpreted by looking (see SELF-ORGANIZING FEATURE 
MAPS: KOHONEN MAPS) at the network weights 
(something extremely difficult with multilayer 
implementations). Also, because the neurons of the self-
organizing map approximate the probability density function 
of the inputs, one can predict that if a correct behavior is 
learned, all neurons will code positive Q values. This is most 
useful to determine when a correct behavior has been learned. 
This last fact results in the optimization of the stored 
knowledge.  
   

 
  Q-learning + Hamming  + clustering Q-Comp Q-Kohon  

Time length  55 mn 25 mn 30 mn 8 mn 2 mn  

# iterations 7500 3500 4000 2000 500 

Memory size  6400 6400 1.6 106 56 176 

 
Table 1. Comparison of various implementations. The learning time is the time in seconds needed to synthesize an obstacle 
avoidance behavior. It reflects the number of real world experiments required. The number of learning iterations is the 
number of updates to the memory (look-up table or neural network). The memory size is the number of floats required to 
store the information. 
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Comparisons 
 
Experiments aimed at comparing various implementations of 
the Q-learning in a task of synthesizing an obstacle avoidance 
behavior for the miniature robot Khepera (Touzet 1997) 
demonstrate that neural Q-learning implementations require 
alot less memory, less learning examples and learn faster (cf. 
table 1). The Q-Kohon implementation also exhibits the best 
behavior after learning, i.e., less negative reinforcements 
received than all the other implementations. 
 
 
Reinforcement Function Design 
 
The reinforcement function quality is intrinsically limited by 
the expert’s abilities. When a reinforcement learning 
experiment does not converge, it is impossible to know if this 
is due to the fact that the experiment was too short and more 
examples are needed, or if the intrinsic nature of the 
reinforcement function forbids convergence. Today, 
reinforcement learning researchers use a slow-and-painful trial 
and error approach to define the reinforcement function. In 
the meantime, efforts have been devoted to find ways to 
automatically define such functions. Santos et al. (1999) have 
proposed an Update Parameter Algorithm (UPA) to 
automatically adjust the threshold values: θ+ and θ- within a 
particular definition of the reinforcement function:  

RF(s1,...,su ) =
+1 if g1(s1,...,su) > θ+

−1 if g2(s1,...,su ) <θ−

0 otherwise

 
 
 

   
where (s1 , ..., su )  is the output readings of the sensors, g1( ) 
and g2( ) are any functions linking the sensor data to the 
rewards.  
 The resulting effect is to optimize the exploration part of 
the learning phase by achieving and maintaining pre-defined 
ratios of positive and negative rewards. If there is no positive 
reward, the evaluation function built during the learning phase 
will have "0" as maximum value and the policy cannot select 
effective actions. If there is no negative reward, the robot can 
remain in a dead-end situation forever. If there is no null 
reward, the evaluation function will be non-continuous at the 
frontier between positive and negative situation-action pairs.  
 A dynamic version of UPA (Santos et al. 1999) updates the 
threshold values during the learning phase – exploration and 
exploitation (so as to take into account the improvement of the 
robot policy). It allows behavior performance improvements 
without the need of some sort of external supervisor, capable 
of ranking situations by difficulty and of choosing tasks of 
increasing difficulty (Dorigo et al. 1998). Santos et al. have 
been able to synthesize – for the first time – a wall following 
behavior by reinforcement learning (cf. figure 2), a 
demonstrative support for reinforcement function design 
techniques.  
 
 

Discussion 
 
Q-learning is the most used (reinforcement) learning technique 
for behavior-based robots (see REACTIVE ROBOTIC 
SYSTEMS). Neural based Q-learning implementations 
provide compactness and generalization. Clustering-based 
neural based methods, such as Q-Kohon, allow drastic 
reduction of the learning time and number of examples 
required. Their efficiency put forward the reinforcement 
function definition as one of the major issues.  
 Another major issue is to be able to overcome the 
exponentially growing number of required learning examples 
that comes with target behaviors of greater complexity. 
Battery-life time seems to impose a definite limit, and 
researchers tend to promote knowledge incorporation as a 
speed-up mechanism. The goal is to bias the exploration 
towards “rewarding” part of the search space – at the expense 
of tabula rasa methods. The drawback is that new – 
unforeseen – solutions cannot be discovered.  
 

 
 
Figure 2. The trace of the miniature Khepera robot after the 
synthesis of a wall following behavior using a RBF 
implementation of the Q-learning and Dynamic-UPA in a new 
environment. Only about 2000 learning iterations are needed.  
 
 Lazy learning (Aha 1997), also called instance-based 
learning, provides a way to add samples without implying 
bias. In a lazy learning approach, the computation of the 
inputs is delayed until the necessity arises. Lazy learning 
samples the situation-action space, storing the succession of 
events in memory and, when needed, probes the associative 
memory for the best move. The sampling process stores the 
successive situation-action pairs generated by a random action 
selection policy. The exploration phase is done only once, 
stored and used later by all future experiments. The probing of 
the memory involves complicated computations: clustering, 
pattern matching, and so forth. 
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 By storing situation-action pairs, a lazy memory builds an 
non-explicit model of the situation transition function, that is 
used as a bias to leverage the model-free following learning 
phase (i.e., Q-learning). Sheppard et al. (1997) propose to mix 
lazy learning and reinforcement learning, probing the memory 
with the reinforcement function. Their objective is to provide 
a method for predicting the rewards for some state-action pairs 
without explicitly generating them. They call their algorithm 
lazy Q-learning. For the current real world situation, a 
situation matcher locates all the states in the memory that are 
within a given distance. If the situation matcher has failed to 
find any nearby situations, the action comparator selects an 
action at random. Otherwise, the action comparator examines 
the expected rewards associated with each of these situations 
and selects the action with the highest expected reward. This 
action is then executed, resulting in a new situation. There is a 
fixed probability of generating a random action regardless of 
the outcome of the situation matcher. New situation-action 
pairs are added to the memory, along with their Q values 
computed in the classical way. Among similar situation-action 
pairs in the memory, an update of the stored Q values is made. 
There is a limit to the genericity of this lazy memory because 
the Q values associated with the situation-action pairs only 
apply for a particular application.  
 Learning is not restricted to single robots. Learning in 
cooperative robotics promises are beguiling: a way to program 
a set of robots without having to explicitly model their 
interactions with the world – including the other team 
members – to achieve cooperation. To achieve this goal, 
mechanisms that relay the unique information associated with 
the team behavior (reinforcement value) to the individual 
robots have to be found. Results from the multi-agent research 
community cannot be applied since they are usually symbolic 
methods, where robot Q-learning requires a sub-symbolic 
approach.  
 Despite all the efforts and success around Q-learning, there 
are several drawbacks associated with supervised and 
reinforcement learning when in comes to real applications. 
First, the time needed to achieve the synthesis of any behavior 
is prohibitive. Second, the robot behavior during the learning 
phase is – by definition – bad, it may even be dangerous. 
Third, except within the lazy learning approach, a new 
behavior implies a new learning phase. What is needed is a 
learning that instantaneously synthesizes any behavior, and 
which performance improves by the mere repetition of this 
behavior (for further discussion see Touzet (1999)).  
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