Aldo Gonzalez-Lorenzo

Mateusz Juda

Alexandra Bac

Jean-Luc Mari

Pedro Real

Fast, Simple and Separable Computation of Betti Numbers on Three-dimensional Cubical Complexes

Keywords: Cubical complex, Betti numbers, 3D, separable, computational topology, homology

Betti numbers are topological invariants that count the number of holes of each dimension in a space. Cubical complexes are a class of CW complex whose cells are cubes of different dimensions such as points, segments, squares, cubes, etc. They are particularly useful for modeling structured data such as binary volumes. We introduce a fast and simple method for computing the Betti numbers of a three-dimensional cubical complex that takes advantage on its regular structure, which is not possible with other types of CW complexes such as simplicial or polyhedral complexes. This algorithm is also restricted to three-dimensional spaces since it exploits the Euler-Poincaré formula and the Alexander duality in order to avoid any matrix manipulation. The method runs in linear time on a single core CPU. Moreover, the regular cubical structure allows us to obtain an efficient implementation for a multi-core architecture.

Introduction

Understanding a discrete volume can be addressed by determining its volume, its convexity, its diameter or any other geometrical descriptor. A higher level analysis can be made through topology, which tolerates continuous deformations. This could be seen as a less interesting approach, as we could not distinguish a sphere from a cube, but it actually furnishes a more essential information of the object. Homology is a powerful tool as its formalizes the concept of hole.

Holes of dimension 0, or 0-holes, correspond to connected components. 1-holes are tunnels or handles, which are particularly difficult to count in a volume depending on their shape. 2-holes correspond to voids in a volume. These notions can be generalized to higher dimensions, but they do not have an intuitive interpretation. We can compute the number of holes in each dimension or even draw them on the volume, though this is not useful with a complex shape.

Homology can be used for understanding an object without visualizing it, or to compare objects in a flexible way. It has been applied to dynamical systems [START_REF] Mischaikow | Conley index theory[END_REF][START_REF] Mrozek | Index pairs algorithms[END_REF], material science [START_REF] Day | Verified homology computations for nodal domains[END_REF][START_REF] Teramoto | Morphological characterization of the diblock copolymer problem with topological computation[END_REF], electromagnetism [START_REF] Gross | Electromagnetic Theory and Computation[END_REF][START_REF] Lotko | Efficient cohomology computation for electromagnetic modeling[END_REF], image understanding [START_REF] Allili | Topological analysis of shapes using Morse theory[END_REF][START_REF] Mrozek | Homological methods for extraction and analysis of linear features in multidimensional images[END_REF] and sensor networks [START_REF] Dlotko | Distributed computation of coverage by homological methods[END_REF].

In this article we aim at counting the number of holes (the Betti numbers) of a cubical complex embedded in a three-dimensional space. This is far from being an abstract work, as binary volumes (3D binary images, with voxels instead of pixels) can be transformed into equivalent cubical complexes. Our algorithm has a very specific input, since it cannot treat meshes or higher dimension cubical complexes, but it benefits from a good time complexity (linear) and a wide range of applications where data is structured in a lattice.

There have been a lot of works in computational homology in the last decades. Many of them [START_REF] Munkres | Elements of algebraic topology[END_REF][START_REF] Harker | Discrete morse theoretic algorithms for computing homology of complexes and maps[END_REF][START_REF] Peltier | Computation of homology groups and generators[END_REF] can compute the homology groups of more general spaces in cubical time. Computing only the Betti numbers (number of holes), which are the ranks of these groups, should be faster, but this has not been algorithmically proved. Delfinado and Edelsbrunner [START_REF] Jose | An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere[END_REF] introduce an algorithm with almost linear time complexity that computes the Betti numbers of a simplicial complex which is a subcomplex of a triangulation of S 3 . The software library RedHom [START_REF] Juda | CAPD::RedHom v2 -homology software based on reduction algorithms[END_REF] is optimized for computing the homology in the context of cubical complexes. Wagner [START_REF] Wagner | Efficient computation of persistent homology for cubical data[END_REF] also proposes an adapted algorithm for computing persistent homology on a cubical complex.

We propose an algorithm that is based on the computation of connected components and avoids any matrix manipulation. This is possible due to the Euler-Poincaré formula and the Alexander duality, which turn to be extraordinarily useful in the context of three-dimensional cubical complexes.

A simple description of the algorithm is given in Sect. 3. Then, we explain in Sect. 4 how to parallelize the computation by considering a different method for counting the connected components which is more adapted to the input data. Sections 5 and 6 explain the implementation of the algorithm and compare it with a previous software respectively.

Preliminaries

nD Cubical Complex

An elementary interval is an interval of the form [k, k + 1] or a degenerate in- terval [k, k],
where k ∈ Z. An elementary cube is the Cartesian product of n elementary intervals, and the number of non-degenerate intervals in this product is its dimension. An elementary cube of dimension d will be called d-cube for short. Given two elementary cubes p and q, we say that p is a face of q if p ⊂ q.

The Khalimsky coordinates of an elementary cube deduced from its Khalimsky coordinates. For a cube q we denote its Khalimsky coordinates by q[] and its ith component by q[i].

An nD cubical complex is a set of elementary cubes. The boundary of a dcube is the collection of its (d -1)-dimensional faces. By virtue of its regular structure, an nD cubical complex can be represented as an n-dimensional array (called CubeMap in [START_REF] Wagner | Efficient computation of persistent homology for cubical data[END_REF]), where the cubes are represented by their Khalimsky coordinates.

From now on we assume that cubes of a given nD cubical complex K have all positive coordinates bounded by integers w i (1 ≤ i ≤ n). A K is the binary n-dimensional array of size L := n i=1 (2w i + 1) where elementary cubes are represented by a Boolean equal to true associated to their Khalimsky coordinates. An element of the array with coordinates x = (x 1 , . . . , x n) is denoted by

A K [x 1] . . . [x n] or A[x] for short. The element A K [q[]] associated to the cube q is denoted by A K [q].
It is straightforward to provide an enumeration of Khalimsky coordinates in

n i=1 [0, 2w i].
Namely, there exists a bijection I :

n i=1 [0, 2w i] → [0, L -1]
. Such bijection I will be referred to as the index map and its image as the index set. For a cube q, I(q) means I(q[]) = I(q[1], . . . , q[n]).

The support of K, denoted by supp(K), is the nD cubical complex containing all the elementary cubes in n i=1 [0, w i]. Thus, A K encodes both K and supp(K)\ K.

Homology

A chain complex (C, d) is a sequence of R-modules C 0 , C 1 , . . . (called chain groups) and homomorphisms d 1 : C 1 → C 0 , d 2 : C 2 → C 1 , . . . (called differential
or boundary operators) such that d q-1 d q = 0, for all q > 0, where R is some ring, called the ground ring or ring of coefficients. In this paper we will fix R = Z 2 .

An nD cubical complex K induces a chain complex. C q is the free R-module generated by the q-cubes of K. Its elements (called q-chains) are formal sums of q-cubes with coefficients in Z 2 , so they can be interpreted as sets of q-cubes. The linear operator d q maps each q-cube to the sum of its (q -1)-dimensional faces.

A q-chain x is a cycle if d q (x) = 0, and a boundary if x = d q+1 (y) for some (q + 1)-chain y. By the property d q-1 d q = 0, every boundary is a cycle, but the reverse is not true: a cycle which is not a boundary contains a "hole". The qth homology group of the chain complex (C, d) contains the q-dimensional "holes": H(C) q = ker(d q)/im(d q+1). This set is a finite-dimensional vector space, so there is a basis typically formed by the holes of the complex, whose elements are called homology generators. The ranks of the homology groups are called the Betti numbers, which count the number of holes in each dimension.

There is a slightly different homology theory called reduced homology where d 0 is defined otherwise. Thus, the zeroth Betti number β 0 is decremented by one. This avoids exceptional cases in several theorems.

In this section we give a first presentation of our algorithm. It considers a restricted class of complexes: 3D cubical complexes. We explain in the following how we obtain each Betti number.

0th Betti number -It is well known that β 0 (K) is the number of connected components of K. This is easy to compute with a traversal of the complex.

2nd Betti number -Alexander duality relies the homology of a complex K of dimension 3 and its complementary in the three-dimensional sphere S 3 \ K.

Proposition 1 (Alexander duality) Let K be a 3D cubical complex. Then H q (K) and H 2-q (S 3 \ K) are isomorphic for reduced homology and cohomology.

As a consequence, β 2 (K) = β 0 (S 3 \ K) -1. That is, the number of voids in K is the number of connected components in the complementary minus one.

This result, which holds for more general spaces, is computationally interesting in the context of cubical complexes. First, the sphere S n is easy to build. Figure 1 shows the spheres S 1 and S 2 as cubical complexes. Also, the complementary of a cubical complex is obvious to compute given its regular structure. Figure 2 illustrates the complementary of a cubical complex.

We want to obtain the number of connected components (minus one) of S 3 \K for deducing β 2 (K). Nevertheless, we do not need to build S 3 \ K. It suffices to count the connected components in supp(K) \ K and consider only those which do not contain a cube in the boundary of supp(K). These connected components are connected to S 3 \ supp(K), thus making only one connected component in S 3 \ K. Note that this fact is far easier to understand for a 1D or a 2D cubical complex.

Fig. 2. A two-dimensional cubical complex K and its complementary S 2 \ K 1st Betti number -Once β 0 (K) and β 2 (K) are known, β 1 (K) is easy to obtain via the Euler-Poincaré formula. The Euler-Poincaré characteristic of a 3D cubical complex K is the alternating sum of its cubes. Formally,

χ(K) = k 0 -k 1 + k 2 -k 3 ,
where k q denotes the number of cubes of dimension q in K. This number, which is easy to compute, is a topological invariant.

Proposition 2 (Euler-Poincaré formula) Let K be a 3D cubical complex. Then χ(K) = β 0 (K) -β 1 (K) + β 2 (K). Therefore, β 1 (K) = β 0 (K) + β 2 (K) -χ(K).
Algorithm 1 combines these three ideas. It passes by all the elements of A K and traverses the connected components of K and supp(K) \ K. For the sake of simplicity we do not explicitly describe the computation of χ(K) in Algorithm 1. It can be obtained by adding χ ← χ + (-1) dim(p) to line 16. As each cube is connected to six other cubes in A K (except for the cubes in the boundary of A K), the complexity of the algorithm is O(n+6n) = O(n) where n is the number of cubes in supp(K).

Recursive version of the Algorithm

The core of the previous algorithm is the computation of connected components through a traversal of the three-dimensional array A K . This is difficult to parallelize because it uses a queue data structure. In this section we describe an algorithm for computing connected components of an nD cubical complex K in parallel. The algorithm total CPU utilization (i.e. work) is almost linear. It significantly uses the representation of a cubical complex as a multidimensional array A K with an index map I.

Algorithm 1 BettiViaCC

Input: K a 3D cubical complex; AK its associated binary array Output: The Betti numbers of K: β0, β1, β2

1: β0 ← 0, β2 ← 0 2: for all p ∈ AK not marked do 3: b ← false 4:

Q ← an empty queue 5:

Q.push(p); mark p 6:

while Q not empty do 7:

q ← Q.pop() 8:

if q belongs to the boundary of AK then 9:

b ← true 10:

end if 11:

for all q ′ 6-neighbor of q, AK [q ′] = AK [q], q ′ not marked do 12:

Q.push(q ′); mark q ′ 13:

end for 14:

end while 15:

if AK [p] = true then 16:

β0 ← β0 + 1 17:

else if b = false then 18:

β2 ← β2 + 1 19:

end if 20: end for 21: β1 ← β0 + β2χ(K) 22: return (β0, β1, β2)

In Sect. 3 we count connected components by traversing the connectivity graph of the cubical complex. Another well known approach to compute connected components is to use disjoint set data structure. The data structure maintains a collection S = { S 1 , . . . , S k } of disjoint sets. Each set in S is identified by a representative, which is a member of the set (see [START_REF] Thomas | Introduction to Algorithms[END_REF]Chapter 21]). The following operations may be performed on the disjoint set data structure C:

-C. makeSet(x) -creates a new set whose only member (and thus representative) is x. -C. find(x) -returns a pointer to the representative of the (unique) set containing x. -C. union(x, y) -merges the sets that contain x and y into a new set that is the union of these two sets.

To compute connected components of a cubical complex it is enough to call C. union(x, y) for each pair x, y of adjacent cubes. A parallel version of such algorithm requires synchronization, so in practice it cannot be implemented efficiently. However, the regular structure of a cubical complex allows us to propose a different approach where synchronization is not needed. The idea is to recursively cut the complex in two halves, find the connected components in each half and then merge them.

Let K be a cubical complex and I the index map of Khalimsky coordinates. Let J be a subset of the index set associated with K. We define K J := { q ∈ K | I(q) ∈ J }. We also define the left slice, right slice and middle slice of J in dimension d by x respectively as

S(J, x -, d) := { y ∈ J | I -1 (y)[d] < x } S(J, x + , d) := { y ∈ J | x ≤ I -1 (y)[d] } S(J, x, d) := { y ∈ J | x -1 ≤ I -1 (y)[d] ≤ x }.
For a j ∈ J we denote by cc J (j) the connected component of K J to which j belongs. Algorithm 2 computes recursively connected components of a cubical complex. Observe that at each step of the recursion the set J is split following some rule. We do not give an explicit description of the rule, but it should divide J into two sets of similar size by separating K J along alternate axes. We thus obtain three subsets that cover J, one of them intersecting the other two so we can merge the connected components computed on each side. The first two recursive steps (lines 4 and 5) work on independent data, so they can be executed in parallel. The third recursive step at line 6 always jumps to the line 8 (since J ≯ ǫ = ∞) and it depends on the previous two steps.

Algorithm 2 RecursiveCC

Input: K a 3D cubical complex; I its associated index map; J ⊂ I. Input: C a disjoint set data structure on the index set of K, such that C. find(i) =

C. find(j) for all i, j ∈ J. Input: Parameters: d ∈ Z and ǫ > 0. Output: For each pair i, j ∈ J we have ccJ (i) = ccJ (j) if and only if C. find(i) =

C. find(j). 1: if size of J > ǫ then 2:

d ← using d choose dimension for next slicing 3:

x ← choose slicing value in dimension d 4:

RecursiveCC(K, I, S(J, x-, d), d, ǫ, C) 5:

RecursiveCC(K, I, S(J, x + , d), d, ǫ, C) 6:

RecursiveCC(K, I, S(J, x, d), d, ∞, C) 7: else 8:

for all p ∈ KJ do 9:

for all q 2n-neighbor of p in KJ do 10:

C. union(I(p), I(q)) 11:

end for 12:

end for 13: end if Algorithm 3 computes the Betti numbers of a 3D cubical complex K. It computes the connected components of K and supp(K) \ K in two calls to Algorithm 2. Again, χ(K) can be computed during the traversal of the complex.

Algorithm 3 RecursiveBetti

Input: K a 3D cubical complex; I its associated index map. Input: Parameter ǫ > 0. Output: The Betti numbers of K: β0, β1, β2.

1: C1 ← a disjoint set for im I 2: for all q ∈ K do 3: C1. makeSet(I(q)) 4: end for 5: RecursiveCC(K, I, im I, 0, ǫ, C1) 6: β0 ← number of sets in C1 7: K0 ← supp(K) \ K 8: C0 ← a disjoint set for im I 9: for all q ∈ K0 do 10:

C0. makeSet(I(q)) 11: end for 12: RecursiveCC(K0, I, im I, 0, ǫ, C0) 13: r ← number of sets in C0 containing a cube in the boundary of supp(K) 14: β2 ← number of sets in C0 minus r 15: β1 ← β0 + β2χ(K) 16: return (β0, β1, β2)

Implementation

Algorithm 3 is implemented as a part of the CAPD::RedHom project [START_REF] Juda | RedHom[END_REF]. Our parallel version of the implementation uses Threading Building Blocks library [START_REF]Intel. Threading Building Blocks[END_REF]. A crucial part of the implementation is a data structure for efficient slicing of the index set. For this we use Boost.MultiArray, a library from Boost Project [START_REF]BoostCommunity[END_REF]. It is an implementation of a multidimensional array container. In our case the data structure contains the index set. It provides an efficient slicing operation implemented as views to the original container. We use it to implement the operation S from the algorithm. At each recursion step we take a direction an cut the multidimensional array in the middle of the direction.

The data structure provides a mapping from multidimensional indices (in our case Khalimsky coordinates) to the index set. Technically it is enough to implement a mapping from the set of indices to a linear space of memory [0, L-1] containing the value i at the ith position. Taking advantage of this fact, features of the C++ language, and Boost.MultiArray, we do not have to allocate memory for the index set. We get the index set and the slicing operation without any additional cost. Of course we can achieve it in many ways, however with our approach we can reuse well tested code.

Validation

Table 1 shows results of numerical experiments with the algorithm implementation. We compare also with standard approach for Betti numbers computa-tions using elementary reductions, coreduction, and Morse decomposition from CAPD::RedHom [START_REF] Juda | RedHom[END_REF]. All the computations were performed using one data structure, only algorithms vary.

Data sets N0001 and P0001 come from computer assisted proofs in dynamics. Data sets rand pP S were generated randomly, where S is the size of the grid and each 3-cube (together with its faces) is included with probability P. The data sets are in binary format, thus reading time can be omitted. Computations were performed on a 2,3 GHz Intel Core i7 (4 real cores, 8 virtual) with 16GB RAM. The results show that the parallel implementation is around 4 times faster than the sequential one. It suggest a perfect scalability with the number of real cores. Also, we see that for the new algorithm only grid size matters.

Conclusion

This paper introduces a linear algorithm that computes the Betti numbers of a 3D cubical complex. It counts the connected components of the complex and its complementary in S 3 and uses the Euler-Poincaré formula. The algorithm is specially conceived for cubical complex as it takes advantage of its regular structure both in a theoretical and a practical manner. It cannot be extended to 4D cubical complexes since the Euler-Poincaré formula does not suffices to obtain all the Betti numbers. An interesting issue that should be addressed in the near future is how to adapt this algorithm for simplicial complexes. The main problem is that we need a triangulation of the complementary of the complex in S 3 , which is not as easy as for cubical complexes.

The current implementation outperforms the existing software for computing Betti numbers on cubical complexes. It is available as a part of the CAPD::RedHom [START_REF] Juda | RedHom[END_REF] project. A more detailed comparison will be done in a forthcoming paper.

Fig. 1 .

 1 Fig. 1. Cubical complexes homeomorphic to S 1 and S 2 .

Table 1 .

 1 CPU time (format [h:]mm:ss) usage for cubical complexes. Computations with following algorithms from CAPD::RedHom: Alg. 3 parallel, Alg. 3 sequential, standard

	Parallel Sequential Standard

n i=1 [a i , b i] are (a 1 + b 1 , • • • , a n +b n).The dimension of an elementary cube and its faces can be easily

⋆ This research is supported by the Polish National Science Center under grant 2012/05/N/ST6/03621