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1 Aix-Marseille Université, CNRS, LSIS UMR 7296, Marseille (France)
2 University of Seville, Institute of Mathematics IMUS, Seville (Spain)

3 Institute of Computer Science and Computational Mathematics, Jagiellonian
University, Krakow (Poland)

Abstract. Betti numbers are topological invariants that count the num-
ber of holes of each dimension in a space. Cubical complexes are a class of
CW complex whose cells are cubes of different dimensions such as points,
segments, squares, cubes, etc. They are particularly useful for modeling
structured data such as binary volumes.
We introduce a fast and simple method for computing the Betti numbers
of a three-dimensional cubical complex that takes advantage on its reg-
ular structure, which is not possible with other types of CW complexes
such as simplicial or polyhedral complexes. This algorithm is also re-
stricted to three-dimensional spaces since it exploits the Euler-Poincaré
formula and the Alexander duality in order to avoid any matrix manipu-
lation. The method runs in linear time on a single core CPU. Moreover,
the regular cubical structure allows us to obtain an efficient implemen-
tation for a multi-core architecture.

Keywords: Cubical complex, Betti numbers, 3D, separable, computa-
tional topology, homology

1 Introduction

Understanding a discrete volume can be addressed by determining its volume,
its convexity, its diameter or any other geometrical descriptor. A higher level
analysis can be made through topology, which tolerates continuous deformations.
This could be seen as a less interesting approach, as we could not distinguish a
sphere from a cube, but it actually furnishes a more essential information of the
object. Homology is a powerful tool as its formalizes the concept of hole.

Holes of dimension 0, or 0-holes, correspond to connected components. 1-holes
are tunnels or handles, which are particularly difficult to count in a volume de-
pending on their shape. 2-holes correspond to voids in a volume. These notions

⋆ This research is supported by the Polish National Science Center under grant
2012/05/N/ST6/03621



can be generalized to higher dimensions, but they do not have an intuitive inter-
pretation. We can compute the number of holes in each dimension or even draw
them on the volume, though this is not useful with a complex shape.

Homology can be used for understanding an object without visualizing it,
or to compare objects in a flexible way. It has been applied to dynamical sys-
tems [13,15], material science [4,18], electromagnetism [8,7], image understanding
[1,14] and sensor networks [6].

In this article we aim at counting the number of holes (the Betti numbers) of
a cubical complex embedded in a three-dimensional space. This is far from being
an abstract work, as binary volumes (3D binary images, with voxels instead of
pixels) can be transformed into equivalent cubical complexes. Our algorithm has
a very specific input, since it cannot treat meshes or higher dimension cubical
complexes, but it benefits from a good time complexity (linear) and a wide range
of applications where data is structured in a lattice.

There have been a lot of works in computational homology in the last decades.
Many of them [16,9,17] can compute the homology groups of more general spaces
in cubical time. Computing only the Betti numbers (number of holes), which are
the ranks of these groups, should be faster, but this has not been algorithmically
proved. Delfinado and Edelsbrunner [5] introduce an algorithm with almost lin-
ear time complexity that computes the Betti numbers of a simplicial complex
which is a subcomplex of a triangulation of S3. The software library RedHom [12]
is optimized for computing the homology in the context of cubical complexes.
Wagner [19] also proposes an adapted algorithm for computing persistent ho-
mology on a cubical complex.

We propose an algorithm that is based on the computation of connected
components and avoids any matrix manipulation. This is possible due to the
Euler-Poincaré formula and the Alexander duality, which turn to be extraordi-
narily useful in the context of three-dimensional cubical complexes.

A simple description of the algorithm is given in Sect. 3. Then, we explain in
Sect. 4 how to parallelize the computation by considering a different method for
counting the connected components which is more adapted to the input data.
Sections 5 and 6 explain the implementation of the algorithm and compare it
with a previous software respectively.

2 Preliminaries

2.1 nD Cubical Complex

An elementary interval is an interval of the form [k, k + 1] or a degenerate in-
terval [k, k], where k ∈ Z. An elementary cube is the Cartesian product of n
elementary intervals, and the number of non-degenerate intervals in this prod-
uct is its dimension. An elementary cube of dimension d will be called d-cube
for short. Given two elementary cubes p and q, we say that p is a face of q if
p ⊂ q.

The Khalimsky coordinates of an elementary cube
∏n

i=1 [ai, bi] are (a1 +
b1, · · · , an+bn). The dimension of an elementary cube and its faces can be easily



deduced from its Khalimsky coordinates. For a cube q we denote its Khalimsky
coordinates by q[] and its ith component by q[i].

An nD cubical complex is a set of elementary cubes. The boundary of a d-
cube is the collection of its (d − 1)-dimensional faces. By virtue of its regular
structure, an nD cubical complex can be represented as an n-dimensional array
(called CubeMap in [19]), where the cubes are represented by their Khalimsky
coordinates.

From now on we assume that cubes of a given nD cubical complex K have
all positive coordinates bounded by integers wi (1 ≤ i ≤ n). AK is the binary
n-dimensional array of size L :=

∏n

i=1(2wi + 1) where elementary cubes are
represented by a Boolean equal to true associated to their Khalimsky coordi-
nates. An element of the array with coordinates x = (x1, . . . , xn) is denoted by
AK [x1] . . . [xn] or A[x] for short. The element AK [q[]] associated to the cube q
is denoted by AK [q].

It is straightforward to provide an enumeration of Khalimsky coordinates in∏n

i=1 [0, 2wi]. Namely, there exists a bijection I :
∏n

i=1 [0, 2wi]→ [0, L− 1]. Such
bijection I will be referred to as the index map and its image as the index set.
For a cube q, I(q) means I(q[]) = I(q[1], . . . , q[n]).

The support of K, denoted by supp(K), is the nD cubical complex containing
all the elementary cubes in

∏n

i=1 [0, wi]. Thus, AK encodes bothK and supp(K)\
K.

2.2 Homology

A chain complex (C, d) is a sequence of R-modules C0, C1, . . . (called chain

groups) and homomorphisms d1 : C1 → C0, d2 : C2 → C1, . . . (called differential

or boundary operators) such that dq−1dq = 0, for all q > 0, where R is some ring,
called the ground ring or ring of coefficients. In this paper we will fix R = Z2.

An nD cubical complex K induces a chain complex. Cq is the free R-module
generated by the q-cubes of K. Its elements (called q-chains) are formal sums
of q-cubes with coefficients in Z2, so they can be interpreted as sets of q-cubes.
The linear operator dq maps each q-cube to the sum of its (q − 1)-dimensional
faces.

A q-chain x is a cycle if dq(x) = 0, and a boundary if x = dq+1(y) for some
(q + 1)-chain y. By the property dq−1dq = 0, every boundary is a cycle, but the
reverse is not true: a cycle which is not a boundary contains a “hole”. The qth
homology group of the chain complex (C, d) contains the q-dimensional “holes”:
H(C)q = ker(dq)/im(dq+1). This set is a finite-dimensional vector space, so
there is a basis typically formed by the holes of the complex, whose elements
are called homology generators. The ranks of the homology groups are called the
Betti numbers, which count the number of holes in each dimension.

There is a slightly different homology theory called reduced homology where
d0 is defined otherwise. Thus, the zeroth Betti number β0 is decremented by one.
This avoids exceptional cases in several theorems.



3 The Algorithm

In this section we give a first presentation of our algorithm. It considers a re-
stricted class of complexes: 3D cubical complexes. We explain in the following
how we obtain each Betti number.

0th Betti number — It is well known that β0(K) is the number of connected
components of K. This is easy to compute with a traversal of the complex.

2nd Betti number — Alexander duality relies the homology of a complex K of
dimension 3 and its complementary in the three-dimensional sphere S3 \K.

Proposition 1 (Alexander duality) Let K be a 3D cubical complex. Then

Hq(K) and H2−q(S3 \K) are isomorphic for reduced homology and cohomology.

As a consequence, β2(K) = β0(S
3 \K) − 1. That is, the number of voids in K

is the number of connected components in the complementary minus one.
This result, which holds for more general spaces, is computationally inter-

esting in the context of cubical complexes. First, the sphere Sn is easy to build.
Figure 1 shows the spheres S1 and S2 as cubical complexes.

Fig. 1. Cubical complexes homeomorphic to S1 and S2.

Also, the complementary of a cubical complex is obvious to compute given its
regular structure. Figure 2 illustrates the complementary of a cubical complex.

We want to obtain the number of connected components (minus one) of S3\K
for deducing β2(K). Nevertheless, we do not need to build S3 \K. It suffices to
count the connected components in supp(K) \K and consider only those which
do not contain a cube in the boundary of supp(K). These connected components
are connected to S3 \ supp(K), thus making only one connected component in
S3 \K. Note that this fact is far easier to understand for a 1D or a 2D cubical
complex.



Fig. 2. A two-dimensional cubical complex K and its complementary S2 \K

1st Betti number — Once β0(K) and β2(K) are known, β1(K) is easy to ob-
tain via the Euler-Poincaré formula. The Euler-Poincaré characteristic of a 3D
cubical complex K is the alternating sum of its cubes. Formally,

χ(K) = k0 − k1 + k2 − k3,

where kq denotes the number of cubes of dimension q in K. This number, which
is easy to compute, is a topological invariant.

Proposition 2 (Euler-Poincaré formula) Let K be a 3D cubical complex.

Then χ(K) = β0(K)− β1(K) + β2(K).

Therefore, β1(K) = β0(K) + β2(K)− χ(K).

Algorithm 1 combines these three ideas. It passes by all the elements of AK

and traverses the connected components of K and supp(K) \K. For the sake of
simplicity we do not explicitly describe the computation of χ(K) in Algorithm 1.
It can be obtained by adding χ ← χ + (−1)dim(p) to line 16. As each cube is
connected to six other cubes in AK (except for the cubes in the boundary of
AK), the complexity of the algorithm is O(n+6n) = O(n) where n is the number
of cubes in supp(K).

4 Recursive version of the Algorithm

The core of the previous algorithm is the computation of connected components
through a traversal of the three-dimensional array AK . This is difficult to par-
allelize because it uses a queue data structure. In this section we describe an
algorithm for computing connected components of an nD cubical complex K
in parallel. The algorithm total CPU utilization (i.e. work) is almost linear. It
significantly uses the representation of a cubical complex as a multidimensional
array AK with an index map I.



Algorithm 1 BettiViaCC

Input: K a 3D cubical complex; AK its associated binary array
Output: The Betti numbers of K: β0, β1, β2

1: β0 ← 0, β2 ← 0
2: for all p ∈ AK not marked do

3: b← false
4: Q← an empty queue
5: Q.push(p); mark p

6: while Q not empty do

7: q ← Q.pop()
8: if q belongs to the boundary of AK then

9: b← true
10: end if

11: for all q′ 6-neighbor of q, AK [q′] = AK [q], q′ not marked do

12: Q.push(q′); mark q′

13: end for

14: end while

15: if AK [p] = true then

16: β0 ← β0 + 1
17: else if b = false then

18: β2 ← β2 + 1
19: end if

20: end for

21: β1 ← β0 + β2 − χ(K)
22: return (β0, β1, β2)

In Sect. 3 we count connected components by traversing the connectivity
graph of the cubical complex. Another well known approach to compute con-
nected components is to use disjoint set data structure. The data structure
maintains a collection S = {S1, . . . , Sk } of disjoint sets. Each set in S is identi-
fied by a representative, which is a member of the set (see [3, Chapter 21]). The
following operations may be performed on the disjoint set data structure C:

– C.makeSet(x) - creates a new set whose only member (and thus representa-
tive) is x.

– C. find(x) - returns a pointer to the representative of the (unique) set con-
taining x.

– C. union(x, y) - merges the sets that contain x and y into a new set that is
the union of these two sets.

To compute connected components of a cubical complex it is enough to call
C. union(x, y) for each pair x, y of adjacent cubes. A parallel version of such
algorithm requires synchronization, so in practice it cannot be implemented effi-
ciently. However, the regular structure of a cubical complex allows us to propose
a different approach where synchronization is not needed. The idea is to recur-
sively cut the complex in two halves, find the connected components in each half
and then merge them.



Let K be a cubical complex and I the index map of Khalimsky coordi-
nates. Let J be a subset of the index set associated with K. We define KJ :=
{ q ∈ K | I(q) ∈ J }. We also define the left slice, right slice and middle slice of
J in dimension d by x respectively as

S(J, x
−
, d) := { y ∈ J | I−1(y)[d] < x }

S(J, x+, d) := { y ∈ J | x ≤ I−1(y)[d] }

S(J, x, d) := { y ∈ J | x− 1 ≤ I−1(y)[d] ≤ x }.

For a j ∈ J we denote by ccJ(j) the connected component of KJ to which j
belongs. Algorithm 2 computes recursively connected components of a cubical
complex. Observe that at each step of the recursion the set J is split following
some rule. We do not give an explicit description of the rule, but it should divide
J into two sets of similar size by separating KJ along alternate axes. We thus
obtain three subsets that cover J , one of them intersecting the other two so
we can merge the connected components computed on each side. The first two
recursive steps (lines 4 and 5) work on independent data, so they can be executed
in parallel. The third recursive step at line 6 always jumps to the line 8 (since
J ≯ ǫ =∞) and it depends on the previous two steps.

Algorithm 2 RecursiveCC

Input: K a 3D cubical complex; I its associated index map; J ⊂ I.
Input: C a disjoint set data structure on the index set of K, such that C. find(i) 6=

C. find(j) for all i, j ∈ J .
Input: Parameters: d ∈ Z and ǫ > 0.
Output: For each pair i, j ∈ J we have ccJ(i) = ccJ(j) if and only if C. find(i) =

C. find(j).
1: if size of J > ǫ then

2: d← using d choose dimension for next slicing
3: x← choose slicing value in dimension d

4: RecursiveCC(K, I, S(J, x−, d), d, ǫ, C)
5: RecursiveCC(K, I, S(J, x+, d), d, ǫ, C)
6: RecursiveCC(K, I, S(J, x, d), d,∞, C)
7: else

8: for all p ∈ KJ do

9: for all q 2n-neighbor of p in KJ do

10: C. union(I(p), I(q))
11: end for

12: end for

13: end if

Algorithm 3 computes the Betti numbers of a 3D cubical complex K. It
computes the connected components of K and supp(K) \ K in two calls to
Algorithm 2. Again, χ(K) can be computed during the traversal of the complex.



Algorithm 3 RecursiveBetti

Input: K a 3D cubical complex; I its associated index map.
Input: Parameter ǫ > 0.
Output: The Betti numbers of K: β0, β1, β2.
1: C1 ← a disjoint set for im I

2: for all q ∈ K do

3: C1.makeSet(I(q))
4: end for

5: RecursiveCC(K, I, im I, 0, ǫ, C1)
6: β0 ← number of sets in C1

7: K0 ← supp(K) \K
8: C0 ← a disjoint set for im I

9: for all q ∈ K0 do

10: C0.makeSet(I(q))
11: end for

12: RecursiveCC(K0, I, im I, 0, ǫ, C0)
13: r ← number of sets in C0 containing a cube in the boundary of supp(K)
14: β2 ← number of sets in C0 minus r

15: β1 ← β0 + β2 − χ(K)
16: return (β0, β1, β2)

5 Implementation

Algorithm 3 is implemented as a part of the CAPD::RedHom project [11].
Our parallel version of the implementation uses Threading Building Blocks li-
brary [10]. A crucial part of the implementation is a data structure for efficient
slicing of the index set. For this we use Boost.MultiArray, a library from Boost
Project [2]. It is an implementation of a multidimensional array container. In our
case the data structure contains the index set. It provides an efficient slicing op-
eration implemented as views to the original container. We use it to implement
the operation S from the algorithm. At each recursion step we take a direction
an cut the multidimensional array in the middle of the direction.

The data structure provides a mapping from multidimensional indices (in
our case Khalimsky coordinates) to the index set. Technically it is enough to
implement a mapping from the set of indices to a linear space of memory [0, L−1]
containing the value i at the ith position. Taking advantage of this fact, features
of the C++ language, and Boost.MultiArray, we do not have to allocate memory
for the index set. We get the index set and the slicing operation without any
additional cost. Of course we can achieve it in many ways, however with our
approach we can reuse well tested code.

6 Validation

Table 1 shows results of numerical experiments with the algorithm implemen-
tation. We compare also with standard approach for Betti numbers computa-



tions using elementary reductions, coreduction, and Morse decomposition from
CAPD::RedHom [11]. All the computations were performed using one data struc-
ture, only algorithms vary.

Data sets N0001 and P0001 come from computer assisted proofs in dynamics.
Data sets rand pP S were generated randomly, where S is the size of the grid and
each 3-cube (together with its faces) is included with probability P. The data
sets are in binary format, thus reading time can be omitted. Computations were
performed on a 2,3 GHz Intel Core i7 (4 real cores, 8 virtual) with 16GB RAM.
The results show that the parallel implementation is around 4 times faster than
the sequential one. It suggest a perfect scalability with the number of real cores.
Also, we see that for the new algorithm only grid size matters.

Table 1. CPU time (format [h:]mm:ss) usage for cubical complexes. Computations
with following algorithms from CAPD::RedHom: Alg. 3 parallel, Alg. 3 sequential,
standard

Parallel Sequential Standard

Data set Grid size Number of cells CPU CPU CPU

N0001 2563 75357994 0:23 1:18 1:31

P0001 2563 75559573 0:23 1:18 1:39

rand p25 256 2563 75897341 0:22 1:13 3:35:22

rand p50 256 2563 110450571 0:23 1:15

> 4h
rand p75 256 2563 127326478 0:23 1:17
rand p25 384 3843 256006045 1:21 4:12
rand p50 384 3843 372383238 1:18 4:17
rand p75 384 3843 429007477 1:17 4:15

7 Conclusion

This paper introduces a linear algorithm that computes the Betti numbers of
a 3D cubical complex. It counts the connected components of the complex and
its complementary in S3 and uses the Euler-Poincaré formula. The algorithm
is specially conceived for cubical complex as it takes advantage of its regular
structure both in a theoretical and a practical manner. It cannot be extended
to 4D cubical complexes since the Euler-Poincaré formula does not suffices to
obtain all the Betti numbers.

An interesting issue that should be addressed in the near future is how to
adapt this algorithm for simplicial complexes. The main problem is that we need
a triangulation of the complementary of the complex in S3, which is not as easy
as for cubical complexes.

The current implementation outperforms the existing software for computing
Betti numbers on cubical complexes. It is available as a part of the CAPD::RedHom
[11] project. A more detailed comparison will be done in a forthcoming paper.
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