
HAL Id: hal-01341037
https://amu.hal.science/hal-01341037v1

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cellular Skeletons: a New Approach to Topological
Skeletons with Geometric Features

Aldo Gonzalez-Lorenzo, Alexandra Bac, Jean-Luc Mari, Pedro Real

To cite this version:
Aldo Gonzalez-Lorenzo, Alexandra Bac, Jean-Luc Mari, Pedro Real. Cellular Skeletons: a New Ap-
proach to Topological Skeletons with Geometric Features. 16th International Conference on Computer
Analysis of Images and Patterns (CAIP 2015), Sep 2015, La Valette, Malta. pp.616-627, �10.1007/978-
3-319-23117-4_53�. �hal-01341037�

https://amu.hal.science/hal-01341037v1
https://hal.archives-ouvertes.fr


Cellular Skeletons:
a New Approach to Topological Skeletons

with Geometric Features

Aldo Gonzalez-Lorenzo1,2, Alexandra Bac1, Jean-Luc Mari1, and Pedro Real2
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Abstract. This paper introduces a new kind of skeleton for binary vol-
umes called the cellular skeleton. This skeleton is not a subset of voxels
of a volume nor a subcomplex of a cubical complex: it is a chain complex
together with a reduction from the original complex.
Starting from the binary volume we build a cubical complex which rep-
resents it regarding 6 or 26-connectivity. Then the complex is thinned
using the proposed method based on elementary collapses, which pre-
serves significant geometric features. The final step reduces the number
of cells using Discrete Morse Theory. The resulting skeleton is a reduction
which preserves the homology of the original complex and the geometri-
cal information of the output of the previous step.
The result of this method, besides its skeletonization content, can be
used for computing the homology of the original complex, which usually
provides well shaped homology generators.

1 Introduction

The notion of skeleton (or medial axis) was introduced by H. Blum in 1967
[Blu67]. Given a subset S ⊂ Rn, its medial axis is the set of all the points in S
that are centres of maximal balls included in S. It is a good descriptor of shape, it
is thin, it has the same type of homotopy as S (one can be continuously deformed
into the other) and it is reversible (we can reconstruct S by using the distance
of each point to the boundary).

Skeletons are widely used for various applications such as video tracking
[GSdA+09], shape recognition [YWZ08], surface sketching [Mar09] and in many
other scientific domains.

In the discrete context there is no unique equivalent to the continuous defini-
tion. A discrete medial axis gives a skeleton which is not homotopically equivalent
to the discrete object. Discrete skeletons are usually based on the thinning of
the object, using mathematical morphology or parallel approaches: simple points
[KR89], simple P-points [LB07], critical kernels [CB14]. The given skeleton is a
subset of voxels, much smaller, which is homotopically equivalent and should pre-
serve in an uncertain way the geometrical features of the object. There is another
class of skeletons which first computes a cubical complex associated to an ob-
ject and then selects a subcomplex (see [CC09, LCLJ10, Cou11, Cou13, DS14]).



We must note that geometrical preservation is more intuitive or heuristic in the
context of discrete skeletons than in the continuous one. Hence, all previous
approaches exist, with their respective strengths and weaknesses.

This paper presents a three-step method:

1. Starting from a binary volume (a set of voxels in a regular grid), we define
its associated cubical complex. We propose two different constructions which
encode 6 and 26-connectivity. These associated cubical complexes were sep-
arately defined in [CC09, LCLJ10]

2. We compute a skeleton of this cubical complex. We propose a method strongly
based on [LCLJ10] which performs elementary collapses which are encoded
in a discrete gradient vector field (DGVF). It is a simple algorithm producing
satisfying results. This step can also be addressed with the algorithms found
in [LCLJ10, DS14] or in [CC09, Cou11, Cou13] given a fixed parameter. As
a result, the shape of the skeleton is defined

3. This step is completely new. Given the reduced cubical complex, we extend
the previous DGVF in order to obtain a reduction (see [Ser92]) between the
chain complex of the original cubical complex and a reduced one, with the
property of maintaining the shape of the skeleton computed in the second
step.

Our approach presents several advantages: the topology preservation through-
out the thinning is guaranteed by the Discrete Morse Theory; our method disso-
ciates connectivity and skeleton extraction, thus the thinning algorithm becomes
independent of the connectivity relation; the obtained reduction accelerates the
computation of its homology since the reduced complex contains fewer cells.
Moreover, starting the homology computation from this cellular skeleton should
produce well shaped homology generators, as they are included in the skeleton.
This reveals an advantage of computing homology using Discrete Morse Theory:
we can control the shape of the homology generators.

In Sect. 2, we introduce all the necessary definitions for understanding our
method. In Sect. 3, we describe our approach. Section 4 shows some results of
our framework on some binary volumes. We finish this paper by presenting our
conclusion and our future perspectives.

2 Preliminaries

2.1 Binary Volumes and Cubical Complexes

A 3D binary volume is a set of voxels centred on integer coordinates. We will
describe it by the set of the coordinates of its elements.

The rest of this section is derived from [KMM04]. For a deeper understanding
of these concepts, the reader can refer to it. An elementary interval is an interval
of the form [k, k+1] (nondegenerate) or a set {k} (degenerate), also denoted as
[k, k], where k ∈ Z. An elementary cube in Rn is the Cartesian product of n
elementary intervals, and the number of nondegenerate intervals in this product



is its dimension. An elementary cube of dimension q will be called q-cube for
short, or even q-cell, since cubical complexes are a special kind of cell complexes.

Given two elementary cubes P and Q, we say that P is a face of Q if P ⊂ Q
and we note it P < Q. It is a primary face if the difference of their dimensions is
1. The definitions of the dual concepts coface and primary coface are immediate.

A cubical complex is a set of elementary cubes with all of their faces. The
boundary of an elementary cube is the collection of its primary faces.

A cubical complex can be completely described by its Hasse diagram. It is a
directed graph whose vertices are all the elementary cubes, and whose arrows go
from each cube to its primary faces. In this paper we will usually not make the
distinction between the vertices and the elementary cubes they represent, so we
will mix the terms vertex, cube and cell.

2.2 Chain Complexes

A chain complex (C∗, d∗) is a sequence of R-modules C0, C1, . . . (called chain
groups) and homomorphisms d1 : C1 → C0, d2 : C2 → C1, . . . (called differential
or boundary operators) such that dq−1dq = 0,∀q > 0, where R is some ring,
called the ground ring or ring of coefficients.

Given a cubical complex, we define its chain complex (with coefficients in
Z2) as follows:

– Cq is the free group generated by the q-cubes of the complex. Their elements
are called q-chains.

– dq gives the “algebraic” boundary, which is the sum of the primary faces of
the q-cubes.

2.3 Discrete Morse Theory

Discrete Morse Theory was introduced by Robin Forman as a discretization of
the Morse Theory [For02]. The main idea is to obtain some homological informa-
tion by means of a function defined on the complex. This function is equivalent
to a discrete gradient vector field and we will rather use this notion.

A discrete vector field on a cubical complex is a matching on its Hasse di-
agram, that is a collection of edges such that no two of them have a vertex in
common. From a Hasse diagram and a discrete vector field we can define a Morse
graph: it is a graph similar to the Hasse diagram except for the arrows contained
in the matching, which are reverted. These arrows will be called integral arrows,
and the others, differential arrows.

A V-path is a path on the Morse graph which alternates between integral
and differential arrows. A discrete gradient vector field is a discrete vector field
which does not contain any closed V-path. A critical vertex (or critical cell) is
a vertex which is not paired by the matching. Figure 1 shows a cubical complex
with a DGVF.

A DGVF can be given by a set of elementary collapses. An elementary col-
lapse [Whi50] consist of removing a free pair from a cell complex, that is a cell



Fig. 1: A DGVF over a cubical complex. Red segments represent integral ar-
rows going from one cell to some of its primary cofaces. The critical cells are
represented in blue.

with a primary face which does not have any other coface. A collapse is a se-
quence of elementary collapses. The homotopy type of a complex is invariant
under collapses. The free pairs of a collapse define a DGVF.

2.4 Reduction

The Effective Homology theory [Ser92] provides a tool that establishes a strong
relation between two chain complexes, called reduction. Formally, a reduction
between two chain complexes (C∗, d∗) and (C ′∗, d

′
∗) is a triple of homomorphisms

(h∗, f∗, g∗) such that:

– hq : Cq → Cq+1 for every q ≥ 0
– fq : Cq → C ′q is a chain map (fd = d′f)
– gq : C ′q → Cq is also a chain map (gd′ = dg)
– gf = 1− dh− hd
– fg = 1C′

– hh = hf = hg = 0

This notion is a special case of chain contraction [EL53] or strong deformation
retraction data [LS87]. It is a usual tool for reducing chain complexes in order to
compute their homology. We will use it to define the Morse complex of a cubical
complex endowed with a DGVF. The exact definition is given in [GBMR14].
Roughly speaking, the Morse complex is a cell complex composed of the critical
cells, which is homotopically equivalent to the original cubical complex.

3 Our Framework

3.1 Overview

In this section we present the structure of our framework. It should be noted that,
although the algorithms are designed for 3D volumes, they can be generalized
to any dimension: one only needs to replace parameter 3 by n.



Let us briefly recall the structure of our approach, previously described in the
introduction. We start with a binary 3D volume. Depending of the connectivity
relation which we want to use (6 or 26), we build its associated cubical complex
with one of the methods explained in Sect. 3.2. Next, we make a homotopic thin-
ning of the cubical complex based on elementary collapses encoded in a DGVF.
Finally we minimize the number of cells in the Morse complex by preserving its
shape in Algorithm 4.

The final result is a cellular skeleton: a reduction from the original complex
to a reduced one. Then we give a representation of this skeleton by showing the
cells of the chain f(σ) (see Sect. 2.4) for every critical cell.

3.2 Construction of the Cubical Complex: Choosing the
Connectivity

As explained earlier, the first step of our approach consists in building the cubical
complex associated to the digital volume and the connectivity relation chosen.
Hence, there are two encodings: one for 6-connectivity (that is 2n-connectivity
in dimension n) and other for 26-connectivity ((3n − 1)-connectivity). Figure 2
illustrates these two cubical complexes associated to the same binary volume.

Fig. 2: Left: a binary volume. Center: its primal associated cubical complex.
Right: its dual cubical complex

The primal associated cubical complex. We encode a binary volume equipped
with 26-connectivity into a cubical complex (called primal associated cubical
complex ). In this case, the construction is quite elementary as every voxel x =
(x1, x2, x3) generates the 3-cube [x1, x1 + 1] × [x2, x2 + 1] × [x3, x3 + 1] and all
its faces. This method was already presented in [CC09].

The dual associated cubical complex. Another approach consists in en-
coding a binary volume equipped with 6-connectivity into a cubical complex
(called dual associated cubical complex ). Let us first adapt the notion of clique
to our context: a d-clique is a maximal (in the sense of inclusion) set of voxels
such that their intersection is a d-cube. First, for every voxel (in fact 3-clique)
x = (x1, x2, x3) of the volume, we add the 0-cube σ = [x1]× [x2]× [x3]. Then, for



every d-clique (d < 3) in the volume, we add to the cubical complex a (3 − d)-
cube such that its vertices are the voxels of the d-clique. This approach was used
in [LCLJ10].

3.3 Homotopic Thinning Algorithm

This step performs a homotopic thinning of the cubical complex. This is done by
establishing a DGVF, which can be seen as a set of elementary collapses (deletion
of free pairs). Actually, this DGVF describes the relation between the original
complex and the thinned one (the Morse complex) in terms of a reduction. Let
us point out that our approach does not have to deal with simple points, critical
kernels, etc.

A simple thinning algorithm with satisfying results was given in [LCLJ10].
The algorithm is described in three steps:

Step 1: Thinning Perform an iterative thinning: at each iteration, all free pairs
are identified and then collapsed while it is possible. For every cell σ, I(σ)
is the first iteration after which σ has no cofaces and R(σ) is the iteration
in which σ is removed. If I(σ) is defined,

Mabs(σ) = R(σ)− I(σ) and Mrel(σ) = 1− I(σ)

R(σ)

Step 2: Clustering Given some thresholds εqabs, ε
q
rel and τ q (k = 1, 2), consider

the set B of the cells scoring higher than εqabs and εqrel. Remove from this set
those cells whose connected component size is fewer than τ q.

Step 3: Thinning Repeat the first step while maintaining the cells in B.

Note that when we identify all the free pairs, we can find several pairs (τ >
σ1), (τ > σ2), . . . and we must choose one of them. This choice was defined
as arbitrary in [LCLJ10] and it was pointed out that this should be studied.
Our contribution in this step is an alternative to the simple iterative collapse
which makes some of these collapses order-independent. It is described in detail
in Algorithm 2, which calls Algorithm 1.

Indeed, for each elementary collapse between a maximal cell τ and one of its
primary faces σ1, . . . , σn, we must choose one of them. We partially solve this
problem by performing multiple elementary collapses (see Algorithm 1) in the
same iteration in order to remove some of these cells. Sometimes the choice of
the cell σ1 is irrelevant, as shown in Fig. 3. This seems to be related to the notion
of simple cell [DS14, Def. 3.3].



Algorithm 1 AdvancedCollapse

Require: K a cubical complex; [τ, σ1, . . . , σn] cells such that (τ > σi) are free pairs;
it the iteration; R, I two maps over K; V a DGVF over K.

Ensure: R′, I ′, V ′ extensions of R, I,V ′.
1: V ′ ← V, R′ ← R, I ′ ← I, Q an empty queue
2: V ′ ← (σ1, τ); R′(σ1), R′(τ)← it
3: for all σi, i = 2, . . . , n do
4: I ′(σi)← it

5: for all ρ < σ critical primary face do
6: Q← ρ

7: while Q not empty do
8: ρ← Q, C ← set of its critical primary cofaces
9: if C is empty then

10: Make an elementary collapse if there exists π < ρ critical primary face with
only one critical coface; update V ′, R′ and I ′

11: if C = {σi} then
12: V ′ ← (ρ, σi); R

′(ρ), R′(σi)← it
13: for all ρ′ < σi critical primary face do
14: Q← ρ′

return (R′, I ′,V ′)

Fig. 3: Up: the choice of the first elementary collapse does not affect the collapse.
Down: only the two first (left and center) collapses are independent of the first
elementary collapse. In such a situation, a choice is necessary.

3.4 Cell Clustering: Minimizing the Number of Cells

After the previous step, the shape of the skeleton is already defined and we have
reduced the number of cubes. Nevertheless, this can be improved. Algorithm 4,
which calls Algorithm 3, describes this step.

This step, which is the main novelty of this article, has the following property.
Let V be the DGVF computed at step 2 and V ′ its extension returned at the end



Algorithm 2 Alternative to Step 1: Thinning

Require: K a cubical complex.
Ensure: R, I two maps K; V a DGVF over K.
1: it← 0
2: M ← set of the maximal critical cells (without critical cofaces)
3: for all σ ∈M do
4: I(σ)← it, if it is not defined

5: repeat
6: it← it+ 1
7: for all τ ∈M of dimension > 0 do
8: (τ, σ1), . . . , (τ, σn)← the free pairs containing τ
9: (R, I,V)← AdvancedCollapse(K, [τ, σ1, . . . , σn] , it, R, I,V)

10: M ← set of the maximal critical cells
11: for all σ ∈M do
12: I(σ)← it, if it is not defined

13: until idempotency
14: return (R, I,V)

Algorithm 3 BlockedCollapse

Require: K a cubical complex, V a DGVF over K, B a set of (blocked) cells
Ensure: V ′ an extension of V
1: V ′ ← V
2: FreePairs ← ∅
3: for all critical cell σ ∈ K not in B do
4: if σ has only one critical primary coface τ not in B then
5: FreePairs ← (σ, τ)

6: for all (σ, τ) in FreePairs do
7: if τ is critical then
8: V ′ ← (σ, τ)

return V ′

of the step 3: for each critical cell σ of V, there exists one and only one critical
cell σ′ of V ′ such that σ appears in the chain f(σ).

A direct consequence of this property is that when we visualize the chains
f(Cr) (Cr the set of critical cells in V ′), we obtain the skeleton computed at
step 2. Hence, this DGVF preserves the geometric structure of V ′.

Algorithm 4 has two motivations:

– Following the previous property, by displaying the chains f(Cr) we obtain a
cell complex homotopically equivalent to the initial cubical complex, in which
the q-cells are unions of q-cubes. This can be considered as a classification
of the skeleton in terms of manifolds.

– This step accelerates a later homology computation based on the reduction
induced by the resulting DGVF. Moreover, as homology generators are con-
tained in the skeleton, they are supposed to be well shaped, according to the
geometric properties of the skeleton.



Algorithm 4 CellClustering

Require: K a cubical complex endowed with a DGVF V
Ensure: V ′ an extension of V.
1: V ′ ← V
2: FinalCells ← ∅
3: for q = 2, 1 do
4: BlockedCells ← ∅
5: for all critical (q − 1)-cell σ ∈ K do
6: if σ has 6= 2 critical primary cofaces then
7: BlockedCells ← σ
8: repeat
9: Take any critical q-cell γ not in FinalCells

10: FinalCells ← γ
11: repeat
12: V ′ ← BlockedCollapse(K,V ′, BlockedCells ∪ FinalCells)
13: until idempotency
14: until idempotency

return V ′

4 Validation and Discussion

Our algorithms have been implemented in C++ using the library DGtal [DGt].
In the following we only consider the dual associated cubical complex. Also,

as in [LCLJ10] we will consider the thresholds εqabs = 0.05 · L, εqrel = 0.05 and
τ q = (0.05 · L)k, where L is the width of the bounding box.

Seeing points or edges belonging to big cellular skeletons can be difficult.
Hence, we propose a voxelized version of the cellular skeleton. Its construction is
quite simple: every cubical cell [a1, a2]× [b1, b2]× [c1, c2] produces all the possible
voxels (a1, b1, c1), (a2, b1, c1), (a1, b2, c1), (a2, b2, c1), (a1, b1, c2), . . .. These voxels
are coloured following the dimension of the cubical cell which created them: red
for 2-cubes, green for 1-cubes and blue for 0-cubes.

Figure 4 compares some cellular skeletons obtained with our algorithm and
[LCLJ10] over some voxels sets. Let us remark that both give similar results,
even on the third example, which does not keep all the fingers. There is the need
to study further how different fixed orders in the elementary collapses affect both
algorithms. Also, we observe that upper skeletons are thinner. Hence, we intend
to study whether we can obtain even more similar skeletons by adjusting the
thresholds.

5 Conclusion and Future Perspectives

The present paper introduces a new kind of skeleton for binary volumes which
is a chain complex together with a reduction, which is obtained by a three-step
method. It works for different connectivity relations and it does not make use
of look-up tables. Our main contribution is the third step, which is completely



new and provides an alternative skeleton representation, synthesizing further
homology computations and geometric representation (each cell in the cellular
skeleton actually stands for a piece of manifold in the geometric skeleton).

Our future goals are:

– to better understand the difference between choosing the primal or the dual
associated cubical complex. The primal associated cubical complex contains
more cells, and this can affect the complexity of our algorithms;

– to study different thresholds for the second step. Since it differs from [LCLJ10],
we need to study further appropriate thresholds;

– to estimate the complexity of our method.
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Fig. 4: Top: cellular skeletons computed using the proposed method. Bottom:
cellular skeletons computed with the algorithm in [LCLJ10].


