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ABSTRACT

Convex nonnegative matrix factorization (CNMF) is a variant
of nonnegative matrix factorization (NMF) in which the com-
ponents are a convex combination of atoms of a known dic-
tionary. In this contribution, we propose to extend CNMF to
the case where the data matrix and the dictionary have miss-
ing entries. After a formulation of the problem in this context
of missing data, we propose a majorization-minimization al-
gorithm for the solving of the optimization problem incurred.
Experimental results with synthetic data and audio spectro-
grams highlight an improvement of the performance of re-
construction with respect to standard NMF. The performance
gap is particularly significant when the task of reconstruction
becomes arduous, e.g. when the ratio of missing data is high,
the noise is steep, or the complexity of data is high.

Index Terms— matrix factorization, nonnegativity, low-
rankness, matrix completion, spectrogram inpainting

1. INTRODUCTION

Convex NMF (CNMF) [1] is a special case of nonnegative
matrix factorization (NMF) [2], in which the matrix of com-
ponents is constrained to be a linear combination of atoms
of a known dictionary. The term “convex” refers to the con-
straint of the linear combination, where the combination co-
efficients forming each component are nonnegative and sum
to 1. Compared to the fully unsupervised NMF setting, the
use of known atoms is a source of supervision that may guide
learning based on this additional data: in particular, an inter-
esting case of CNMF consists in auto-encoding the data them-
selves, by defining the atoms as the data matrix. CNMF has
been of interest in a number of contexts, such as clustering,
data analysis, face recognition, or music transcription [1, 3].
It is also related to the self-expressive dictionary-based repre-
sentation proposed in [4].

An issue that has not yet been addressed is when the
data matrix has missing coefficients. Such an extension of
CNMF is worth being considered, as it opens the way to
data-reconstruction settings with nonnegative low-rank con-
straints, which covers several relevant applications. One

˚This work was supported by ANR JCJC program MAD (ANR- 14-
CE27-0002).

example concerns the field of image or audio inpainting [5, 6,
7, 8], where CNMF may improve the current reconstruction
techniques. In inpainting of audio spectrograms for example,
setting up the dictionary to be a comprehensive collection of
notes from a specific instrument may guide the factorization
toward a realistic and meaningful decomposition, increasing
the quality of the reconstruction of the missing data. In this
contribution, we also consider the case where the dictionary
may have missing coefficients itself.

The paper is organized as follows. Section 2 formulates
CNMF in the presence of missing entries in the data ma-
trix and in the dictionary. Section 3 describes the proposed
majorization-minimization (MM) algorithm. Sections 4 and 5
report experimental results with synthetic data and audio
spectrograms.

2. CONVEX NONNEGATIVE MATRIX
FACTORIZATION WITH MISSING DATA

2.1. Notations and definitions

For any integer N , the integer set t1, 2, . . . , Nu is denoted by
rN s. The coefficients of a matrix A P RMˆN are denoted
by either amn or rAsmn. The element-wise matrix product,
matrix division and matrix power are denoted by A.B, A

B
and A.γ , respectively where A and B are matrices with same
dimensions and γ is a scalar. 0 and 1 denote vectors or ma-
trices composed of zeros and ones, respectively, with dimen-
sions that can be deduced from the context. The element-wise
negation of a binary matrix M is denoted by M̄ fi 1´M.

2.2. NMF and Convex NMF

NMF consists in approximating a data matrix V P RFˆN` as
the product WH of two nonnegative matrices W P RFˆK`

and H P RKˆN` . Often, K ă min pF,Nq, such that WH
is a low-rank approximation of V. Every sample vn, the n-
th column of V, is thus decomposed as a linear combination
of K elementary components or patterns w1, . . . ,wK P RF`,
the columns of W. The coefficients of the linear combination
are given by the n-th column hn of H.

In [9] and [10], algorithms have been proposed for the un-
supervised estimation of W and H from V, by minimization
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of the cost functionDβ pV|WHq “
ř

fn dβ pvfn|rWHsfnq,
where dβ px|yq is the β-divergence defined as:

dβ px|yq fi
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’
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’

%

1
βpβ´1q

`

xβ ` pβ ´ 1q yβ ´ βxyβ´1
˘

for β P Rz t0, 1u
x log x

y ´ x` y for β “ 1
x
y ´ log x

y ´ 1 for β “ 0

(1)

When ill-defined, we set by convention dβp0|0q “ 0.
CNMF is a variant of NMF in which W “ SL. S “

rs1, . . . , sP s P RFˆP` is a nonnegative matrix of atoms and
L “ rl1, . . . , lKs P RPˆK` is the so-called labeling matrix.
Each dictionary element wk is thus equal to Slk, with usu-
ally P ąą K, and the data is in the end decomposed as
V “ SLH. The scale indeterminacy between L and H may
be lifted by imposing }lk}1 “ 1, in which case wk is pre-
cisely a convex combination of the elements of the subspace
S. CNMF can be related to the so-called archetypal analysis
[11], but without considering any nonnegativity constraint.

The use of known examples in S can then be seen as a
source of supervision that guides learning. A special case of
CNMF is obtained by setting S “ V, thus auto-encoding
the data as VLH. This particular case is studied in depth
in [1]. In this paper, we consider the general case for S, with
or without missing data.

2.3. Convex NMF with missing data

We assume that some coefficients in V and S may be missing.
Let V Ă rF s ˆ rN s be a set of pairs of indices that locates
the observed coefficients in V: pf, nq P V iff vfn is known.
Similarly, let S Ă rF s ˆ rP s be a set of pairs of indices that
locates the observed coefficients in S. The use of sets V and
S may be reformulated equivalently by defining masking ma-
trices MV P t0, 1u

FˆN and MS P t0, 1u
FˆP from V and S

as

rMV sfn fi

#

1 if pf, nq P V
0 otherwise

@pf, nq P rF s ˆ rN s (2)

rMSsfp fi

#

1 if pf, pq P S
0 otherwise

@pf, pq P rF s ˆ rP s (3)

A major goal in this paper is to estimate L, H and the
missing entries in S, given the partially observed data matrix
V. Denoting by So the set of observed/known dictionary ma-
trix coefficients, our aim is to minimize the objective function

C pS,L,Hq fi Dβ pMV .V|MV .SLHq (4)

subject to S P RFˆP` , L P RPˆK` , H P RKˆN` , and
MS .S “ MS .S

o. The particular case where the dic-
tionary equals the data matrix itself is obtained by setting
pMS ,S

oq fi pMV ,Vq.

Algorithm 1 CNMF with missing data
Require: V, So, MV , MS , β

Initialize S, L, H with random nonnegative values
loop

Update S:

SÐMS .S
o
` (5)

MS .S.

¨

˝

´

MV . pSLHq
.pβ´2q .V

¯

pLHqT

´

MV . pSLHq
.pβ´1q

¯

pLHqT

˛

‚

.γpβq

Update L:

LÐ L.

¨

˝

ST
´

MV . pSLHq
.pβ´2q .V

¯

HT

ST
´

MV . pSLHq
.pβ´1q

¯

HT

˛

‚

.γpβq

(6)

Update H:

HÐ H.

¨

˝

pSLqT
´

MV . pSLHq
.pβ´2q .V

¯

pSLqT
´

MV . pSLHq
.pβ´1q

¯

˛

‚

.γpβq

(7)

Rescale L and H:

@k P rKs ,hk Ð }lk}1 ˆ hk (8)

lk Ð
lk
}lk}1

(9)

end loop
return S, L, H

3. PROPOSED ALGORITHM

3.1. General description of the algorithm
Algorithm 1 extends the algorithm proposed in [9] for com-
plete CNMF with the β-divergence to the case of missing en-
tries in V or S. The algorithm is a block-coordinate descent
procedure in which each block is one the three matrix factors.
The updates of each block/factor is obtained via majorization-
minimization (MM), a classic procedure that consists in itera-
tively minimizing a tight upper bound (called auxiliary func-
tion) of the objective function. In the present setting, the
MM procedure leads to multiplicative updates, characteristic
of many NMF algorithms, that automatically preserve non-
negativity given positive initialization.

3.2. Detailed updates

We consider the optimization of C pS,L,Hq with respect to
each of its three arguments individually, using MM. Current
updates are denoted with a tilde, i.e., rS, rL and rH. We start by
recalling the definition of an auxiliary function:

Definition 1 (Auxiliary function). The mapping G
´

A|rA
¯

:



RIˆJ` ˆ RIˆJ` ÞÑ R` is an auxiliary function to C pAq iff
#

@A P RIˆJ` , C pAq “ G pA|Aq

@A, rA P RIˆJ` , C pAq ď G
´

A|rA
¯

.
(10)

The iterative minimization ofG pA|Aqwith respect to A,
with replacement of rA at every iteration, monotonically de-
creases the objective C pAq until convergence. As explained
in detail in [9], the β-divergence may be decomposed into the
sum of a convex term qdβ p.|.q, a concave term udβ p.|.q and a
constant term cst. The first two terms can be majorized using
routine Jensen and tangent inequalities, respectively, leading
to tractable updates. The auxiliary functions used to derive
Algorithm 1 are given by the three following propositions 1

and the monotonicity of the algorithm follows by construc-
tion.

Proposition 1 (Auxiliary function for S).
Let rS P RFˆP` be such that @pf, nq P rF s ˆ rN s, ṽfn ą 0,
and @pf, pq P rF s ˆ rP s, s̃fp ą 0, where rV fi rSLH. Then
the function

GS

´

S|rS
¯

fi
ÿ

fn

rMV sfn

”

qGfn

´

S|rS
¯

` uGfn

´

S|rS
¯ı

` cst

where qGfn

´

S|rS
¯

fi
ÿ

p

rLHspn rsfp

rvfn
qdβ

ˆ

vfn|rvfn
sfp
rsfp

˙

uGfn

´

S|rS
¯

fi udβ pvfn|rvfnq

` ud1β pvfn|rvfnq
ÿ

fp

rLHspn psfp ´ rsfpq

is an auxiliary function to C pS,L,Hq with respect to S and
its minimum is given by equation (5). The auxiliary function
decouples with respect to the individual coefficients of S and
as such, the constraint MS .S “ MS .S

o is directly imposed
by only updating the coefficients of S with indices in S̄.

Proposition 2 (Auxiliary function for L).
Let rL P RPˆK` be such that @pf, nq P rF s ˆ rN s, ṽfn ą 0

and @pp, kq P rP s ˆ rKs, l̃pk ą 0, where rV fi SrLH. Then
the function

GL

´

L|rL
¯

fi
ÿ

fn

rMV sfn

”

qGfn

´

L|rL
¯

` uGfn

´

L|rL
¯ı

` cst

where qGfn

´

L|rL
¯

fi
ÿ

pk

sfprlpkhkn
rvfn

qdβ

˜

vfn|rvfn
lpk
rlpk

¸

uGfn

´

L|rL
¯

fi udβ pvfn|rvfnq

` ud1β pvfn|rvfnq
ÿ

pk

sfphkn

´

lpk ´ rlpk

¯

1The proof of these propositions are available in the extended version at
https://hal-amu.archives-ouvertes.fr/hal-01346492.

is an auxiliary function to C pS,L,Hq with respect to L
and its minimum subject to MS .S “ MS .S

o for MS P

t0, 1u
FˆP and So P RFˆP` is given by equation (6).

Proposition 3 (Auxiliary function for H).
Let us define W fi SL and let rH P RKˆN` be such that
@pf, nq P rF s ˆ rN s, rvfn ą 0 and @pk, nq P rKs ˆ

rN s,rhkn ą 0, where rV fi W rH. Then the function

GH

´

H| rH
¯

fi
ÿ

fn

rMV sfn

”

qGfn

´

H| rH
¯

` uGfn

´

H| rH
¯ı

` cst

where qGfn

´

H| rH
¯

fi
ÿ

k

wfkrhkn
rvfn

qdβ

ˆ

vfn|rvfn
hkn
rhkn

˙

uGfn

´

H| rH
¯

fi udβ pvfn|rvfnq

` ud1β pvfn|rvfnq
ÿ

k

wfk

´

hkn ´ rhkn

¯

is an auxiliary function to C pS,L,Hq with respect to H and
its minimum is given by equation (7).

4. EXPERIMENT ON SYNTHETIC DATA

4.1. Experimental setting

The objective of this experiment is to analyze the performance
of CNMF for reconstructing missing data, by comparing it
with the regular NMF. We consider a data matrix V˚ of rank
K˚ synthesized under the CNMF model V˚ “ S˚L˚H˚,
where the matrix of atoms S˚ and the ground truth factors
L˚ and H˚ are generated as the absolute values of Gaussian
noise. It is worth noting that V˚ is also consistent with a
NMF model by defining W˚ “ S˚L˚. A perturbed data ma-
trix V is obtained by considering a multiplicative noise, ob-
tained using a Gamma distribution with mean 1 and variance
1
α . Hence the parameter α controls the importance of the per-
turbation. The mask MV of known elements in V is derived
by considering missing coefficients randomly and uniformly
distributed over the matrix, such that the ratio of missing val-
ues is equal to σV . Generation of data is repeated 3 times, as
well as the generation of the masks. Results are averaged over
these repetitions.

From a matrix V with missing entries, NMF and CNMF
with missing values are applied using K components. Only
the case where β “ 2 has been considered in this experiment.
In both algorithms, the convergence is reached when the rel-
ative difference of the cost function between two iterations
is below 10´5. 3 repetitions are performed using different
random initialization, and the best instance (i.e., the instance
which minimizes the cost function) is retained. The recon-
structed data matrix is obtained as rV “ SLH.

The reconstruction error is obtained by computing the β-
divergence between the noiseless data matrix V˚, and the re-
constructed matrix rV; the error is computed on and averaged



along the missing coefficients only, as

etest “
1

ř

ij rM̄V sij
dβpM̄V .V

˚, M̄V rVq (11)

where M̄V is the mask of unknown elements in V . In the case
of CNMF, we consider two choices for S: the data matrix V
with missing values, and the ground truth matrix of atoms S˚,
considered here without missing values.

The following parameters are fixed: F “ 100, N “ 250,
P “ 50, K˚ “ 10, β “ 2. We particularly investigate the in-
fluence of four factors: the number of estimated components
K P r2, 14s; the ratio of missing data σV P r0.1, 0.9s in V,
i.e., of zeros in MV ; the choice of the matrix S P tS˚,Vu for
the CNMF; the noise level α P r10, 5000s in V (α is inversely
proportional to the variance of the noise).

4.2. Results

We first focus on the influence of the number of estimated
components k for the case where the true dictionary is fully
known. Figure 1 displays the test error with respect to the
number of estimated components K, for two levels of noise.
Performance of reconstruction obtained by NMF and CNMF
with S “ S˚ are plotted, for different values of ratio of miss-
ing values in V .
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Fig. 1. Test error vs. number of components. Two levels of
noise are displayed: high noise level (α “ 100, left) and low
noise level (α “ 3000, right).

These results show that the noise level has a high influence
on the best number of estimated components. As expected,
a high noise requires a strong regularization, obtained here
by selecting a low value of K. On the contrary, when the
noise is low, the best choice of K is closer to the true value
K˚ “ 10. Similarly, when the number of missing data is
low (σV “ 0.2), one should set K to K˚ “ 10, either for
CNMF or for NMF. When it gets higher, the optimal K gets
lower in order to limit the effect of overfitting. In this case,
the best number of components drops down to K “ 2, either

for CNMF or NMF, the former still performing better than the
latter. These first results outline the difference between NMF
and CNMF, emphasized in the next figures.

This comparison is augmented by considering the case
where S “ V, with respect to the ratio σV of missing values
in V. Figure 2 displays the performance of NMF and CNMF
as a function of σV , for two noise levels. CNMF with the true
atoms (S “ S˚) gives the best results on the full range miss-
ing data ratio. When there are very few missing data and a
low noise, NMF performs almost as well as CNMF. However,
the NMF error increases much faster than the CNMF error as
the number of missing data grows, or as the noise in data be-
comes important. This higher sensitivity of NMF to missing
data may be explained by overfitting since the number of free
parameters in NMF is higher than in CNMF. In the case of
CNMF with S “ V, the model cannot fit the data as well as
CNMF with S “ S˚ or as NMF. Consequently, the resulting
modeling error is observed when there is few missing data,
and when comparing S “ V and S “ S˚ on all values. How-
ever, it performs better than NMF at high values of σV since
the constraint S “ V can be seen as a regularization.

We finally investigate the robustness of methods by look-
ing at the influence of the multiplicative noise, controlled by
the parameter α, on the performance. Figure 3 shows the test
error for the NMF and the CNMF with S “ S˚ with respect
to α and for some values of σV . As expected, the test er-
ror decreases according to the variance of the noise, inversely
proportional to α. If a low value of α disrupts abruptly the
performance of reconstruction (α ă 103), the test error is
slightly decreasing for α ą 103. When the variance of the
noise is close to zero (α “ 5000), the performance of NMF
and CNMF are almost the same. The performance of recon-
struction differs when the variance of the noise increases, as
well as the ratio of missing values in V.
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Fig. 2. Test error vs. ratio of missing data in V, with K “

K˚. Two levels of noise are displayed: high noise level (α “
100, left) and low noise level (α “ 3000, right).
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Fig. 3. Test error vs. noise level α. Each curve describes
the performance of reconstruction of missing data in V, with
K “ K˚, according to the method and the ratio of missing
data σV .

5. APPLICATION TO SPECTROGRAM INPAINTING

In order to illustrate the performance of the proposed algo-
rithm on real data, we consider spectrograms of piano music
signals, which are known to be well modeled by NMF meth-
ods [12]. Indeed, NMF may provide a note-level decomposi-
tion of a full music piece, each NMF component being the es-
timated spectrum and activation of a single note. This approx-
imation has proved successful and is also limited in terms of
modelling error and of lack of supervision to guide the NMF
algorithm. In such condition, we have designed an experi-
ment with missing data to compare regular NMF against two
CNMF variants: in the first one, we set S “ V; in the second
one, S contains examples of all possible isolated note spectra
from another piano.

5.1. Experimental setting

We consider 17 piano pieces from the MAPS dataset [13]. For
each recording, the magnitude spectrogram is computed using
a 46-ms sine window with 50%-overlap and 4096 frequency
bins, the sampling frequency being 44.1kHz. Matrix V is
created from the resulting spectrogram by selecting the F “
500 lower-frequency part and the first five seconds, i.e., the
N “ 214 first time frames. Missing data in V are artificially
created by removing coefficients uniformly at random.

Three systems are compared, based on the test error de-
fined as the β-divergence computed on the estimation of miss-
ing data. In all of them, the number of component K is set to
the true number of notes available from the dataset annotation
and we set β “ 1. The first system is the regular NMF, ran-
domly initialized. The second system is the proposed CNMF
with pMS ,S

oq fi pMV ,Vq. The third system is the proposed
CNMF with S “ D set as a specific matrix D of P “ 61
atoms. Each atom is a single-note spectrum extracted from

the recording of another piano instrument from the MAPS
dataset, from C3 to C8 2 .

5.2. Results

Figure 4 displays the test error with respect to the ratio of
missing data in V, averaged over the 17 piano pieces. It
clearly shows that the CNMF with the specific dictionary S “
D is much more robust to missing data than the other two sys-
tems. When less than 40% of data are missing, NMF performs
slightly better; however, the NMF test error dramatically in-
creases when more data are missing, by a factor 5.103 when
more than 80% data are missing. This must be due to overfit-
ting since NMF has a large number of free parameters to be
estimated from very few observations when data are missing.
The performance of the CNMF system with S “ V probably
suffers from modelling error when very few data are missing
– since the columns of V may not be able to combine into
K components in a convex way. In the range 50 ´ 70%, its
performance is similar to that of NMF. Beyond this range, it
seems to be less prone to overfitting than NMF, probably due
to less free parameters or to a regularization effect provided
by S “ V.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ratio of missing data in V

10−3

10−2

10−1

100

101

102

Te
st

er
ro

r

NMF
ConvexNMF - S=D
ConvexNMF - S=V

Fig. 4. Test error vs. missing data ratio in audio spectrograms.

We now investigate the influence of the “complexity” of
the audio signal on the test error when the ratio of missing
data is set to the high value 80%. Figure 5 displays, for each
music recording, the test error with respect to the number of
different pitches for all notes in the piano piece, which also
equals the number of component K used by each system.
CNMF with S “ D performs better than NMF whatever
the number of notes and the error increases by a small fac-
tor along the represented range. NMF performs about five
times worse for “easy” pieces, i.e., pieces composed of notes
with about 6 different pitches and it performs about 104 times
worse when the number of pitches is larger than 25. CNMF

2The code of the experiments is available on the webpage of the MAD
project http://mad.lif.univ-mrs.fr/.



with S “ V performs slightly better than NMF. Since the
number of components K increases equals the number of
note pitches, those results confirm that NMF may highly suf-
fer from overtraining while CNMF may not, being robust to
missing data even for large values of K.
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Fig. 5. Test error vs. number of different note pitches for 80%
missing data (each dot represents one piece of music).

6. CONCLUSION

In this paper, we have proposed an extension of convex non-
negative matrix factorization in the case where missing data,
as it has been previously presented for regular NMF. The pro-
posed method can deal with missing values both in the data
matrix V and in the dictionary S, which is particularly use-
ful in the case S “ V where the data is autoencoded. In
this framework, an algorithm has been provided and analyzed
using a Majorization-Minimization (MM) scheme to guaran-
tee the convergence to a local minimum. A large set of ex-
periments on synthetic data showed promising results for this
variant of NMF for the task of reconstruction of missing data,
and validated the value of this approach. In many situations,
CNMF outperforms NMF, especially when the ratio of miss-
ing values is high and when the matrix data V is noisy. This
trend has been confirmed on real audio spectrograms of piano
music. In particular, we have shown how the use of a generic
set of isolated piano notes as atoms could dramatically en-
hance the robustness to missing data.

This preliminary study indicates that it is worthy of fur-
ther investigation, beyond the proposed settings where miss-
ing values are uniformly distributed over the matrix. Further-
more, the influence of missing values in the dictionary has
not been completely assessed, as only the case where S “ V
has been taken into account. On the application side, this ap-
proach could give new insight in many problems dealing with
estimation of missing data.
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A. PROOFS

We detail the proofs of Propositions 1 and 2. The proof of Proposition 3 is straithforward using the same methodology.
We first recall preliminary elementss from [9]. The β-divergence dβ px|yq can be decomposed as a sum of a convex term, a

concave term and a constant term with respect to its second variable y as

dβ px|yq “ qdβ px|yq ` udβ px|yq ` dβ pxq (12)

This decomposition is not unique. We will use decomposition given in [9, Table 1], for which we have the following
derivatives w.r.t. variable y:

qd1β px|yq fi

$

’

&

’

%

´xyβ´2 if β ă 1

yβ´2 py ´ xq if 1 ď β ď 2

yβ´1 if β ą 2

(13)

ud1β px|yq fi

$

’

&

’

%

yβ´1 if β ă 1

0 if 1 ď β ď 2

´xyβ´2 if β ą 2

(14)

A.1. Update of S (Proof of Proposition 1)

We prove Proposition 1 by first constructing the auxiliary function (Proposition 4 below) and then focussing on its minimum
(Proposition 5 below). Due to separability, the update of S P RFˆP` relies on the update of each of its columns. Hence, we only
derive the update for a vector s P RP`.

Definition 2 (Objective function CS psq). For v P RN` ,L P RPˆK` ,H P RKˆN` ,m P t0, 1u
N
,mo P t0, 1u

P
, s P RP`, let us

define

CS psq fi
ÿ

n

mn

”

qCn psq ` uCn psq
ı

` C (15)

0where

qCn psq fi qdβ
`

vn|
“

sTLH
‰

n

˘

, uCn psq fi udβ
`

vn|
“

sTLH
‰

n

˘

and C fi dβ pm.vq ` λdβ pm
o.soq (16)

Proposition 4 (Auxiliary function GS ps|rsq for CS psq). Let rs P RP` be such that @n, rvn ą 0 and @p, rsp ą 0, where rv fi
“

sTLH
‰T

. Then the function GS ps|rsq defined by

GS ps|rsq fi
ÿ

n

mn

”

qGn ps|rsq ` uGn ps|rsq
ı

` C (17)

where

qGn ps|rsq fi
ÿ

p

rLHspn rsp

rvn
qdβ

ˆ

vn|rvn
sp
rsp

˙

and uGn ps|rsq fi udβ pvn|rvnq ` ud1β pvn|rvnq
ÿ

p

rLHspn psp ´ rspq . (18)

is an auxiliary function for CS psq.

Proof. We trivially have GS ps|sq “ CS psq. We use the separability in n and in p in order to upper bound each convex term
qCn psq and each concave term uCn psq.
Convex term qCn psq. Let us prove that qGn ps|rsq ě qCn psq. Let P be the set of indices such that rLHspn ‰ 0 and define, for
p P P ,

rλpn fi
rLHspn rsp

rvn
“

rLHspn rsp
ř

p1PP rLHsp1n rsp1
. (19)



We have
ř

pPP
rλpn “ 1 and

qGn ps|rsq “
ÿ

pPP

rλpn qdβ

˜

vn|
rLHspn sp

rλpn

¸

ě qdβ

˜

vn|
ÿ

pPP

rλpn
rLHspn sp

rλpn

¸

“ qdβ

˜

vn|
P
ÿ

p“1

rLHspn sp

¸

“ qCn psq (20)

Concave term uCn psq. We have uGn ps|rsq ě uCn psq since uCn psq is concave and s ÞÑ uGn ps|rsq is a tangent plane to uCn psq in rs:

uGn ps|rsq “ udβ pvn|rvnq `
ÿ

p

ud1β

˜

vn|
ÿ

p1

rLHsp1n rsp1

¸

rLHspn psp ´ rspq “ uCn prsq `
〈
∇ uCn prsq , s´ rs

〉
(21)

Proposition 5 (Minimum of GS ps|rsq). The minimum of s ÞÑ GS ps|rsq subject to the constraint mo.s “ mo.so is reached at
sMM with

@p, sMM
p fi

$

’

&

’

%

rsp

ˆ

ř

nmnrv
β´2
n vnrLHspn

ř

nmnrv
β´1
n rLHspn

˙γpβq

if mo
p “ 0

sop if mo
p “ 1.

(22)

Proof. Since variable sp is fixed for p such that mo
p “ 1, we only consider variables sp for p such that mo

p “ 0. The related
penalty term in GS ps|rsq vanishes when mo

p “ 0. Using (13) and (14), the minimum is obtained by cancelling the gradient

∇spGS ps|rsq “
ÿ

n

mnLHpn

„

qd1β

ˆ

vn|rvn
sp
rsp

˙

` ud1β pvn|rvnq



(23)

and by considering that the Hessian matrix is diagonal with nonnegative entries since qdβ px|yq is convex:

∇2
spGS ps|rsq “

ÿ

n

mnrvn
LHpn

rsp
qd2β

ˆ

vn|rvn
sp
rsp

˙

ě 0. (24)

A.2. Update of L (Proof of Proposition 2)

We proove Proposition 2 by first constructing the auxiliary function (Proposition 6 below) and then focussing on its minimum
(Proposition 7 below). As opposed to the update of S, no separability is considered here.

Definition 3 (Objective function CL plq). For v P RF`,S P RFˆP` ,H P RKˆN` ,M P t0, 1u
FˆN

,L P RPˆK` , let us define

CL pLq fi
ÿ

fn

mfn

”

qCfn pLq ` uCfn pLq
ı

` C (25)

where

qCfn pLq fi qdβ

´

vfn| rSLHsfn

¯

, uCfn pLq fi udβ

´

vfn| rSLHsfn

¯

and C fi dβ pM.Vq . (26)

Proposition 6 (Auxiliary function GL
´

L|rL
¯

for CL pLq). Let rL P RPˆK` be such that @f, n, rVfn ą 0 and @p, k, rLpk ą 0,

where rV fi SrLH. Then the function GL
´

L|rL
¯

defined by

GL

´

L|rL
¯

fi
ÿ

fn

mfn

”

qGfn

´

L|rL
¯

` uGfn

´

L|rL
¯ı

` C (27)



where

qGfn

´

L|rL
¯

fi
ÿ

pk

sfprlpkhkn
rvfn

qdβ

˜

vfn|rvfn
lpk
rlpk

¸

(28)

uGfn

´

L|rL
¯

fi

«

udβ pvfn|rvfnq ` ud1β pvfn|rvfnq
ÿ

pk

sfphkn

´

lpk ´ rlpk

¯

ff

(29)

is an auxiliary function for CL pLq.

Proof. We trivially have GL pL|Lq “ CL pLq. In order to prove that GL
´

L|rL
¯

ě CL pLq, we use the separability in f and n

and we upper bound the convex terms qCfn pLq and the concave terms uCfn pLq.

Convex term qCfn pLq. Let us prove that qGfn

´

L|rL
¯

ě qCfn pLq. Let P be the set of indices such that sfp ‰ 0, K be the set of
indices such that hkn ‰ 0 and define, for pp, kq P P ˆK,

rλfpkn fi
sfprlpkhkn

rvfn
“

sfprlpkhkn
ř

pp1,k1qPPˆK sfp1
rlp1k1hk1n

. (30)

We have
ř

pp,kqPPˆK
rλfpkn “ 1 and

qGfn

´

L|rL
¯

“
ÿ

pp,kqPPˆK

rλfpkn qdβ

˜

vfn|
sfplpkhkn
rλfpkn

¸

(31)

ě qdβ

¨

˝vfn|
ÿ

pp,kqPPˆK

rλfpkn
sfplpkhkn
rλfpkn

˛

‚“ qdβ

˜

vfn|
P
ÿ

p“1

K
ÿ

k“1

sfplpkhkn

¸

“ qCfn pLq (32)

Concave term uCfn pLq. We have uGfn

´

L|rL
¯

ě uCfn pLq since uCfn pLq is concave and L ÞÑ uGfn

´

L|rL
¯

is a tangent plane to
uCfn pLq in rL:

uGfn

´

L|rL
¯

“ udβ pvfn|rvfnq `
ÿ

pk

ud1β

˜

vfn|
ÿ

p1k1

sfp1rlp1k1hk1n

¸

sfphkn

´

lpk ´ rlpk

¯

(33)

“ uCfn

´

rL
¯

`

〈
∇ uCfn

´

rL
¯

,L´ rL
〉

(34)

Proposition 7 (Minimum of GL
´

L|rL
¯

). The minimum of L ÞÑ GL

´

L|rL
¯

is reached at LMM with

@p, k, lMM
p,k fi

$

’

&

’

%

lp,k

ˆ

ř

fn sfpmfnrv
β´2
fn vfnhkn

ř

fn sfpmfnrv
β´1
fn hkn

˙γpβq

if M ‰ 0

lp,k otherwise.
(35)

Proof. Using (13) and (14), the minimum is obtained by cancelling the gradient

∇lpkGL

´

L|rL
¯

“
ÿ

fn

mfnsfphkn

«

qd1β

˜

vfn|rvfn
lpk
rlpk

¸

` ud1β pvfn|rvfnq

ff

(36)

and by considering that the Hessian matrix is diagonal with nonnegative entries since qdβ px|yq is convex:

∇2
lpk
GL

´

L|rL
¯

“
ÿ

fn

mfnrvfn
sfphkn
rlpk

qd2β

˜

vfn|rvfn
lpk
rhpk

¸

ě 0. (37)


