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Fig. 1. Classical decomposition of an autonomous robot.

sensors actuators

build maps

explore

wander

avoid obstacles

...

Fig. 2. Behavior-based decomposition of an autonomous robot
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Supervised learning of a behavior (fig 3), such as implemented by the gradient back-propagation algorithm

(fig. 4), requires the definition of a representative set of learning examples of such behavior. Each example is

a couple (input, desired output) and the goal of the algorithm is to reduce the quadratic error. This error is the

difference between the desired output value and the obtained value. The back-propagation learning algorithm

contributed in a major way to the popularity and the diffusion of connectionist applications and the multi-

layer perceptron model. However, it is important to note that the model of the desired behavior is in some

sense hidden in the learning base: the learning base has to be meaningful if we want the synthesized neural

behavior to be effective.

Mapping function: 
situation, action.

World 

Action Situation

Fig. 3. A behavior: a mapping function

between situations of the world as sensed

by the sensors and actions undertaken by

the actuators.
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Learning base:
(input, desired output),
(input, desired output), 
(input, desired output), 
...

Propagation

Computation of the outputs

Back propagation

Computation of the weights

input desired output

Fig. 4. The backpropagation

algorithm modifies the network

weights so as to reduce the error

between the output of the network

and the desired output. To this

end, the desired output must be

known, so as to be able to

compute a quantitative error. The

learning set is composed of input-

desired output pairs . The learning

is iterative, multiple presentations

of the learning base are made to

the network (from a few hundreds

presentations to hundreds of

thousands). The network weights

are modified at each presentation,

unless the output error is null.
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Automatic generation of the learning base: [Heemskerk 96] proposes to equip the robot with a built-in

avoidance behavior when the behavior to learn is obstacle avoidance. In addition to the built-in control

structure, the experimenter intervenes when it is clear that the robot is about to collide. In these cases, the

learning data are collected by hand-driving the robot on a collision free course. When the robot does collide,

the input-output pairs leading to the collision are removed from the learning base (fig. 5). The learning

examples are used to train the neural network off-line before testing the robot in the real world. As reported,

"many different learning bases were collected and several neural networks were trained in which the number

of hidden units and the learning parameters were varied. Successful performance was obtained for some of

these networks."   

(situation, desired action),

(situation, desired action), 

(situation, desired action),

Execute 
Program obstacle_avoidance; 
________________
_______________
_________________
______________
...

Learning base

Fig. 5. Generating the learning base: a

programmed avoidance behavior

generates the learning base examples,

which are eventually removed or

completed by the experimenter.
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- The training by reinforcement is a possible alternative to the definition by the operator of the learning base.

The primary difference with supervised learning lies in the form of the examples of training. They are triplets

(situation, action, utility), where the last component encodes the utility to perform this "action" in this

"situation". The learning examples are generated automatically during a phase known as "exploration". It is

generally a random search in the state space, the large size of space does not allow a complete cover

(exhaustive) and makes it necessary to invoke generalization techniques (in our case, artificial neural

networks). Also, the “utility” must be computed automatically for every visited (situation, action) pairs. This

can be done using an equation, a rule of calculation or a procedure. It is at this level that the intervention of

the operator is needed. The success of the application will depend on the quality of the function specifying

the utility of a pair. This function, usually called reinforcement function, measures the performance of the

system. The performance is defined as the utility of the proposed actions relatively to the task to be achieved.

The utility is a qualitative concept, generally coded in a binary way: +1 = good, -1 = bad and 0 when one is

able to decide. Usually, the generation of the learning base is done in parallel of the exploitation, therefore

the training is incremental. This is why, when a representative learning base is finally built, the learning is

finished.
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To exchange the "manual" building of the learning base against a simple measure of the performance is

certainly economic for the operator, but the price to be paid is a slower convergence of the learning. Indeed,

the utility of a particular action in a particular situation is a less rich information than that of knowing exactly

which action has the reatest utility (i.e., the desired action). The goal of reinforcement learning is thus to find

the output of greatest utility by using the "binary" utilities associated to each available examples. In

complement to reinforcement learning, there is always a learning algorithm specific of the neural network

used as the implementation tool (e.g., back-propagation for multilayer perceptrons, Kohonen algorithm for a

self-organizing map).

It is important to note that supervised learning and reinforcement learning are not competing with each other.

Each one corresponds to a particular niche of applications, according to whether one has a representative set

of examples, or just a measure of the performance of the required behavior.
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In 1999, one of principal application domains for reinforcement learning is autonomous robotics, a domain

not addressed with supervised learning because of impossibility to model the real world (i.e., to know the

desired action) with enough precision so as to be able to account for the heterogeneity of the sensors (fig. 6

& 7), the ambient noise and the dynamics of the robot-world relation.

Fig. 6. The miniature mobile robot

Khepera.

-180 -90 0 90 180 Angle [°]

Measured 
value

1.0

0.5

0.0  

Sensor 8
Sensor 1

Sensor 2 Sensor 4 Sensor 6 Sensor 7
Sensor 3 Sensor 5

Fig. 7. Sensor values with an obstacle moving around the robot at

a distance of 2 cm. The angle on the X axis is measured between

the forward direction of the robot and the direction of the obstacle.
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 Reward-penalty learning

Capteurs de choc

Roue folle

Fig. 8. Hexapod robot with sensors for the RF in a learn-how-to-walk experiment.

Fig. 9. A two-step walk.
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EntréesSorties

Action de la patte 1

Action de la patte 2

Action de la patte 6

Position de la patte 1

Position de la patte 2

Position de la patte 6
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Fonction de 
renforcement

Rétropropagation

Monde réel

Action

Retour

Situation
pattes Capteurs de chocs 

et d’avancée

Fig. 10. Neural Network

Architecture.

Fig. 11. Reward-Penalty

Learning Algorithm
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Questions:

- Exploration, how to choose the actions? How much randomness?

- Exploitation, when should we stop exploration ? How to generalize?

- RF design, what sensors?

- How to deal with delayed information?

Fig. 12. ANTROID, winner French

National Apple Competition, 1993.
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Fig. 13. Actual robot, 1994.
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1. Reinforcement learning

Reinforcement learning dates back to the early days of cybernetics and work in statistics, psychology,

neuroscience and computer science. In the last five to ten years, it has attracted rapidly increasing interest in

the machine learning and artificial intelligence communities. Its promise is beguiling - a way of

programming agents by reward and punishment without needing to specify how the task (i.e., behavior) is to

be achieved (fig. 14). Reinforcement learning allows, at least in principle, to bypass the problems of building

an explicit model of the behavior to be synthesized and its counterpart, a meaningful learning base

(supervised learning).

Sensor performance

World modeling

Actuator control

How to avoid

Avoidance theory

Obstacle avoidance
Carrot               Stick
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The behavior learned using reinforcement learning contains an implicit model of the robot and its

environment. By using reinforcement learning it is not necessary to have examples to build and validate the

behavior (fig. 15). The behavior is synthesized by using as a unique source of information a scalar, the so-

called reinforcement, which evaluates behavior actions: the agent receives either positive or negative

reinforcements according to the utility (i.e., desirability) of the situation entered as a consequence of the

performed action. There is no separation between a learning phase and a utilization phase. Also, by using

reinforcement learning, only relevant associations between input and output are learned.  

Reinforcement 
function

Evaluation function Update function

World 

Action Situation

Mapping function: 
situation, action, utility 

Reinforcement
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Don't worry, be evaluated for 

each action!

Is my behavior correct? Is it not? 

That is the Question!

Q
GA

You get in if your 
behavior was correct

"There are two main strategies (fig.

16) for solving reinforcement

learning problems. The first is to

search into the space of behaviors in

order to find one that performs well

in the environment. This approach

has been taken by work in genetic

algorithms and genetic

programming. The second is to use

statistical techniques and dynamic

programming methods to estimate

the utility of taking actions in

situations of the world" [Kaelbling

96]. Q-learning is certainly the most

used method of dynamic

programming.
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Genetic Algorithms (Evolutionary Learning)

"Genetic algorithms are generally considered biologically inspired methods. They are inspired by Darwinian

evolutionary mechanisms. The basic concept is that individuals within a population which are better adapted

to their environment can reproduce more than individuals which are maladapted. A population of agents can

thus adapt to its environment in order to survive and reproduce".

The genetic algorithm can be adapted and parametrized to produce an appropriate optimization tool for a

single robot behavior synthesis. To this end, the fitness rule (i.e., the reinforcement function), measuring the

adaptation of the agent to its environment (i.e., the desired behavior), is carefully written by the experimenter.   
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Learning classifier

system principle: (fig.

17) An exploration

function creates new

classifiers according to

a genetic algorithm

recombination of the

most useful. The

synthesis of the desired

behavior involves a

population of agents

Fitness rule

Evaluation function

World 

Action Situation

Reinforcement

Set of classifiers: 
(1,0,#,0)->(1,0,0,0)
(1,0,#,1)->(1,1,1,0)
...

Exploration function
(GA)

Utility update 
function

+ utility
+ utility

and not a single agent. The evaluation function, which implements a behavior as a set of condition-action

rules, or classifiers. Symbols in the condition string belong to {0,1,#}, symbols in the action string belong to

{0,1}. # is the don't care identifier, of tremendous importance for generalization. It allows the agent to

generalize a certain action policy over a class of environmental situations with an important gain in learning

speed by data compression. The update function, which is responsible for the redistribution of the incoming

reinforcements to the classifiers. Classically, the algorithm used is the Bucket Brigade algorithm. Every

classifier maintains a value, that is representative of the degree of utility of classifiers.
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Genetic algorithms and neural networks

The classifier system may be replaced by a neural network. Comparing to classifiers, a neural network

implementation allows a continuous mapping of the behavior space (search space): small variations in the

structure or the weights of a neural network result in small variations of the robot behavior. A neural

implementation modifies the three main components of the learning classifier architecture as follows (fig. 18):

- The evaluation function implements a behavior as a neural network mapping function. Several neural

networks may be involved. Situations are the inputs to the neural network which generates actions. The

generalization used is the classical neural network generalization.

- The update function associates to each neural network implementation of a behavior a utility value, directly

coming from the fitness rule. A learning phase may be added that will modify the neural weights during the

life of the agent. In this case, a reinforcement function will be added to the fitness rule to generate immediate

reinforcements.

- The genetic algorithm exploration function creates new neural networks, modifying either the network

architecture by adding or removing neurons and connections, or only modifying the weights. The genetic

algorithm explores the neural space recombining useful neural networks to produce better offsprings.
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Fitness rule

Evaluation function Exploration function
(GA)

World 

Action Situation

Reinforcement

Utility update 
function

+ utility

Fig. 18. A neural work implementation of a genetic algorithm architecture.

Limitations of the genetic algorithm approach

Genetic algorithms are slow and only permit to find "close to optimal" behavior, without any guarantee on

their convergence and on the quality of the behavior found.
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Reinforcement 
function

Evaluation function Update function

World 

Action Situation

Q (situation, action)

Reinforcement

Q-learning stores the utility associated to each situation-action pair (fig. 19). Three different functions are

involved: memorization, exploration and updating (fig. 19). Q-learning method functional decomposition. In

response to the present situation, an action is chosen by the evaluation function with the help of the robot

memory. This action is the one that has the best rewarding probability. After the execution by the robot of

the action in the real world, a reinforcement function provides a reinforcement value. This value, a simple

qualitative criterion (+1, -1 or 0), is used by the updating function to adjust the reward value (Q) associated

to the situation-action pair stored in the robot memory.
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Evaluation Function

The Q-Learning algorithm builds a Q function that maps situation-action pairs (i, a) into expected returns r.

Q(i, a) is the system’s estimate of the return it expects to receive given the fact that it executes action a in

situation i. The algorithm uses a lookup table to store the estimated cumulative evaluation Q. All these

values represent the internal state (fig. 20 & 21). Non empty cells are the already tried pairs.

r

s1

a1 a2 a3 a4 a5 a6

s2

s3

s4

s5

s6

+1

-1

-1

-10 0

00

0

+1

Q

-1

+.1 0

+.4

+.8
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-.9

-.7

a b

0 0 0

0 0

0

0

0

0
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0

0

0

00

0

00

0

0

0 0
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1. Initialization of the robot memory: for all situation-action pairs, the associated Q value

is 0 (i.e., Q (i , a )= 0).

2. Repeat :

1 - Let i be a world situation.

2 - The evaluation function select the action a to performed:

a = Max (Q (i , a' ))

where a' represent any possible action. The selection process can be slightly different

(stochastic) so as to be able to explore new era of the situation-action space.

3 - The robot executes the action a in the world. Let r be the reward (r can be null)

associated with the execution of the action a in the world.

4 - Update the robot memory:

Q t+1(i , a ) = Q t(i , a ) + ß(r + g . Max (Q t(i' , a' )) - Q t(i , a )). eq. 1

where i' is the new situation after having carried out the action a in situation i ,

a'  represent any possible action and 0 < ß, g < 1.

Fig. 21. A general algorithm for the Q-learning method.
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One major difference between

reinforcement learning and supervised

learning is that a reinforcement-learner

must explicitly explore its

environment, i.e., real-time building of

the learning base.

If the evaluation function always chooses

the actions with the highest estimated

payoff, then the flaw will be that early

unlucky sampling might indicate that the

best action's reward is less than the

reward obtained from a suboptimal action.
 

Available data

Q (i, left) =  +1
Q (i,Right) =  0 
Q (i, Forward) = -1

?

Exploration 

Exploitation

Hybrid

The suboptimal action will always be picked, leaving the true optimal action starved of data and its

superiority never discovered. An agent must explore to ameliorate its outcome. A simple exploration

strategy is to take the action with the best estimated expected reward by default, but with probability p,

choose an action at random. p value can be large at the beginning to encourage exploration and then slowly

decreasing (fig. 22).
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Update function

The internal state Q is updated by the following function:

 

Q(i, a)new = Q(i, a)old + ß(r+ g.MaxQ(i’, a) - Q(i, a)old)

where i’ is the situation after executing a in i, ß and g are constant coefficients, between  0 < ß, g  < 1. The

reinforcement at the present time should be equal to the expected returned rewards. The error between the

expected value r+ g.MaxQ(i’, a) and the current value Q(i,a) must then be minimized.

This updating rule has the effect of propagating a reward associated with a given situation-action to previous

pairs of situation-action. It is, in fact, a way to backpropagate delayed rewards (fig. 23).
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Q(i1, a1)

Q(i1, a1)

Q(i1, a1)

Q(i2, a2) Q(i3, a3)

Q(i2, a2)

Q(i2, a2)

Q(i3, a3)

Q(i3, a3)

r=0

r=0

r=0

r=0

r=0

r=0

r = 1

r = 1

r = 1

1st run

2nd run

3rd run

t

Forward: execution of sequence of actions

Backward propagation of delayed reinforcements

Fig. 23. Example of backward propagation of a delayed reinforcement on 3 runs of the same sequence of
situation-action: (i1,a1),(i2,a2),(i3,a3).
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Proof of convergence

Recent developments in the theory of reinforcement learning have allowed to prove asymptotic convergence

[Dayan 94]. These proofs rely on several assumptions that do not apply to robots facing real-world tasks. In

particular, the asymptotic convergence requires a discrete coding of the situation-action pairs (tabular

representation) and to try out every action for every situation an infinite number of times. In the real world,

the situation-action space is continuous. Thus the robot requires compact representations, such as neural

networks, to generalize between similar situation-action pairs and to limit its knowledge (memorization) to

relevant parts of the problem only. Experimental results demonstrate that, despite the lack of convergence

proofs, reinforcement learning can be successfully applied to real world problems.
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Nombre de bits utilisés 
par capteur

(a)

1020

1 2 4 6 8 10

Nombre de situations

1015

1010

105

100

Durée de l’expérimentation

200

103

104

105

10 minutes 1 heure 5 heures

Nombre d’actions

1 minute

(b)

Limitations: the situation space is so large (fig. 24a), that combined with all possible actions, an

exhaustive exploration (fig. 24b) of all situation-action pairs is impossible, as is also an exhaustive

memorization ( X and Y are logarithmic scales).
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Q
GA

With GENERALIZATION Inc.  
you can find  a solution in 2 minutes!

The universe is only 4.5 1017 sec. old 

and I need  1.2 1026 sec. to do the job.

A solution to these limitations is the generalization process: the use of experienced situation-action pairs

to deal with new unknown situations (fig. 25). Fig. 25. In the case of the mobile robot Khepera, the total

number of possible situations is ((2)10)8, not far from 1024. Combined with 20 speeds per wheel, the size of

the situation-action space is 4 1026. Working with a real robot implies mechanical constraints: an action

takes approximately 300 ms to be performed. In one minute, a maximum of 200 actions can be executed.

There is an incredible small ratio explored situation-action pairs versus unknown situation-action pairs. This

problem is called the credit-assignment problem. Generalization is the solution.



 - 30 -

Q-Learning with weighted Hamming distance[Mahadevan 91]

The main idea of this refinement is to compute a Hamming distance between the world situation i  and

similar  situations in order to apply the updating function to all of them. Only one action is carried out, but

many similar situations are updated using the same reinforcement value. The Hamming distance between

any two situations is simply the number of bits that are different between them. Bits can be of different

weights. Two situations are distinct if the Hamming distance between them is greater than a fixed threshold

(fig. 26). This generalization method is limited to syntactic criteria: it is dependent on the coding of the

situations.

a 1i

i 1

a a 2 a 3 a 4 a 5 a 6

i 2

i 3

i 4

i 5

i 6

0000

0001

0011

0111

1111

1110

Q

Fig. 26. Generalization using Hamming distance in

black. In this example, the world situation is i3 ,

the executed action is a6 , the threshold value for

the Hamming distance is 1. Q (i3 , a6 ) is updated,

but also Q (i2 , a6 ) and Q (i4 , a6 ).
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Q-Learning with statistical clustering

Mahadevan et al. proposes an other generalization method less dependent on the coding of the situations:

statistical clustering. Here, each action is associated with a set of situations giving information concerning

the usefulness of performing the action in a particular class of situations. Clusters are a set of “similar”

situation instances that use a given similarity metric. All situations that appear in the same cluster are

updated together (fig. 27). Here again, generalization is limited to syntactic criterion.

a 1i

i 1

a a 2 a 3 a 4 a 5 a 6

i 2
i 3

i 4

i 5

i 6

C
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 2

Q
Fig. 27. Generalization using statistical clustering.

If one of the situations of the cluster c2 is the world

situation and a2  has been carried out then all Q

values of the cluster c2  are updated. In this

example, the world situation is i3  and the action

carried out is a2 , then Q (a2  , i3 ) is updated

together with Q (a2  , i1 ) ,Q (a2  , i2 ) and Q (a2  ,

i5 ) .
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Conclusion: Reinforcement learning is justified if it is easier to implement the reinforcement function

than the desired behavior, or if the behavior generated by the agent presents desirable emergent properties

(like generalization, robustness, redundancy, adaptability) which cannot be directly built. This last reason is

certainly the best motivation for the use of reinforcement learning in autonomous robotics.

"Pure" reinforcement learning systems receive sparse reinforcement. In other words, they are rewarded or

punished only in special occasions. The poverty of this information, a delayed scalar, and related problems,

like how to distribute the reinforcement to the different parts of the system which contributed to the

achievements of a goal (or a bad state) causes one of the major drawbacks of reinforcement learning: its long

convergence time.

3. Q-learning Neural Networks Implementations (1992)

The first neural implementation of reinforcement learning occurred in the beginning of the eighties [Barto

85]. Neural Q-learning implementations were proposed in the nineties [Lin 92]. A neural implementation

seems to offer many advantages: quality of the generalization and limited memory requirement for storing

the knowledge. The memorization function uses the weight set of the neural network. The memory size

required by the system to store the knowledge is defined, a priori, by the number of connections of the

network. It is independent of the number of explored situation-action pairs.
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Multilayer perceptron implementations

Ideal implementation

The ideal neural implementation will provide, in a given situation, the best action to undertake and its

associated Q value (fig. 28). This ideal model only provides one output, i.e., an action and a Q value per

situation. This action should be the best available action in the situation. How can we be sure of the fact?

Action

Q value

Situation
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Reinforcement 
function

Evaluation function Backpropagation 

World 

Action
Situation

Reinforcement

Fig. 29. The direct implementation of the ideal neural network implementation of the Q-learning with a

multilayer backpropagation network. The updating function is a weight modification algorithm, here the

well-known gradient error backpropagation algorithm [Rumelhart 86]. An error signal on the output

neurons must therefore be defined for each output neuron. How can a quantitative error signal be defined

when the only available information is of qualitative nature? The definition of this error is restricted to simple

cases where only two actions are possible.
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Multiplayer 
perceptron 

inside

If it is not forward, 

then it is backward

Fig. 30. One of the first application used to demonstrate the power of the neural implementation of the Q-

learning was the inverse pendulum with only two actions (moving the cart left or right). In this case, it is easy

to deduce from the reinforcement signal the desired output value (fig. 30). For applications involving many

possible actions, like mobile robotics (e.g., Khepera allows 400 different actions), dealing with negative

rewards is more difficult and implicates modifications of the ideal implementation.



 - 36 -

 Lin proposes the QCON model: a multilayer perceptron implementation of the Q-learning algorithm

which characteristic is to have only one output neuron. There are as many QCON networks as there are

actions (fig. 31). It is impossible to generalize across actions.

Q value of action a1Situation

Q value of action anSituation

..

.

Fig. 31. The QCON model: only one

output neuron per multilayer neural

network. Each network is associated to a

unique action and the output is considered

as the Q value associated to the situation-

action pair. There are as many QCON

networks as there are actions.

Generalization across situation-action

pairs is impossible. Learning concerns

only one network per iteration.
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Unmapping in multilayer backpropagation neural networks

Generalizing across actions implies having an implementation architecture composed of only one network

so as to be able to use every reinforcement signals to update the network. Moreover, generalizing across

actions implies that the output layer codes actions and not Q values. Since the neural model is still a

multilayer perceptron with a backpropagation learning algorithm, an error must be defined on the output

layer. There is no problem when the reinforcement signal is positive, the proposed action is the desired one.

But, with negative reinforcements, how can a desired action be chosen? At least, even if it is not possible to

find the right situation-action association, a mechanism must be built that will unmap the wrong situation-

action association proposed by the network.

The first idea that comes to mind when the number of possible actions increases is to learn the inverse

mapping [Barto 85]. The problem then is to determine among all those left which action is the most in

opposition. Because the output of the network is numerical, we can change the sign of the output values.

However, this is a harmful way of unlearning. Nobody knows what has been deleted. Representation on a

neural network is distributed, so it is not possible to delete only one association (or situation-action pair)

without interfering with the rest of the learned knowledge. Moreover, a negative reinforcement does not

always mean that the error is important, and to learn the inverse action can be defective. With the same goal

in mind, Ackley (1991) proposes the use of the complement of the generated output.
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Output of the network

Competition

+ Exploration of the 
situation-action space 

Reinforcement signal > 0

Reinforcement signal < 0

Back       Front Back       Front

The color represents the 
activity value of the neuron.
 The darker the color, 
the higher the value

Fig. 32. An other method is to have two output neurons per actuator and establish a competition among

them. The idea is to consider the output value as the network confidence in its proposal. The exploration

process can modify the proposal so to explore the situation-action space. If the reinforcement signal is

positive then the error is equal to the value added by the exploration process. There is no error for the other

neuron of the pair. If the reinforcement signal is negative then values in each pair of neurons are exchanged.

Results are completely dependent on the nature of the application and are not yet satisfactory.
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Q-KOHON: a self-organizing map implementation

Experiments show that the competitive

multilayer perceptron implementation learns

faster than the other reviewed implementations:

generalization is better. This is due to the

localized coding on the output layer: one

output neuron for each actuator; and also to the

competition between output neurons.

Therefore, the implementation of the Q-

learning with a neural network model, e.g., the

self-organizing map (SOM), that is completely

Reinforcement 
function

Evaluation function Learning algorithm

World 

Action Situation

Reinforcement

Sit. Action  Q

.
dedicated to these two points must be very powerful. Coding on a SOM is localized. Each neuron represents

a particular class (or cluster) of the inputs. Competition occurs between all the neurons of the map. During

the learning phase, the neurons of the SOM  approximate the probability density function of the inputs. The

inputs are situation, action and the associated Q value (fig. 33). The learning phase associates to each neuron

of the map a situation-action pair plus its Q-value. It is a method of state grouping involving syntactic

similarity and locality [McCallum 95]. The number of neurons equals the number of stored associations. The

neighborhood property of the Kohonen map allows to generalize across similar situation-action pairs.
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Fig. 34. Selection of the best action

to perform in the world situation.

The Kohonen map is used as an

associative memory: information is

probed with part of it.

a/ The world situation and a Q

value of +1 are given as inputs.

b/ The answer is a selected neuron

which weights give situation, Q

value and the associated action.

The learning algorithm updates the Q value weight and, also, the situation and action weights. The neuron

corresponding to the situation and the action effectively performed is selected. The distance used is different

from the exploration process. It includes the situation and action vectors, but nothing concerning the Q

value. Together with the selected neuron, the four neighbors are also updated. The learning coefficient is 0.9

for the selected neuron and 0.5 for the neighborhood. During the learning, the influence on the neighbors

decreases inversely proportionally to the  number of iterations.  
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Fig. 35. Visualization of the eight weights linked to the situation input for each neuron of the map after 200

learning iterations in a task of obstacle avoidance behavior synthesis. The highest the value of the sensor, the

more sensitive the corresponding neuron to an obstacle. These diagrams represent the sixteen shapes of

obstacles used for the classification.  Each class is associated to an appropriate action.
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The properties of the self-organizing map allow to predict that, if a correct behavior is learned (i.e., only

positive rewards are experienced), then all neurons will code positive Q values.
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Fig. 36. Evolution of the Q value associated

with each neuron (or class of situation-action

represented by a neuron). The Q values,

starting from 0.0, converge to positive values

for all neurons, demonstrating that the

learned behavior is rewarding. At the end of

the learning phase, only situation-action pairs

giving positive rewards are stored in the map.

The number of iterations has to be multiplied

by 10.
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Comparison:Obstacle avoidance behavior synthesis

We run several experiments to be able to compare the different implementations of the Q-learning. In all

experiments, Khepera uses a random number generator to control the exploration process. The randomness

decreases inversely proportionally to the number of iterations. It is a crude strategy for active exploration, but

sufficient for our experiments.
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Fig. 37. Sum of all the sensor values after the learning of an obstacle avoidance behavior with the mobile

robot Khepera. This one-minute graph (in black color) is obtained with a self-organizing map

implementation of the Q-learning. It is also a good presentation of the performances shown by all the other

implementations. It is interesting to compare this graph with the graph obtained for the Braitenberg

implementation (in gray) of an obstacle avoidance behavior. As we see, the Q-learned solution avoids

obstacle in a better way than the algorithmic solution. However, the robot average speed with a Braitenberg

implementation is faster than with a Q-learning implementation: it is easier to avoid obstacle slowly.
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Objective criterion: distance to obstacle (an action is considered correct if it does not generate a collision).

Reinf./it.

1.0

0.9
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0.7
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0.4

Iterations0           1500       3000       4500         7000  

Fig. 38.  Cumulative reward over time of the

competitive multilayer perceptron implementation

of the Q-learning in a task of an obstacle

avoidance behavior synthesis. 2000 iterations are

necessary to learn a correct behavior. The

architecture of the neural network is composed of

an input layer of 8 neurons, a hidden layer of 4

neurons and an output layer of 4 neurons. This

graph is the mean of five successive experiments.
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Fig. 39. Cumulative reward over time of the self-

organizing map implementation of the Q-learning

in a task of an obstacle avoidance behavior

synthesis. 200 iterations are sufficient to learn a

correct behavior. There are sixteen neurons in the

map (176 connections (11 x 16)). This graph is the

mean of five successive experiments.
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A comparison with the other implementations of the Q-learning has been done. Results displayed on fig. 40

show that the self-organizing map Q-learning implementation requires less memory and learns faster than all

the others (by a factor of 100).

Q-learning + Hamming + clusterisation Dyna-Q Competitive MLP Q-KOHON

Memory
(float)

6400 6400 1.6 M 6400 56 176

# iterations 7500 3500 4000 6000 2000 500

Time 55 mn 25 mn 30 mn 45 mn 8 mn 2 mn

Fig. 40. Comparison of several implementations of Q-learning on a task of learning an obstacle avoidance

behavior. The self-organizing map  Q-learning implementation (right) requires less memory and learns faster

than all the others. The increase in performance (learning time) is superior to 100 when compared to the

basic Q-learning implementation (left).
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Knowledge Incorporation is a priori knowledge incorporation. Biases are devised to be ad-hoc to the

application, and therefore can take extremely different forms. Thrun and Pratt’s taxonomy [Thrun et al., 1998]

of biases, in the context of learning to learn, is built in respect to the way the biases implement their actions:

partitioning (the exploration, the search space, or the target behavior), constraining (the exploration, the

exploitation, or the search space), and other approaches. Their taxonomy criterion reflects the implementation

of the biases. We prefer to use a taxonomy criterion which takes into account the target of the bias action---

where does the bias apply? We have extracted from the literature three classes:

- one that acts at the search level to improve exploration,

- a second class that intends to reduce the SSS,

- and a third class that reduces the learning base size by simplifying the target behavior.

Exploration biases are intended to provide a guidance for the exploration of the search space, improving the

quality of the learning base by selecting more significant samples. For example, Millán [Millán, 1996]

provides the robot with a set of reflexes (Fig. 41), which are used every time the evaluation function (a

connectionist controller) does not find an input neuron matching the current situation. It is expected that the

neural network gets control more often as the robot explores the environment, and increases the performance

of the policy. The connectionist controller is tuned through reinforcement learning.
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Fig. 41. Reflexes provide a guidance for the exploration of the search space, improving the quality of the

learning base by selecting more significant samples.
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Bias validity

Improving the quality of the learning base through the use of biases certainly speeds up the learning of the

behavior. However, one can wonder at the quality of the final solution. There is no question that the

synthesized behavior will conform the learning base, and that the learning base conforms the biases; but the

question is how far should we trust the biases? Using learning, we are assuming that our ability to accurately

model the environment is not perfect. Therefore, biases which are representations of our knowledge about the

environment cannot be considered 100% accurate. This is the reason why a learning phase is necessary to

correctly adjust the behavior achieved as a result of the bias use.

However, it must be emphasized that the involvement of biases greatly reduces the learning correction

capacities. The generalization is confined to the biased region of the search space. Let us take, as an example,

the well-known Braitenberg’s obstacle avoidance behavior  (Fig. 42) [Braitenberg , 1984] as a bias. Then, we

observe the following limitations on the completion and the correction capacities.
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Fig. 42. The behavior of the

Braitenberg’s obstacle avoidance

vehicle. The complicated shape of the

mapping for the right speed is due to

the impossibility of achieving a

continuous representation for the

situations along one axis.

Fig. 43. Situation-action pairs explored

using Braitenberg’s obstacle avoidance

algorithm as a set of reflexes. Situations

corresponding to close obstacles are

missing and will not allow the learning

of an efficient behavior.
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A solution
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Fig. 44. A possible solution to the

“getting stuck in corners” problem.

There is no possibility of reaching this

policy starting from the biased

mapping (fig. 42), due to the intrinsic

limited ranges of the exploration and

generalization processes (fig. 43).

We see that this mapping is extremely different from the mapping generated by the Braitenberg’s bias. There

is no chance to obtain this solution using the Braitenberg’s obstacle avoidance bias. In this section, we have

reported on the non-optimality of the biases, shown that the intrinsic limitations of the completion and

correction capabilities may impede the learning of an optimal solution.
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Search space size reduction

Search space size reduction biases are intended to

reduce the SSS either by a decomposition of the task

into subgoals, or by the reduction of the number of

sensors and actuators. For example [Kalmar et al.,

1998] control the dimensionality of their problem by

decomposing the task (a small mobile robot moving

and grasping a ball) into subgoals. On the other

hand, Mahadevan [Mahadevan, 1998] propose to

decompose the sensory representation space so as

to accelerate the learning. The effect on the SSS is

illustrated in Fig. 45 for a decrease by a factor 5 of

the number of actions (equivalent to a decrease of

each actuator sensitivity by a factor of 2.24). The

upper curve is the same as in fig. 24b, the axes have

logarithmic scales.
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As can be seen in fig. 45, even a small decrease of the number of actions (25 -> 5) has an important impact on

the SSS, but the SSS is nevertheless huge. It is certainly possible to increase the constraints on the sensory

information and actions, like in Mataric’s work [Mataric, 1997], so as to allow a complete exploration of the

search space. However, a large search space provides the robot with an important degree of flexibility that

allows the learning process to invent useful solutions (i.e., not explicitly introduce by the human operator), in

a similar way as the one pointed out by Mitchell [Mitchell, 1997] in the connectionist domain.

Redundancy in the sensory perception, which could appear as an objective reason for applying sensory

perception reduction, has no effect on the effective SSS: redundant information does not increase the SSS of

the potential behaviors. It only affects the theoretical computation of the SSS. Also, one of the basic interests in

robot learning comes from the possibility to be able to adapt to sensor failures, by using redundant

information. Moreover, every sensor information reduction decreases the expressivity of the behavior

solutions. Therefore, we can conclude that SSS reduction, through the use of sensory reduction, has to be

drastic to be of any help, in which case the learning advantages are jeopardized.
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Reducing the number of required samples by reducing the behavior complexity

Sample requirement reduction biases are intended to reduce the number of samples required to achieve the

learning by reducing the complexity of the behavior solution. This process is different in nature from the

decomposition of the task into subgoals (SSS reduction biases). The main idea behind Dorigo’s shaping

[Dorigo et al., 1998] is not to reduce the search space, but the expression of the target behavior. A simple

behavior requires fewer learning samples to be learned than a more complex one. Then, when the target

behavior is correctly synthesized, a more complex behavior becomes the new target. The same idea is used in

Learning from Easy Missions (or LEM) [Asada et al., 1996]. There is no way today to have a quantitative

measure of the complexity of the target behavior. The Vapnik-Chervonenkis Dimension (VC-dim) requires

noise-free data, supervised learning and a fixed distribution between exploration and exploitation; application

of reinforcement learning to robotics does not fulfill these conditions. In Fig. 46, we represent the complexity

of a behavior as the minimum number of points necessary for describing the low-level behaviors (we consider

each sensor individually). One point is required for a constant action output, 2 points for a segment, 3 points

for two segments, and so forth., until the maximum represented here of 6 points for 5 segments. We compute

the number of samples required for the learning as the number of potential combinations (equal to the number

of points power the number of sensors).
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Fig. 46. Illustration of the

relation between the

“complexity” of a behavior

and the number of required

learning samples. We have

represented below the X-

axis a few representative

behaviors, starting with the

simplest. A behavior

involves 8 sensors, therefore

we draw 8 sensor-action

graphs per behavior. A

simpler behavior requires

fewer samples to be learned

than a more complex one.

Note that the Y-axis scale is

logarithmic.
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The problem is to have some sort of external supervisor, capable of ranking situations by difficulty and of

choosing tasks of increasing difficulty [Dorigo et al., 1998]. This process is dependent on the learned policy,

requires human supervision and a detailed knowledge of the behavior solution and associated intermediate

steps (behaviors of less complexity). Such knowledge needs to be so precise, that one can wonder why,

knowing so much, the human operator is not able to directly define the robot policy algorithm? Also, these

biases, by carving the path to the behavior solution, do not allow the learning process to find an unexpected

solution. Tuning, in this case, seems a term more appropriate than learning.

Avoiding a priori bias: The main drawback associated with a priori biases is that they limit the expressivity

of the behavior solution. Only a solution close to the policy described, or allowed, by the biases is allowed.

Since the bias validity is, by definition, not guaranteed, there is no guaranty that the final behavior is optimal.

Tabula rasa learning techniques do not limit the expressivity of the behavior solution, but the search space is

so huge that an optimal solution is seldom found. For example, the reinforcement learning algorithm task is to

improve the cumulative reward over time, and despite a good learning phase (i.e., no negative rewards

experienced during the phase), it often happens that the obtained behavior does not exhibit the expected

behavior. Addition of knowledge (a posteriori knowledge) can be used to complete or correct the learning

process. It allows one to take into account the non-optimal obtained behavior --nevertheless the result of a

learning  process  in  a  huge  search  space. A posteriori biases can take the form of the  addition  of  external

 modules dealing with sequences of actions.
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Obstacle avoidance behavior correction

RF:  +1 if it is avoiding, or

-1  if a collision occurs, or

 0  otherwise.
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Learning                          Test   

The robot is avoiding when the present

sum of sensor values is smaller than the

last one, the difference being greater than

0.06. A collision occurs when the sum of

the six front sensor values is greater than

2.90, or the sum of the two back sensor

values is greater than 1.95.

Fig. 47. Distances covered by Khepera

during four different experiments of

learning an obstacle avoidance behavior.

Behavior (a) displays a predilection for

forward moving, (b) prefers backward

moving, (c) prefers small forward

movements, (d) changes its policy at the

end of the learning phase (200 iterations).
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The learning can be corrected and improved with the use of a set of forbidden sequences of actions. Here are

three sequences of actions to forbid in order to correct the learned behaviors:

1/ Moving back and forth i.e., alternate sequences of actions having the same absolute values.

2/ Small movements i.e., long sequences of actions having small absolute values.

3/ Backward avoidance i.e., long sequences of actions with negative speed values for both motors.

All these sequences modify the exploitation. The effect is to suppress the eligibility of actions in a given

situation (and a given historical context). On the self-organizing map implementation, the second closest

neuron is selected instead of the first. As shown Fig. 48, using this set of forbidden sequences of actions, only

forward behaviors are learned.
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Fig. 48. Covered distances by the four different

policies (a, b, c, d) of Fig. 47 after adding the

forbidden sequence of actions module and re-

starting the learning.

Fig. 49. Number of forbidden sequences used per

experiment for the experiences described in fig. 47 and

fig. 48.

Only forward behaviors are learned, but there is still a large variability among the proposed solutions. It is

interesting to relate the number of times the forbidden sequence module is used with the quality of the

obtained behavior. Fig. 49 shows the number of times the a posteriori biases are invoked.
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Reinforcement Function Design

RFs guide the explration process. In this way, they can be considered as biases. The RF quality is intrinsically

limited by the expert’abilities. When a reinforcement learning experiment does not converge, it is impossible

to know if it is due to the fact that the experiment was too short and more examples are needed, or if the

intrinsic nature of the RF forbids convergence. Today, RL researchers use a slow-and-painful trial and errors

approach to define the RF. In the meantime efforts have been devoted to find ways to automatically learn the

biases. For example, UPA [Santos 99].

RF(s1, ...,su ) =
+1 if g1(s1,...,su) > θ+

−1 if g2(s1,...,su ) <θ−

0 otherwise

 
 
 

  

where (s1 ,..., su )  is the output readings of the sensors, g1( ) and g2( ) are any functions linking the sensor data

to the rewards.
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UPA has been developed to adjust automatically the threshold values: θ+ and θ-, optimizing in this case, the

exploration part of the learning phase by achieving and maintaining pre-defined ratios of positive and negative

rewards. If there is no positive reward, the evaluation function built during the learning phase will have "0" as

maximum value and the policy cannot select effective actions. If there is no negative reward, the robot can

remain in a dead-end situation forever. If there is no null reward, the evaluation function will be non-

continuous at the frontier between positive and negative situation-action pairs.

RF((s 1,..., s 16)
t ,(s 1,..., s 16)

t −1) =

+1 if g1((s1, ...,s 16)
t ,(s 1,...,s 16)

t −1 ) > θ+

−1 if g2(s 1,...,s 16) < θ−

0 otherwise

 

 
 

  

where g1((s1,...,s 16)
t ,(s 1,...,s16)t −1) =(g2 (s1,...,s 16)

t + s i
t)−(g2 (s1,...,s 16)

t −1 + s i
t −1

i =7

10

∑
i =7

10

∑ )

g2(s1, ...,s16)t = s i
t

i =1

4

∑ + s i
t

i =13

16

∑  
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If the update of the threshold values is done

continuously during the learning phase, so as to take

into account the improvement of the robot policy

due to tighter threshold values, then this will in

return update the target goal, which will impact the

reward ratio, and so forth. This way of modifying

and increasing the quality of the target behavior is

independent on the learned policy, and therefore

does not require some sort of external supervisor,

capable of ranking situations by difficulty and of

choosing tasks of increasing difficulty as for sample

requirement reduction biases.

Fig. 50. NOMAD 200 with a ring of 16 IR sensors
and 16 SONAR sensors.



 - 63 -

256

50 100 15050
# of obstacles

Distance to 
the obstacles

100

150

200

Fig. 51. Distance to the

obstacles with respect to the

number of obstacles

encountered. There are 300

iterations (200 learning plus

100 test). The total number of

encountered obstacles provides

an indication of the efficiency

of the robot policy: the greater

the efficiency the more

numerous the encountered

obstacles.

(a) is obtained by a random move selection behavior (no learning is involved),
(b) is the learned behavior using the values given by UPA (θ+ = 390, θ- = 1150),
(c) (θ+ = 195, θ- = 2300), (d) (θ+ = 780, θ- = 575),
(e) (θ+ = 195, θ- = 1150), (f) (θ+ = 780, θ- = 1150),
(g) (θ+ = 390, θ- = 2300), (h) (θ+ = 390, θ- = 575).
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Building of a non-explicit Model

A priori biases intend to reduce the number of samples required to achieve the learning, because only a

limited number of moves can be made during a robotic experiment (see fig. 3). A priori biases could be

avoided if more samples can be used for the learning. The usual idea for adding samples is to use a model to

generate synthetic samples. We have discarded this option (see introduction) because of the large involvement

required from the user -- antinomic to the automatic aspect associated with learning. But, there are non-

explicit models that do not require user involvement. Dyna is one of the first attempts to use non-explicit

models to speed-up the learning (in fact the temporal credit assignment); lazy learning is another attempt.

DYNA: Without building an explicit model, the DYNA architecture [Sutton, 1991] re-run previously seen (in

the real world) situation-action pairs so as to back propagate delayed rewards. The returned reward is the

same as in the real world. When the experience is performed in the real world, the exploration function is the

maximum function. Otherwise, the exploration function is a random function which leads to non-zero

reinforcement rewards only in previously seen (in the real world) situation-action pairs. Because the world

model is not explicit, it is called an internal world model (Fig. 52). For each real experience with the world,

many hypothetical experiences randomly generated can also be processed and learned from. The cumulative

effect of these synthetic experiences is that the policy approaches the optimal policy given by the current

samples.
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Fig. 52. Dyna architecture: for each Q-learning iteration in the real world (a), many “hypothetical” iterations

are conducted (b) using the internal world model so as to backpropagate delayed reward information.

Prioritized Sweeping [Moore et al. 1993] and Queue-Dyna [Peng and al., 1993] improve on Dyna by

concentrating on “interesting” parts of the search space, instead of randomly selecting situation-action pairs.

A updating priority is added to the situation. This priority depends on the Q-value change size, favoring

“new-unforeseen-important” transitions and the backpropagation of the associated rewards.
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Lazy RL

Dyna helps to converge to the solution if it is contained in the samples, but the problem is to obtain a set of
samples large enough to allow the learning of a behavior solution. New additional samples are required. Lazy
learning [Aha, 1997], also called instance-based learning, provides a way to achieve this result. In a lazy
learning approach (Fig. 53), the computation of the inputs is delayed until the necessity arises. Lazy learning
samples the situation-action space, storing the succession of events in memory and, when needed, probes the
associative memory for the best move. The sampling process stores the successive situation-action pairs
generated by a random action selection policy. The exploration phase is done only once, stored and used later
by all future experiments. The probing of the memory involves complicated computations: clustering, pattern
matching, and so forth.

World  
Action 

Randomly built  
lookup table:  
situation, action 

Situation matcher

Reinforcement 
function

Evaluation 
function

Situation

Fig. 53. Lazy learning used as initial

knowledge. Randomly sampled

situation-action pairs in the lookup

table are used by the situation

matcher to determine the effect of

actions. Possible incoming situations

are evaluated and ranked by the

evaluation function with the help of

the reinforcement function. The best

rewarding action is conducted.
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By storing situation-action pairs, a lazy memory builds a model of the situation transition function. Two

questions immediately arise about the legitimacy of considering lazy learning as a model, and if so, about the

quality of the model:

- Lazy learning assumes that the environment is not changing. Any change in the environment diminishes

the quality of the bias provided by the lazy memory. But, basic features, such the effects of moving forward

or backward in front of an obstacle tend to persist despite environment variations and are nevertheless

important usable knowledge.

- The lazy memory (or model) is used as a bias to leverage the model-free following learning phase (Q-

learning). It has been demonstrated [Whitehead, 1991] that random exploration might be dangerous and in

some environments is an immensely ineffective method of gathering data, requiring exponentially more data

than a system that interleaves experience gathering with policy-building more tightly. However, these

results only apply to the “go to a particular location” type of applications and do not generalize to more

“reactive” behaviors like obstacle avoidance or target observation. Therefore, we assume that the model is

correct in the context of providing a bias to leverage a model-free learning phase that follows.
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Using the lazy memory, a number of algorithms can be applied to find a good policy, like value iteration,

policy iteration or a mix of both. However, since there is no question that we are here only looking for a bias,

that a Q-learning phase will also take place, then the quality of the resulting bias policy is not as important as

the computational cost. Sheppard et al. [Sheppard et al., 1997] propose to mix lazy learning and

reinforcement learning, probing the memory with the RF. Their objective is to provide a method for predicting

the rewards for some state-action pairs without explicitly generating them. They call their algorithm lazy Q-

learning. For the current real world situation, a situation matcher locates all the states in the memory that are

within a given distance. If the situation matcher has failed to find any nearby situations, the action comparator

selects an action at random. Otherwise, the action comparator examines the expected rewards associated with

each of these situations and selects the action with the highest expected reward. This action is then executed,

resulting in a new situation. There is a fixed probability (0.3) of generating a random action regardless of the

outcome of the situation matcher. New situation-action pairs are added to the memory, along with a Q-value

computed in the classical way. Among similar situation-action pairs in the memory, an update of the stored

Q-values is made. There is a limit to the genericity of this lazy memory because the Q-values associated with

the situation-action pairs only apply for a particular application.
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Cooperative multi-robot observation of multiple moving targets (or CMOMMT for short) application

[Parker, 1997]. In a bounded arena (Fig. 54), a team of robots with 360˚ field of view of limited range has to

maximize the observation time of a set of targets moving randomly (5% probability of change of direction,

maximum speed less than the maximum robot speed). We say that a robot is monitoring a target when the

target is within the robot’s sensory field of view. The objective is to maximize the collective time during

which targets are being monitored by at least one robot. The radius of the sensory robot range is less than the

size of the arena, implying that robots have to move to maintain observational contact.

Fig. 54. Bounded arena, with 10 robots using the

lazy Q-learned behavior (no awareness involved).

The radius of the arena is 5, the radius of the sensory

perception range of the robots is 1. There are 10

randomly moving targets. The dotted lines indicate

the paths followed by the robots and the targets. The

targets have different speeds: the closer the dots, the

smaller the speed.
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Predictions in CMOMMT

The lazy memory is built using a random action selection policy for the robots and recording at each time

step the total number of targets under observation by the team. It is important to be able to ascertain the

quality of the lazy memory – in fact the quality of the non-explicit model that has been build. Certainly, the

larger the number of samples in the memory, the better the performance we can expect from the following Q-

learning phase. However, we need to know before the Q-learning phase starts, that the memory will prove

useful. The coherence of the memory can be measured and compared to a incoherent memory. The

coherence of the memory is demonstrated by the consistency with which positive rewards lead to positive

reward in similar situations, null rewards lead to null rewards in similar situations and negative rewards lead

to negative rewards in similar situations. The larger the number of similar situations the better the quality of

the demonstration. It is important to note that the maximum number of situations that can be considered as

similar is directly proportional to the size of the memory (the larger the better).
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Fig. 55. Coherence of the non-explicit model build by the memory. In dotted lines, the incoherent memory; in

plain lines the actual measures. The differences between incoherent memory and the actual one suggest that

negative situation-action regions are continuous as are null-reward regions. There is no coherence for the

positive rewards, which means there is no (represented) region in the memory that is rewarding.
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Fig. 56 presents the differences (Z-axis) in percentages of positive, null and negative rewards (measured

values - incoherent memory), with respect to the size of the memory and the size of the “similar” situation

sets. As we can see, gain is directly proportional to the size of the memory and to the size of the set of similar

situations. Also, a large memory tends to smooth the surface (by reducing the standard deviation).

                                   
a                                         b                                            c

Fig. 56. Differences between the actual memory and its incoherent version.

(a) Positive rewards are very similar – impossible to predict.

(b) Null rewards are more numerous, and

(c) Negative rewards are less numerous: there are specific regions of the search space that encode null

rewards and others that encodes negative rewards.
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Fig. 57. Performances of the non

cooperative lazy Q-learning compared

to a random action selection policy, a

user-defined non cooperative policy

and A-CMOMMT. The size of the lazy

memory varies between 100 to 900

situation-action pairs. There are 10

robots and 10 randomly moving targets.

The results are the mean of 10 different

experiments per point for lazy learning

policy, and 100 experiments for the

other 3 policies. Each experiment

duration is 1000 iterations.
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Some starting points to explore the web on the tracks of agent learning (July 1999)

Adaptive Behavior (Society & Journal)
http://adaptive-behavior.org/

Home Pages of Machine Learning & CBR Folks
http://www.aic.nrl.navy.mil/~aha/people.html

Adaptive Intelligent Systems Architecture
http://ai.eecs.umich.edu/cogarch0/ais/index.html

lectures.html
http://www.csee.usf.edu/~mahadeva/ml-class/lectures.html

The Reinforcement Learning Group at Carnegie Mellon
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/reinforcement/mosaic/homepage.html

MIT Artificial Intelligence Laboratory Home Page
http://www.ai.mit.edu/

Khepera
http://www.k-team.com/robots/khepera/

Claude Touzet
http://saturn.epm.ornl.gov/~touzetc/


