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Photoinduced water splitting in pyridine water clusters

Ab-initio calculations predict that pyridine (Py) can act as a photo-catalyst to split water by absorption of a UV photon following the reaction Py -H 2 O + h → PyH • + OH • . To test this prediction, we performed two types of experiment: in the first, we characterize the electronic spectroscopy of the PyH • radical in the gas phase. In the second, we evidence the reaction through UV excitation of molecular Py-(H 2 O) n clusters obtained in a supersonic expansion and monitoring the PyH • reaction product. The results show unambiguously that PyH • is produced, thus that water is split using pyridine as photo-catalyst.

In this paper we show that pyridine can act as a photo-catalytic molecular system, which can dissociate the water covalent bond with UV C light. Water molecule is a ubiquitous system to produce H 2 , however VUV light is needed to photo-dissociate the H-OH covalent bond (186 nm, 6.66 eV). Since most of the sunlight reaching the earth is in the visible spectral region, we cannot dissociate the H-OH bond under normal sunlight conditions and it is necessary to design a system that could break the H-OH bond with visible light.

 The case of pyridine-water clusters is peculiar since some attempts have been made to characterize their spectroscopy but without success. 33 This is already good indications that some fast non-

radiative processes occur, which prevent detection of Py-H 2 O clusters through multiphoton ionization or laser induced fluorescence (LIF).

To demonstrate directly the photochemical reaction in Py-H 2 O clusters, and compare with ab-initio calculations, the experiment has been conducted in the gas phase, using molecular clusters of pyridine with water produced in a supersonic expansion. After excitation to the 1 * state of pyridine, two reaction products are expected to be produced, the OH • radical and the hydrogenated pyridine (pyridinyl radical PyH • ). In the gas phase the radical pair can separate freely. As will be seen, the ionization potential (IP) of the PyH • radical is calculated to be rather low, which should make its detection quite easy. It should then be easier to detect the PyH • radical as a reaction product of excited Py-(H 2 O) n clusters than to detect OH • through laser induced fluorescence, which has a low detection efficiency (typically 10 -3 ). The experimental scheme used involves excitation of Py-(H 2 O) n clusters and detection of the PyH • radical through ionization by one or two photons.

Since the PyH • radical spectroscopy has not yet been studied, the experiment will be split into two parts, the first one being the spectroscopic characterization of the cold PyH • radical, and the second one the detection of PyH • as a reaction product after excitation of the Py-(H 2 O) n clusters. Additional calculations are performed to get information on the nature of the excited states of the PyH • radical and its ionization potential.

EXPERIMENTAL

The setup that we used is composed of a pulsed supersonic expansion combined with a time of flight mass spectrometer. The setup has been previously described 34 and is quite standard. The discharge source is the same as used in previous experiments to produce either cold neutral van der Waals species 35 or more recently protonated molecular ions 36 . In a few words, a pulsed high voltage discharge located a few mm after the pulsed nozzle, produces PyH • radicals from a gas mixture of He/H 2 /pyridine. The radical is cooled down in the expansion and ionized between the extraction plates of the reflectron Time of Flight (TOF) mass spectrometer (Jordan TOF Products, Inc.). Additional experiments were conducted with fully deuterated pyridine (here after named dPy).

In a second type of experiments, the discharge is removed and Py-(H 2 O) n (or dPy-(D 2 O) n ) clusters are produced by expanding a mixture of water and pyridine (at their vapor pressure at room temperature) with He (between 1 and 5 atm). Two laser beams are temporarily and spatially synchronized between the extracting plates of the mass spectrometer, the pump laser excites the clusters and the probe laser detects the PyH • (or dPyD • ) radicals.

The lasers used are YAG pumped nanosecond OPO lasers (EKSPLA model-NT342B), which have a 10 Hz repetition rate, a resolution (FWHM) of 8 cm -1 and a minimum scanning step of 0.02 nm. The lasers are focused in the middle of the extraction zone of the time of flight mass spectrometer. These lasers can be scanned from visible to UV in three regions: from 410 to 709 nm (OPO signal), from 296 to 409.9 nm (frequency mixing) and from 225 to 295.9 nm (frequency doubling).

Calculations are also performed using the Turbomole package [START_REF]TURBOMOLE V6.3[END_REF] , at the TD-DFT (B3LYP) and RI-CC2 levels with the aug-cc-pVDZ basis set, to get information on the PyH • ionization potential and on the excited states of the radical.

RESULTS AND DISCUSSION

Spectroscopic investigation of the pyridinyl radical (PyH • )

Figure 1 shows the mass spectra obtained when the probe laser is set at 225 nm with the discharge on or off. In absence of discharge (red trace) the ion at m/z=79 corresponds to the pyridine radical cation Py + produced by two-photon ionization of pyridine and the small peak at m/z=80 corresponds to the pyridine isotope with a 13 C atom. When the discharge is on, an intense peak at m/z=80 with its isotopic companion at m/z 81 is obtained indicating that protonated pyridine PyH + is observed by ionization of the PyH • radical. The spectroscopy of the PyH • radical is obtained by monitoring the intensity of the m/z=80 mass peak (PyH + ) while scanning the laser from visible to UV as displayed in Figure 2. The onset of the very strong signal at 234 nm (5.31 eV) and the observation of a continuum at higher energy correspond clearly to the ionization potential of the PyH • radical. To comfort this assertion, the IP of PyH • has been calculated using the DFT method with the B3LYP functional and the aug-cc-pVDZ basis set (including the difference in zero point energy ΔZPE), and is found at 235 nm (5.28 eV). ) Wavelength (nm)
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Figure 2: spectroscopy of the PyH • radical produced in the discharge source and cooled down in the supersonic expansion. At high energy the molecule is ionized by one photon. At lower energies, i.e. for excitation wavelengths between 300 and 440 nm, the spectrum is obtained by resonance enhanced one-color two-photon ionization (R2PI). The main bands have been assigned by comparison with ab-initio calculations (see text). Some well resolved transitions are observed in the visible and UV A spectral regions. The first band is observed at 425.6 nm (23496 cm -1 or 2.91 eV) and it requires two photons to reach the IP of PyH • . One can detect quite easily states that can be ionized with two photons i.e. those which have their absorption below 468 nm (half the IP).

Lower energy states would need the absorption of three photons to be detected, and nothing has been observed at energies lower than 425.6 nm. The dPyD • spectrum shows the same transitions slightly red-shifted and is given in Figure 5c.

The ground state optimized structure has been obtained from calculations at the RI-CC2 (aug-cc-pVDZ) level and shows a C 2v symmetry. Since the experimental spectrum shows weak Franck Condon activity and strong band origins, the radical should not be too much distorted from this symmetry in the excited states. The excited state optimizations have then been calculated under C 2v geometry constraint for states which have a significant oscilla-tor strength (>10 -4 ). The calculated transition energies are systematically higher by 0.3 eV than the experimental transitions (see Table 1). This is the typical uncertainty of CC2 calculations for closed-shell molecules, while the uncertainty for open-shell species cannot be estimated at present due to very few experimental and theoretical data. Based on these calculations, we propose the assignment of Figure 2. It should be mentioned that the first transition observed corresponds to the fourth excited state and the third state of B 2 symmetry. We tried to calculate the excited state vibrations but in absence of symmetry the open shell/CC2 calculation of such high excited state failed.

Table 1: Experimental and calculated transition energies of PyH •

It should be mentioned that the PyH • signal is not very strong because the discharge method is not so efficient to produce the radical, so that the laser is rather powerful and some saturation of the vibronic transitions probably occurs, which may explain why some excited states with low oscillator strength can be detected. As can be seen in the Supplementary Information (table SI-1), there is not so much choice to assign the states and one should keep in mind that open shell excited state calculations may not be so accurate, and that the Franck-Condon factors could not be calculated.

The first two lower excited states have quite similar vibrational spectra. The active vibrations at 380/371cm -1 and 1122/1005 cm -1 are typical of the active vibrations in pyridine and can be tentatively assigned to the 16a 1 and 12 1 modes observed at 323 and 955 cm -1 in the excited state of pyridine and at 314 and 1105 cm -1 in the radical cation. [START_REF] Riese | [END_REF] Experimental In the upper trace of Figure 3, the PyH + ion is observed through a one-color two-photon scheme at 255 nm. This signal is not linked to the reaction in clusters with water but to the reaction of pyridine cluster ions. The same experiment has been performed in absence of water in the supersonic expansion. To insure that there is no water in the tubing bringing the He/Py gas to the pulsed valve, some desiccant (CaCl 2 ) has been introduced in the line, and absolutely no water complex could be obtained. Under these conditions, the signal corresponding to ionization of the PyH • radical by the probe laser is negligible, whereas the PyH + signal coming from the reaction in (Py) n + clusters (n=2 or more) in their ionic state can still be observed (figure SI-2). The comparison between pump/probe mass spectra observed in presence and absence of water clusters is shown in figure SI-3.

The spectral signatures of both processes are totally different (see figure 4). The PyH + signal issued from the ionic reaction obtained in a water free expansion exhibits a smooth increase going from 225 nm up to 245 nm (figure 4b). When water is added in the expansion, excitation of Py-(H 2 O) n clusters leads to the formation of pyridinyl radical, which displays a step function type spectrum, no signal between 245 and 234 nm and strong signal between 234 and 225 nm and, as observed when pyridinyl radical produced in the discharge source are ionized (figure 4a). Thus, there is a clear and unambiguous signature of the processes involved in the experiment. In pure pyridine clusters, there is a ionic reaction leading to PyH + , while in expansion containing water, excited pyridinewater clusters react to produce the pyridinyl radical, clearly identified by its ionization threshold. The water splitting reaction is then clearly demonstrated. Another method to detect the PyH • radical is through the two-photon ionization scheme in the visible spectral region. In Figure 5 are presented the pump probe PyH • and dPyD • (fully deuterated pyridinyl) action spectra in comparison with the spectra obtained for the cold species issued from the discharge source. This unambiguously ascertains that the PyH + signal detected with the probe laser is due to ionization of the PyH • radical. It can be noticed that the action spectra resulting from the reaction in clusters are broadened as compared to the spectra of the cold species produced in the discharge source, which implies that the PyH • or dPyD • reaction products are produced with some internal energy. Note that the dPyD • vibronic bands are red-shifted as compared to the PyH • bands because the heavier deuterium mass induces an isotopic shift reducing the vibrational frequencies. For which cluster size does the reaction occur?

We could expect to identify the parent ion from the action spectrum recorded in probing the PyH • Since we can record the one-color two-photon absorption/ ionization spectrum at the mass of Py-H 2 O complex, the complex is not reacting very quickly, otherwise it could not absorb the second photon necessary to ionize. In fact, there is a kind of contradiction to use spectroscopy to determine the reacting cluster size since, if the cluster reacts quickly, it will not be ionized thus not observed. In this line, it can be noted that the Py-(H 2 O) 2 complex stays very weak and the Py-(H 2 O) 3 cluster is barely observed. However, the similarity between the PyH • and Py-H 2 O spectra, shown in SI-figure 4, indicates that pyridine-water clusters are responsible for the reaction.

The only way to get some idea of the clusters responsible for the reaction is by changing expansion conditions. Why are large (n≥4) clusters necessary to induce the reaction? The 1-1 complex is observed though a one-colortwo-photon ionization scheme, which implies a relatively long excited state lifetime i.e. a barrier to the reaction: in absence of barrier the reaction rate would be very fast, the excited state lifetime very short and the complex would not be ionized. The simplest explanation for the reactivity of larger clusters would be the lowering of the barrier as the cluster size increases. This effect is well known in the case of ionic reactions in which the transition state is stabilized by solvent molecules. But we are dealing with a radical reaction, which is a lot less sensitive to the solvent effect. As a matter of fact Reimer et al. calculated that the barrier is not strongly influenced by the solvent, 1 so that this effect should be marginal.

A second hypothesis can be suggested. Ab-initio calculations show that the crossing between the ground and reacting excited state occurs at an OH distance of 1.9/1.8 Å, i.e. for NH around 1.1/1.2 Å if the NO distance is fixed, i.e. if the OH fragment did not move during the H transfer. As seen in Figure 7, the excited state is correlating to the PyH • + OH • ground state. Due to the H/OH mass ratio, the oxygen atom is not moving very quickly as compared to the H atom. In order to be trapped in the weak PyH • potential well, the excess energy has to be re- In summary of this part, the PyH • photo-product does not seem to come from the 1-1 complex and the fact that the 1-1 complex can be ionized means that its excited state lifetime is relatively long (longer than a few ps,…). It seems that larger clusters are necessary, probably because they react more efficiently and because the surrounding water molecules can dissipate the excess energy necessary to trap the PyH • product.

Photodissociation of PyH •

In order to use pyridine as a photo-catalyst, one should insure that the absorption of a photon by PyH • can lead to H loss and recovery of the catalyst. Calculations 2 indicate that there is a * state quasi dissociative along the NH coordinate, which crosses the  excited state and leads to H atom loss. The barrier seems quite low, the excitation of the first observed transition at 425.6 nm (2.91 eV) is above the dissociation limit in Py+H (1.5 eV), thus PyH • photodissociation is energetically allowed.

In a first step, we tried to evidence this process in exciting cold PyH • issued from the discharge source. The detection scheme requires the discharge to produce PyH • , one photon in the 420 nm range to excite PyH • and a probe photon at 255 nm to ionize Py by resonant one-color two-photon absorption. The result was disappointing and no Py could be evidenced in this experiment.

In a second step, we studied the dissociation process from hot PyH • issued from the reaction in the clusters. In this case, the first laser at 255 nm excites the clusters, and a second powerful laser in the visible is used to excite and ionize PyH • (via R2PI) and to ionize Py through a four-photon absorption process. The results are presented in Figure 8. The first set of data concerning the hydrogenated system is the richest (Figure 8a). When PyH • is produced by reaction in Py-(H 2 O) n clusters, the first band at 23500 cm -1 is observed only in the PyH • channel and not on the Py channel. At 23600 cm -1 a threshold is observed in the Py channel (arrow in the upper panel of Figure 8a) and the second band at 23880 cm -1 appears in both Py and PyH • channels. A third vibrational band is observed very weakly in the cold PyH • spectrum (from the discharge) and very strongly in the Py channel. In the case of the deuterated species, no structure is observed on the Py channel, only a broad band, which is also observed on the dPyD • channel underneath the vibronic bands. data can be rationalized in the following way: the dissociative * state has a different symmetry than the optically active state . Thus, out of plane vibrations or high rotational excitation are necessary to induce a coupling between these states. In the cold PyH • from the discharge, the rotational excitation is low and the out of plane vibrations may not be very active, so that no dissociation is observed. The out of plane vibrations could be populated by vibrational redistribution but in such a small cyclic with a relatively small vibrational energy excess, 39,40 this process should not be competitive with the radiative process.

For the hydrogenated species, the fragmentation threshold is clearly observed at 23600 cm-1 and the observation of a common vibrational band at 23880 cm -1 in all the spectra is good evidence that the Py observed is coming from the excitation of PyH • . An alternative explanation could have been the excitation of the clusters at 255 nm, relaxation toward the Py triplet state and evaporation of water molecules, followed by the ionization of the triplet by the probe laser. Since the probe laser is delayed in time by 600 ns and since it seems that the Py triplet is relatively short lived (72 ns) 141 , this mechanism will not match our measurement.

The third band observed at 24300 cm -1 on the Py channel might be assigned to some out of plane vibration, which is weakly seen on the spectrum of cold radical but will enhance strongly the coupling between the * and the * states and thus increase the fragmentation efficiency.

The contrast with the deuterated system is quite impressive, no structure is observed in the Py fragmentation pathway (Figure 8b). The H/D loss is probably controlled by some tunneling mechanism, and the deuterated species will tunnel less efficiently, or need a higher internal energy to cross efficiently the barrier as compared to the hydrogenated species. In this case, only very hot dPyD molecules can dissociate. As already stated, the Py channel detection occurs via a four-photon ionization process, which may induce artifacts in the detection scheme (accidental resonances). Detection using a third laser to ionize Py with two-photon absorption would be worthwhile.

CONCLUSIONS

The spectroscopy of the pyridinyl radical has been characterized at low temperature in a supersonic expansion and its ionization potential determined. Since PyH • can be probed through one photon ionization in the UV, pump probe experiments have demonstrated that the UV excitation of Py-(H 2 O) n clusters leads to the formation of the pyridinyl radical, thus we have evidenced the water splitting reaction using pyridine as photo-sensitizer. We have also evidenced the role of the surrounding molecules, some extra waters molecules in the clusters being necessary to stabilize the PyH • product. It would probably be quite instructive to detect the other product of the reaction, the OH • radical.

More work has to be done to fully characterize this reaction, in particular the cluster sizes that lead to the reaction may be studied through infrared hole burning experiments, and the dynamics of the excited states may be investigated in the picosecond regime.

The last step of the process, i.e. regeneration of the catalyst through photo-detachment of the hydrogen atom (PyH • + h → Py + H) has been studied. It seems that only hot PyH • radicals can lose hydrogen atoms. Other aromatic molecules 42,43 are expected to lead to similar water splitting reactions and will be tested in the near future. 
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 1 Figure 1: mass spectra obtained with a mixture of He/H 2 /pyridine with the discharge source on (black) or off (red), the ionization laser being set at 225 nm.
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 3 Figure 3: mass spectra recorded after excitation of the Py-(H 2 O) n clusters. Upper trace: pump laser at 255 nm alone: the Py-(H 2 O) n cluster are excited and the PyH + ion is obtained through one-color two-photon absorption. Middle trace: probe laser at 225 nm alone: nearly no ion signal since Py and Py-(H 2 O) n clusters absorb very weakly at this wavelength. Lower trace: pump (255 nm) and probe (225 nm) lasers with the probe laser delayed
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 4 Figure 4: a) PyH + signal coming from ionization of the pyridinyl radical: In red pyridinyl radical produced by the discharge source; in black pyridinyl radical obtained from the reaction of pyridine-water clusters excited at 255 nm and probed by a second laser. b) Multiphoton ionization spectra of Py + , PyH + and Py 2+ obtained from an expansion of pyridine in He without water. In this case the PyH + spectrum is similar to the Py + spectrum.

Figure 5 :

 5 Figure 5: Two-photon ionization spectra, comparison between : a) PyH • issued from the discharge source, b) PyH • from the reaction of the Py-(H 2 O) n excited at 255 nm, c) dPyD • from the discharge source, d) dPyD • from the reaction of the dPy-(D 2 O) n ) clusters excited at 255 nm.

  figure S.I-4. As for the free molecule the spectra are broad not well resolved making the identification of the parent molecule difficult, even though the PyH • action spectrum and the Py-(H 2 O) R2PI spectra are similar.
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 6 Figure 6: Variation of the ion intensities as a function of the backing pressure. When the pressure increases the cluster size increases. In red the PyH • signal seems to indicate that large clusters are involved in the reaction.
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 7 Figure 7: Schematic representation of the reaction mechanism. There is a competition between the stabilization of the PyH • and the recombination in Py-H 2 O, which depends on how fast the excess energy is released and how fast the OH • radical is leaving the cluster. The dotted blue arrow represents the schematic reaction pathway showing the efficient energy relaxation induced by the solvent molecules, which prevents multiple passages over the conical intersection C. The potential curves are adapted from Ref 2.

Figure 8 :

 8 Figure 8 : a) hydrogenated pyridine: lower panel two-photon excitation/ionization spectrum of cold PyH • produced in the discharge, middle panel action spectrum of PyH • produced after excitation of Py-(H 2 O) n clusters at 255 nm and detecting PyH + by R2PI, upper panel action spectrum of PyH • produced after excitation of Py-(H 2 O) n clusters and detecting Py + . b) deuterated pyridine: lower panel two-photon excitation/ionization spectrum of cold

h

  Photon induced Water splitting in pyridine-H 2 O clusters observed through the detection of the pyridinyl radical

  Excitation of Py-(H 2 O) n or dPy-(D 2 O) n clusters: direct evidence of the water splitting reaction The experiments have been conducted for hydrogenated and fully deuterated species dPy, and the experimental results are basically the same. Py-(H 2 O) n clusters produced in supersonic jet are excited in the energy region of the pyridine 1 * state (around 255 nm) and PyH • is probed by ionization at 225 nm. The probe laser at 225 nm ionizes efficiently PyH • with one photon and excites very weakly the parent clusters (see Figure SI-1 in the supplementary information).The delay between lasers is 600 ns, to discriminate PyH • radicals from the13 C isotope of pyridine (both have the same mass) and to discriminate the reaction in the excited state from a reaction in the ionic state of the clusters due to a two-photon absorption at 255 nm (PyH + peak in the upper trace of Figure3).Besides, such a delay preludes absorption of the probe laser from the excited states of the clusters, which have a much shorter lifetime. The ions issued from ionization of PyH • by the probe laser are then observed 600 ns after the ones produced by the pump laser since time t=0 for the time of flight is synchronized with the pump laser. The formation of pyridinyl is clearly shown in Figure3in which the signal of PyH + is absent if the pump laser is off and the probe laser is on (middle trace), while when both lasers are present (lower trace) the PyH + ion signal coming from the direct ionization of PyH • radicals issued from the excitation of Py-(H 2 O) n clusters is the most intense peak.
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Table SI-1: Calculated vertical transition energies for PyH  in C2v symmetry. 
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