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We study the main nonlinear solutions of plasmonic
slot waveguides made from an anisotropic metamate-
rial core with a positive Kerr-type nonlinearity sur-
rounded by two semi-infinite metal regions. First, we
demonstrate that for a highly anisotropic diagonal ellip-
tical core, the bifurcation threshold of the asymmetric
mode is reduced from GW/m threshold for the isotropic
case to 50 MW/m one indicating a strong enhancement
of the spatial nonlinear effects, and that the slope of the
dispersion curve of the asymmetric mode stays positive,
at least near the bifurcation, suggesting a stable mode.
Second, we show that for the hyperbolic case there is no
physically meaningful asymmetric mode, and that the
sign of the effective nonlinearity can become negative.

OCIS codes: (240.6680) Surface plasmons, (230.7390) Waveguides,
planar , (190.6135) Spatial solitons, (190.3270) Kerr effect, (160.3918)
Metamaterials

Nonlinear plasmonics is now a thriving research field [1].
Among it, its integrated branch where surface plasmon polari-
ton waves propagates at least partially in nonlinear media is
seen as promising in high-speed small footprint signal process-
ing. As a building block for nonlinear plasmonic circuitry, the
nonlinear plasmonic slot waveguide (NPSW) is of crucial im-
portance even in its simplest version [2, 3]. Since all the key
features can be studied and understood in detail, this structure
allows us future generalizations from more complex linear struc-
tures like the hybrid plasmonic waveguide [4]. The strong field
confinement achieved by these plasmonic waveguides ensure a
reinforcement of the nonlinear effects which can be boosted fur-
ther using epsilon-near-zero (ENZ) materials as it was already
shown [5, 6]. It is worth mentioning that metal nonlinearities
have already been investigated including at least in one study
where the wavelength range of enhanced nonlinearity has been
controlled using metamaterials [7]. Here, we focus on structures
where the nonlinearity is provided by dielectric materials like
hydrogenated amorphous silicon (a-Si:H) [8] due to its high in-
trinsic third order nonlinearity around the telecommunication
wavelength and to its manufacturing capabilities.

In [5], nonlinear guided waves were investigated in
anisotropic structures with an isotropic effective dilectric re-
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Fig. 1. (a) Symmetric NPSW geometry with its metamaterial
nonlinear core and the two semi-infinite metal regions. (b)
Metamaterial nonlinear core obtained from a stack of two
types of layers with permittivities and thicknesses ε1 and d1,
and ε2 and d2, respectively. Only material 1 is nonlinear.

sponse for transverse magnetic (TM) waves while here we con-
sider a metamaterial core with an anisotropic effective dielectric
response for TM waves. Other related works [6, 7] did not fo-
cus on the nonlinear waveguide problem or did not consider
plasmonic structures. This task will be realized in the present
study. Furthermore, in indium tin oxide layer, a record change
of 0.72 in the refractive index increase induced by a third order
nonlinearity has recently been reported [9]. As concluded by
the authors, this result challenges the usual hypothesis that the
nonlinear term can be treated as a perturbation. One approach
to tackle this problem, for the case of nonlinear stationary waves,
is to take into account the spatial profile of the fields directly
from Maxwell’s equations as for example in [10, 11]. To start
by this case is justified beacuse in waveguide studies whatever
they are linear or nonlinear, it is well established that the modal
approach is the first key step [12] requiring to investigate the
self-coherent stationary states of Maxwell’s equations. Here,
extending methods we developed to study stationary states in
isotropic NPSWs [13, 14] to the anisotropic case, we describe
the main properties obtained when a nonlinear metamaterial is
used as core medium. The examples of metamaterial nonlinear
cores used in the following are built using effective medium
theory from well-known materials and realistic parameters. The
main nonlinear solutions in both elliptical and hyperbolic cases
are investigated. In the first case, we demonstrate numerically
and theoretically that for a highly anisotropic case, the effective
nonlinearity [13] can be enhanced nearly up to five orders of
magnitude allowing a decrease of nearly three orders of mag-
nitude of the bifurcation threshold of the asymmetric mode
existing in the symmetric structure [3, 14]. Next, we show that,
in the hyperbolic case, changes appear in the field profiles com-
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pared to the simple isotropic NPSWs. We also demonstrate that
due to the peculiar anisotropy, an effective defocusing effect can
be obtained from the initial positive Kerr nonlinearity.

Figure 1 shows a scheme of the nonlinear waveguide we in-
vestigate. Compared to already studied NPSW with an isotropic
nonlinear dielectric core [2, 3, 15], the new structure contains
a metamaterial nonlinear core. We will study only symmetric
structures even if asymmetric isotropic NPSWs have already
been considered [14]. We consider monochromatic TM waves
propagating along the z direction (all field components evolve
proportionally to exp[i(k0ne f f z − ωt)]) in a one-dimensional
NPSW depicted in Fig. 1. Here k0 = ω/c, where c denotes the
speed of light in vacuum, ne f f denotes the effective mode index
and ω is the light angular frequency. The electric field com-
porents are (Ex, 0, iEz) and the magnetic field one is (0, Hy, 0).
In all the waveguide, the magnetic permeability is equal to µ0,
the one of vacuum.

The nonlinear Kerr-type metamaterial core of thickness dcore
is anisotropic (see Fig. 1). Its full effective permittivity tensor
¯̄εe f f has only three non-null diagonal terms. Its linear diagonal
elements are ε jj ∀j ∈ {x, y, z}. We derive these terms from
simple effective medium theory (EMT) applied to a stack of two
isotropic material layers. d1 and d2 are the layer thicknesses of
isotropic material 1 (nonlinear focusing Kerr-type) and material
2 (linear), respectively. Their respective linear permittivities are
ε1 and ε2. The EMT is typically valid when the light wavelength
λ is much larger than d1 and d2. Depending on the chosen
orientation of the compound layers relative to the Cartesian
coordinate axes, different anisotropic permittivity tensors can
be build for the core. Due to the required z-invariance, only
two types where the z-axis belongs to the layers have to be
considered. For the first one where the layers are parallel to
the x-axis, one has, for the linear diagonal terms of ¯̄εe f f : [εxx =

ε// εyy = ε⊥ εzz = ε//] with ε// = <e(rε2 + (1− r)ε1), ε⊥ =
<e((ε1ε2)/(rε1 + (1 − r)ε2)), and r = d2/(d1 + d2). For the
second case where the layers are parallel to the y-axis (see Fig. 1
(b)), one gets: [ε⊥ ε// ε//]. We will focus only on this case.

To model these anisotropic waveguides, we assume that the
nonlinear Kerr term is isotropic. This is an approximation com-
pared to the full treatment [16, 17]. To tackle the full case is
beyond the scope of our study which is mostly dedicated to the
impact of the anisotropy of the linear terms even if its extension
can be seen as the next required step in this research field. In this
study, the wavelength is 1.55 µm. ε1 (corresponding to a-Si:H),
and metal (gold) permittivity are the same as in [18], while dcore
is fixed to 400nm (except in Fig. 2), and the nonlinear coefficient
for the first material denoted by n2,1 is set to 2.10−17m2/W. Next,
the two used models of the Kerr nonlinear field dependency are
described.

In the first one, only the transverse component of the elec-
tric field Ex which is usually larger than the longitudinal one is
taken into account. This approximation has already been used in
several models of isotropic NPSWs [13, 15, 18]. It gives similar
results than more accurate approaches where all the electric field
components are considered in the optical Kerr effect [13, 15].
This first model allows us to use our new semi-analytical ap-
proach called EJEM (for Extended Jacobi Elliptical Model which
is an extension to the anisotropic case [17] of our already devel-
oped JEM valid for isotropic configurations [13]). This approach
will provide insights into the dependency of the effective nonlin-
earity on the opto-geometrical parameters. This approximation
for the nonlinear term also allows us to use the simple fixed

power algorithm in the finite element method (FEM) to compute
the nonlinear stationary solutions and their nonlinear dispersion
curves [11, 19–21] in order to validate our EJEM results.

In the second model, all the electric field components are
considered in the nonlinear term, and we need to use the more
general FEM approach we developed [17] to generalize the one-
component fixed power algorithm [15] in such structures.
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Fig. 2. Linear dispersion curves for symmetric NPSWs as a
function of r parameter in the elliptical case for three different
core thicknesses dcore with ε2 = 1.0 10−5 + i0.62. Solid lines
stand for first symmetric modes, dashed lines for first anti-
symmetric modes, and points for first higher-order symmetric
modes. Inset: zoom for the region near r = 0.

Now, we investigate the elliptical case for the metamaterial
nonlinear core NPSWs. We choose for material 2 in the core
an ENZ-like one such that ε2 = 1.0 10−5 + i0.62 being similar
to the one provided in [22]. We start this study by the linear
case in which the main linear modes we found are of plasmonic
type. For the metamaterial core, besides the permittivities, we
have the ratio r defined above as new degree of freedom. As
a result, one can obtain linear dispersion curves as a function
of r. Fig. 2 shows such curves for several values of the core
thickness dcore. nL

e f f indicates ne f f of the linear case. One can
see that it is possible to choose configurations where only the
first symmetric mode is kept. This kind of behaviour can be
an advantage to reach a simpler and better control of nonlinear
propagating solutions as a function of power [23] or to tune
the linear dispersion properties as a function of wavelength to
manage the dispersion coefficients.

As a test signature for strong nonlinear spatial behaviour
and a demanding validity check, we depict the Hopf bifurcation
of symmetric mode toward an asymmetric mode in symmetric
isotropic and anisotropic NPSWs. In Fig. 3, we provide the re-
sults obtained with the methods we used, the EJEM one and the
two FEM ones with and without all the electric field components
in the nonlinear term. For comparison with this last case, we
also use the interface model (IM) we developed previously to
study the isotropic case taking into account all the electric field
components [13]. First for the isotropic case (Fig. 3 (a)), the FEM
taking account only the electric field transverse component is
able to recover the results from the EJEM, and our FEM with
both electric field components reproduces the results obtained
from the IM. Second, for the anisotropic case (Fig. 3 (b)), the
EJEM and FEM agrees well. As expected, the results between
FEM with and without all the electric field components in the
nonlinear term differ slightly at high powers. Consequently,
these results prove the validity of our numerical methods for
nonlinear studies including the anisotropic case.

Despite, the enhancement of nonlinear effects due to the use
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Fig. 3. Nonlinear dispersion curves for symmetric NPSWs as
a function of total power Ptot. Both the symmetric modes (bot-
tom branch for each color) denoted S0-plas and the asymmet-
ric ones AS1-plas (upper branch after bifurcation) are shown,
the mode notation is fully coherent with the ones used for the
simple [13, 14] or improved [18] isotropic NPSWs. (a) Isotropic
case with the EJEM, the FEM with and without all the elec-
tric field components in the nonlinear term, and the IM. (b)
Elliptical anisotropic case with the EJEM, and the two FEMs.

of ENZ materials demonstrated both theoretically [5–7] and
experimentally [9], Fig. 4 shows that, in the isotropic case, the
ENZ material core does not reduce the bifurcation threshold
but increases it. This can be understood qualitatively as follows.
In ENZ material the wavelength light is stretched thus the two
core interfaces are then more tightly coupled and more power is
needed by the nonlinearity to break the symmetry of the field
profile.

In the anisotropic case, as it can be seen in Figs. 3 (b) and 5, to
consider a nonlinear core with ENZ εxx and large εzz allows us
to drastically reduce the needed total power to induce the sym-
metry breaking in the NPSW compared to the usual isotropic
case. As a result, we can shift from a GW/m threshold to ap-
proximatively 50 MW/m one. Using our semi-analytical EJEM,
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Fig. 4. Nonlinear dispersion curves for isotropic symmetric
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we obtain the following analytical expression for the effective
nonlinearity term [13] in the studied anisotropic NPSWs [17]:

aEJEM
nl = −α̃n2

e f f

(
n2

e f f (εxx − εzz)− ε2
xx

)
/
(

ε4
xxc2ε2

0

)
(1)

with α̃ = ε0c<e(ε1)(1− r)n2,1. Consequently, for the NPSWs,
the reinforcement of the effective nonlinearity when ENZ εxx
and large εzz is clearly understood and quantified. It seems to
have been partially overlooked in some previous studies due
to the fact that most attention was dedicated to the permittivity
tensor case one [ε// ε⊥ ε//] leading to εxx = εzz = ε//, and
not the case two as studied here with [ε⊥ ε// ε//] leading to
non-vanishing terms in Eq. (1). The observed reduction of the bi-
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associated values of the effective nonlinearity aEJEM
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furcation threshold is not possible neither in isotropic improved
NPSWs [18] nor in isotropic ENZ NPSWs as shown in Fig. 4.
Fig. 6 gives the thresholds as a function of transverse and lon-
gitudinal permittivities for several configurations. Above the
black line associated to the isotropic case, one gets higher thresh-
olds while they are smaller below. In the anisotropic case, for
ENZ εxx, one can see the strong decrease of the threshold. For a
fixed εxx, an increase of εzz induces a decrease of the bifurcation
threshold (see inset in Fig. 6). Nevertheless, it can be argued that
order of magnitude threshold decreases have already been pre-
dicted [13, 14] but this result was obtained using a large increase
of the core size moving the structure from nanophotonics to
large integrated optics structures. In the present case, small core
thicknesses can be kept allowing not only a limited footprint for
the devices but also a limited number of propagating modes in
the metamaterial based NPSWs, eventually only the fundamen-
tal symmetric mode (see Fig. 2) and the associated asymmetric
one. One can also notice that the slopes of the symmetric mode
nonlinear dispersion curves for the studied highly anisotropic
NPSWs are not negligible even below the reduced bifurcation
threshold involving important nonlinear effects on the propaga-
tion of this mode even at lower powers. Another consequence
of the use of a highly anisotropic elliptical metamaterial core is
the low value of the effective indices for the main modes (see
Fig. 3 (b)) ensuring a slow light enhancement for the nonlinear
effects in temporal propagation configurations [24]. The impact
of the core anisotropy is also seen on the dispersion curve of
the main asymmetric mode. As shown, in Fig. 4 (isotropic case),
the lower the index core permittivity, the larger the slope of the
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asymmetric mode branch. Moreover, for ENZ isotropic core (
εcore . 1), the slope is negative while, as shown in Fig. 5, for
highly anisotropic core with ENZ εxx and large εzz, the slope of
the asymmetric mode near the bifurcation point stays positive.
If we assume that the stability results we obtained for isotropic
NPSWs [14] can be extended to the anisotropic case, these two
features suggest that the asymmetric mode should be instable
in isotropic ENZ core NPSWs ( εcore . 1) while the same mode
should be stable for highly anisotropic core with ENZ εxx and
large εzz (a full stability study of the main modes as described
in [14] for simple NPSWs is beyond the scope of this work).
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We now investigate the hyperbolic case where the metamate-
rial core is such that εxx > 0 and εzz < 0. In this case, it is known
that non-local effects can be neglected in EMT as soon as the con-
dition d1 = d2 is fulfilled corresponding to r = 0.5 [25]. We will
limit the study to such configurations. Linear studies of waveg-
uides involving such linear metamaterial core have already been
published [26]. For NPSWs, we found that the main modes
are core localized unlike the ones of simple NPSWs, and that
the effective nonlinearity can be negative for the investigated
modes meaning that the initial positive Kerr nonlinearity can
finally act as a negative one in such anisotropic configuration.
This can be understood looking at Eq. (1). Fig. 7 (a) illustrates
this phenomenon. We also found that the asymmetric mode we
can obtain as a mathematical solution of the nonlinear disper-
sion equation is actually unbounded [17], knowing that similar
unbounded modes were already obtained in other nonlinear
structures [27]. Therefore, this asymmetric mode can not be
considered as an acceptable solution of our physical problem.
The nonlinear dispersion curves of the main symmetric and an-
tisymmetric modes are given in Fig. 7 (b). Once again, one can
see the crucial influence of the metamaterial core properties on
the type and behaviour of the propagating nonlinear solutions.

The found spatial nonlinear effects are a signature of a strong
nonlinear reinforcement. We move from a GW/m bifurcation
threshold required in the isotropic cases [14] even in improved
NPSWs [18] to tens of MW/m one for elliptical anisotropic
NPSWs with ENZ εxx and large εzz. This improvement makes
the properties of the proposed waveguides really achievable to
materials used in current fabrication processes in photonics and
also to most characterization setups.
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