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Abstract. We described a simple experimental set-up for a lab work on the

photocatalytic degradation of methylene blue by T iO2 nanoparticles. The

photocatalysis process can be used for many applications. Treatments for diluted

wastewaters industries, air purifying in underground car parks, preventing fouling on

glass surfaces, these are some of the things this phenomenon has the ability to do.

The described experiment is easy to perform and the interpretation can be easily

adapted to different level of students: from high school students demonstrating their

interests on a sustainable development, to students who are getting Masters in the

science department that want to propose a full explanation of all the phenomenon

of the photocatalytic process. Starting by a description of the experimental set-up,

we analysed the photocatalyst nanoparticles and applied the Langmuir-Hinshelwood

model to our experimental data. Finally we discussed shortly on the respective

energetic levels of the photocatalyst semiconductor and the methylene blue.
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1. Introduction

1.1. Context

The last IPCC (Intergovernemental Panel on Climate Change) synthesis report has

confirmed the impact of mankind on the climate change and its impacts on the

ecosystems, people and economics. However this report also emphasizes that there

are several means to limit climate change and its consequences [1]. The efficient use of

solar energy, as a green energy source for various applications is one of these means that

the scientific and industrial communities tend to develop: the solar power irradiating the

surface of Earth (around 105 TW) is four orders of magnitude higher than the current
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global human energy consumption. So the photocatalysis belongs to this wide family of

various techniques and technologies aiming at a sustainable development of our society.

Reports on photocatalytic reactions date from the beginning of the 20th century:

for example C. F. Goodeve and J. A. Kitchener described the ”photosensitisation of

solids” and the bleaching of dyes by T iO2 in 1938 [2]. The true boost of interest on

photocatalysis occurred in 1972 with the re-publication in English of a previous report of

the splitting of water in hydrogen and oxygen at the surface of T iO2 under ultraviolet

irradiation by A. Fujishima and K. Honda [3]. Nowadays advances in photocatalysis

science and technology, as well as in industrial applications, point out the promising

potential of photocatalysis for reducing the levels of greenhouse gases in the atmosphere,

for green chemistry, degrading water pollutants, etc.

Regarding students with majors in physics or chemistry, the main interest of

photocatalysis lies in the understanding of the process and the ability to draw links

between these fields: photo- and electrochemistry, material and surface sciences, solid

physics and so on. Photocatalysis is actually an interdisciplinary domain.

1.2. Definition of some terms

So as to describe the photocatalytic process, we will use in this article some concepts

that belong usually to the vocabulary of chemistry. We provide here simple definitions

of these concepts:

• activation energy: it is the minimum energy needed to start a chemical reaction

which transforms reactants to products. Therefore the activation energy is a

potential barrier separating two energetic states formed by the reactants (starting

state) and the products (final state).

• adsorption, physisorption, chemisorption and desorption: we would like to

emphasize the distinction between the notions of adsorption of atoms or molecules

on a surface, which may include physisorption (weak bonding, typically Van der

Walls forces) and chemisorption (covalent bonding between the adsorbed molecules

and the surface). The desorption of atoms or molecules from a surface is the release

of these species from the surface (the previous bondings are broken). We wish to

highlight the difference between the adsorption of molecules on a surface and the

light absorption (photoabsorption) by the semiconductor material to potentially

create electron/hole pairs. Several models can be used to describe the adsorption

phenomena, like the Langmuir isotherm. These models basically give a relationship

between the amount of species in a gas or liquid and the amount of these species

adsorbed on a surface at a given temperature.

• reduction-oxidation (redox reactions): redox reactions are a family of chemical

reactions involving an exchange of charges (electrons) between atoms or molecules.

If an exchange of charges takes place, it means that a potential difference exists

between the various chemical species. Every chemical species has its own potential

called the redox potential (in volt). It provides a measure of the ability of a
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species to give up (and thus be oxidized) or to acquire an electron (and thus be

reduced). The redox potential is an intrinsic parameter of a given species. So as

to be compared and forecast which chemical species will give or accept electrons

from another species, the redox potential are organized on a scale. The origin of

the scale is arbitrarily attributed to the hydrogen species (H2/H
+): the so-called

standard hydrogen electrode (SHE) whose the redox potential is thus equal to zero.

• vacuum level: this is a notion of solid state physics. the vacuum level is the

energy of an electron in a perfect vacuum meaning infinitely far away from any

materials. This level is used as an absolute origin for the energy (or potential) of

electrons.

• chemical or reaction kinetics: when a chemical reaction occurs, reactants ”A”

are transformed into products ”B”. Such a transformation takes time. Reaction

kinetics is the study of the rate ”r” of the chemical reactions. r depends on the

concentration of A and B and on k the reaction rate constant:

r = k[A]x[B]y (1)

x and y are called the partial orders of the reaction (and are integers). For example,

if the reaction is of first order, x+y=1. It means that the rate depends only of the

concentration of one reactant:

r = −d[A]

dt
= k[A] (2)

We will use this case to describe the photocatalytic degradation of methylene blue.

1.3. Definition of photocatalysis

Photocatalysis comes from two words: light and catalysis. Various definitions of

”photocatalysis” have been suggested. One the most commonly used definitions refers

to a chemical reaction induced by the absorption of light (photo-absorption) by a

solid material (generally a semiconductor). The reaction occurs at the surface of

the semiconductor which remains unchanged during and after the reaction. This

semiconductor is called a photocatalyst. From a thermodynamically point of view, the

catalysis and the photocatalysis are two different processes. A ”simple” catalyst will

enhance the reaction rate of an already thermodynamically allowed chemical reaction

by reducing the activation energy. On the contrary, thanks to the energy brought by

light, photocatalysis can promote reactions unfavourable on a thermodynamic point of

view. This is the example of the photocatalytic splitting of water into hydrogen and

oxygen. From this point of view catalysis and photocatalysis concepts are basically

different [4, 5].
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2. Brief theoretical description

2.1. Overall steps

Photocatalysis can occur in liquid or gas phase. The whole photocatalysis process can

be divided into five independent steps that are common to the heterogeneous catalysis

as clearly described by J.M. Hermann [6]:

(i) Diffusion of the reactants in the fluid phase to the surface of the photocatalyst.

(ii) Adsorption of reactants on the surface of the photocatalyst: classical models like

Freundlich or Langmuir isotherms can describe this step.

(iii) Reaction in the adsorbed phase. It is often basically a charge transfer between

adsorbed reactants and the semiconductor: a so-called redox reaction. Light is

absorbed by the semiconductor: electrons are ”available” in the conduction band

for the redox reaction.

(iv) Desorption of the products of the redox reaction (i.e release of the products from

the surface of the photocatalyst).

(v) Draining of the products from the region close to the semiconductor to free the

access to its surface for the remaining reactants.

The third step is the heart of the photocatalytic process. This is when the

transformation of chemical species like degradation of pollutants takes place.

2.2. Interface between the semiconductors and the fluid phase

To explain and describe the redox reaction occurring at this step, we need to bring

together the redox potential scale used to know the potential of the chemical reactants

in the liquid or gas phase and the energy levels structure of the semiconductor. In

this way, we must link electrochemistry and solid physics. This is done by analysing the

properties of the liquid(gas)/solid interface. Such an interface can be handle in the same

way as a p-n junction (chapter 4, ref.[7]) with an energetic description of the electrolyte

following the model developed by H. Gerischer [8, 9]. Therefore the relationship between

the two energy scales is the following equation (eq.3) [10, 11, 12]:

E(eV ) = −qE(V )− Φ (3)

E is the value of the energy relative to the vacuum level, E is the redox potential

referenced to the SHE, q is the elementary charge and Φ is the absolute electrode

potential of the redox couple (H2/H
+) on which is based the SHE. It means that Φ is

the value of the SHE potential compared to the vacuum level. Its value is experimentally

determined and is equal to about 4.5 eV. Thanks to this common scale between redox

couples and semiconductors energy levels it is possible to know if a redox reaction is

favourable between a given semiconductors and reactants.
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2.3. Langmuir-Hinshelwood (LH) model

The LH model is often used to quantify the photocatalytic process even if there are

some discussions over its relevance and the use of it according to a given photocatalytic

process. It is not the purpose of this article to present these discussions but we

recommend the reader to read the paper of B. Othani [4].

During the photocatalytic process there is a transformation of the reactants adsorbed

onto the surface of the semiconductor, the concentrations of these chemical species

vary, hence these processes are kinetic reactions. The LH model takes into account the

phenomenon relative to the adsorption on the semiconductor surface and the kinetic

reactions [13]. The main equation of the LH model is eq.4:

1

vLH
=

1

k
+

1

kK
× 1

Ci

(4)

where vLH is the rate of the reaction (the photocatalytic rate), k is the rate constant

of the reaction of the adsorbed reactants on the semiconductors surface with e− or

h+ created by photoabsorption, K is the adsorption equilibrium constant (Langmuir

isotherms) and Ci is the initial concentration of reactants before the beginning of the

photocatalysis. Then it is easy to check the validity of the LH model to describe a

photocatalytic process by drawing 1

vLH

versus 1

Ci

and obtaining a straight line.

3. Method and implementation

3.1. Equipment

To provide evidences of the photocatalytic effect in the framework of our practical

course, we use methylene blue (MB) (CAS number 7220-79-3) as the organic molecules

to degrade. MB is non-toxic hence it is suitable for an educational lab work. Methylene

blue absorbs light in the visible range, therefore the measurements of its concentration

can easily be determined using the Beer-Lambert law (eq.5):

A(λ) = log

(

I(λ)

I0(λ)

)

= −ǫl[BM ] (5)

A is the absorbance at a given wavelength λ, I0(λ) represents the incident light

intensity, I(λ) the light intensity transmitted trough the MB solution, ǫ is the molar

attenuation coefficient of MB (the coefficient of light absorption by a liquid solution of

MB), l the path length of the beam of light through the material sample and finally [MB]

the concentration of methylene blue in the solution. To measure the light spectrum and

intensity, we use an educational version of the USB-650 Red-Tide spectrophotometer

from Ocean Optics [14]. Titanium dioxide (T iO2, CAS number 13463-67-7) is used

as the semiconductor acting as the photocatalyst. We used T iO2 nanopowder with

an average size of 21 nm because according to ref [15] the photocatalytic degradation

increases especially for particles with sizes less than 30 nm. T iO2 has a bandgap around

3-3.2 eV according to its phase (anatase or rutile). So the suitable wavelength light for
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the excitation of T iO2 is in the UV range of the electromagnetic spectrum. T iO2 is one

of the most commonly used photocatalyst because of its chemical stability, non-toxicity,

price and even if its bandgap lies in the UV part of the visible spectra which count for

only 5% of the sunlight. The UV excitation light is a commercial UV energy saving

lamp with a power of 20 W. The spectrum of the lamp is shown on fig.1 b).

5e+03

 (nm)

light source

a)

0,6

 (nm)

1000

Figure 1. (colour online) a) Scheme of the experimental set-up. b) UV-VIS spectrum

of the light source and the solvent (water). c) Absorbance spectra of the four initial

MB concentrations.

3.2. method

3.2.1. MB solutions: Students prepare four MB solutions of different initial

concentrations [MB]0 in the range of 5 × 10−7 to 10−5 mol.l−1 with water as the

solvent (fig.1 a)). This range is determined according to the sensing capability of the

spectrophotometer and on the other hand the concentration validity domain of the

Beer-Lambert law. Then they set up four crystallisers with 10 mg of T iO2 nanopowder

in each and 50 ml of each initial concentration. The powder should be well mixed

in water in order to avoid the aggregation of particles which can entail a decrease

of the specific surface of the T i02 photocatalyst. A set of four control experiments

(same experimental parameters but without T iO2 particles) should also be prepared to

ascertain the photocatalytic effect and disambiguate with other phenomena such as the

photolysis of MB molecules. The photolysis is the degradation of the molecules directly

by the sole effect of light. The Fig.1 b) displays the spectrum of water as the reference for

the measurement of the MB concentration via the absorbance. Then Fig.1 c) presents

the absorbance spectra of the four initial MB solutions with chosen concentrations of

5× 10−7, 10−6, 5× 10−6 and 10−5 mol.l−1. The main absorption peak of MB is at 665

nm. Students should use this wavelength throughout the practical work to conduct the

monitoring of the evolution of the absorbance versus time of irradiation to maximise

the accuracy of the measures.
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3.2.2. measurements process: At an irradiation time t=0, the students put the four

crystallisers under UV light and they follow the evolution of the concentration of MB

versus the irradiation time. They choose a time interval ti (10 min for instance) and

every ti they sample a small volume (2-3 ml) of the MB solutions ideally with a syringe.

They performe the absorbance measurements on these volumes so as to follow the

evolution of the MB concentrations versus time of irradiation. To increase the accuracy

of the absorbance values, the sampled volumes of MB solutions should be centrifuged in

order to remove T iO2 particles from the solutions which might disrupt the spectroscopic

measurements.

4. Results and discussion

4.1. T iO2 characterisation, quantum size effect

The photocatalyst plays a key role in the photocatalytic process since it provides charges

needed for the redox reactions by the absorption of light. Therefore the yield of the whole

photocatalytic process is linked to the bandgap of the semiconductor. That is why we

encourage the students to try to characterise the used semiconductor. X-ray diffraction

(XRD) can be easily performed on the T iO2 nanopowder. Fig.2 shows the XRD diagram

of the nanopowder recorded on a Philips PANanalytical XPert XRD system with a Cu

electrode. The X-ray source is non monochromatic. The peaks identification shows

that the powder is a mix of anatase and rutile which are two well-known forms of

titanium dioxide. From the quantitative analysis of the XRD spectrum, this allows us

to determine that there are 83% of anatase and 17% of rutile in the powder.

2  (°)

100

Figure 2. XRD diagram of the T iO2 nanopowder used as a photocatalyst.

Then the size of the nanoparticles of T iO2 can be estimated from the XRD diagram

by using the Scherrer equation (eq. 6). It links the size of the particles to the width of

the XRD peaks [16]:

τ =
kλ√

H2 − s2 cos(θ)
(6)
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Table 1. Values of parameters used to predict the shift of the energy bandgap due to

quantum size effect in the T iO2 nanoparticles (anatase)

for T iO2 Values

r 10 nm
m

∗

e

m0

0.095 [19]
m

∗

h

m0

0.200 [19]
ǫ

ǫ0

90

τ is the mean size of a grain size (to be precise this the size of the crystalline domains

which can be smaller or equal to a grain size), k is a dimensionless factor with a value

around 0.9, λ is the X-ray wavelength (in our case the main wavelength is 1.5406 Å),

H is the line broadening at half the maximum intensity (FWHM), s is the instrumental

line broadening (evaluated to 0.03◦ for our apparatus) and θ is the Bragg angle. All

angles should be in radians.

Using the XRD peak indexed A(101) on Fig.2 at a position of 25.24◦, the estimated

average size of the T iO2 nanoparticles is found to be 20.2 nm. The supplier provides a

value of 21 nm, therefore this is very pertinent (product ref 718467 Aldrich [17]).

Because the particles of T iO2 are nanometer-sized, students with a background in

nanoscience may think about discussing a possible quantum size effect on the bandgap

of these nanoparticles. Changing the bandgap energy will change the absorbed light and

impact of the photocatalytic degradation rate through a possible variation of a number

of electron/hole pairs created. Quantum size effects generally occur for semiconductor

particles of a size in the range of 10 to 100 Å due to quantum confinement. It might

entail an energy shift ∆E of the bandgap which can be calculated with the following

approximated equation (eq.7) [18]:

∆E =
~
2π2

2r2

(

1

m∗

e

+
1

m∗

h

)

− 1.786q2

ǫr
− 0.248

q4

2ǫ2h2

m∗

e +m∗

h

m∗

em
∗

h

(7)

r is the nanoparticle radius, q is the elementary charge of the electron, m∗

e, m∗

h

are the effective masses of electrons and holes, ǫ is the dielectric constant and h the

Planck’s constant. This equation is rather complex but the purpose here is simply to

get a relationship between the small size of the particles and a possible energetic effect

on the bandgap without going into solid physics details.

Using the values of the parameters for T iO2 listed in table 1, ∆E is evaluated to

0.02 eV. ∆E is insignificant in our context since the corresponding change in absorbed

light wavelength will be around 2 nm.

4.2. MB concentration versus time of UV irradiation

The evolution of the MB concentration for the four prepared solutions is presented

in fig.3 on a logarithmic scale. The accuracy of the concentrations measurements is
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Table 2. Results coming from the fits of fig.3 and calculated values for the LH model

[MB]0 mol.l−1 kr (eV) 1

vLH

5× 10−7 0.0199 8.69× 107

10−6 0.0319 3.13× 107

5× 10−6 0.0157 1.18× 107

10−5 0.0094 1.06× 107

subdued at low concentrations because of the limitation of the sensitivity of our UV-

VIS spectrophotometer for very low absorbances. From the linear relationship between

ln([MB]) and t observed on fig.3, the reaction rate of MB degradation is of apparent

first order. On this point readers should refer to the comment made by Herrman in

[13], section 2.5 regarding the apparent contradiction on the increase of the reaction

rate with the decrease of the initial concentration. Avoiding the confusion between the

reaction rate and the conversion rate solves this contradiction. The first one depends

on the initial concentration wherea the second one does not.

-1

irradiation time (min)

140

Figure 3. Evolution of the methylene blue concentration [MB] versus the irradiation

time for the four initial solutions.

Using a first order reaction, the integration of the reaction rate gives (eq. 8):

−d[MB]

dt
= kr[MB] ⇒ ln ([MB]) = ln ([MB]0)− krt (8)

By fitting the experimental data of fig.3, students can extract the values of the

kinetic constants kr for the four experiments. The fitted values are given in table 2.

4.3. LH model

Moreover the photocatalytic degradation rate vLH is estimated from kr and the LH

model can be verified by plotting 1/vLH versus 1/[MB]0 (fig.4).
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1/[MB]0

+06

1/vLH

Données: modeleL-H_1/vLH

Fonction: A*x+B

Chi^2/doF = 8,48755e+14

R^2 = 0,88793

B = -9,59818e+06 +/- 2,14567e+07

A = 7,60156e+01 +/- 1,90962e+01

Figure 4. Verification of the LH model.

The linear relationship between 1/vLH and 1/[MB]0 is fully in agreement with

eq.4. The correlation factor of the linear fitting is equal to 0.96. It is a bit low but the

impact of the last experimental point at the lowest MB concentration is significant. As

discussed above, it comes from the limitation of our UV-VIS spectrophotometer in the

low range concentration of MB solutions. The value of K obtained by the linear fitting

is 5.9× 104 l.mol−1 and it is typical of the degradation of organic molecules soluble in

water.

4.4. MB degradation pathway

The photocatalytic degradation of MB does not result from a direct redox reaction

between the T iO2 nanoparticles and the MB molecules. The photocatalytic degradation

pathway of MB in water has been proposed by Houas & al [20]. The electrons generated

in the T iO2 by the UV light either recombine with the holes of the valence band or

react with the adsorbed oxygen on T iO2 surface. In the latter case, oxygen ions are

created and react in turn with the adsorbed water molecules. Hydroxyl radicals OH◦

and hydroxyl groups are formed. Eventually the MB molecules are degraded by the

reactions with the radicals. The establishment of the whole degradation pathway by

the students is not the goal of this practical work. However students can comment on

the feasibility of the degradation of MB by T iO2 by drawing the energetic diagram with

the different levels positions of anatase, rutile and MB by using eq.3 (fig.5).

From this diagram it can be concluded that the direct charge transfers between the

different phases of T iO2 and MB molecules are unlikely. Therefore the photocatalytic

degradation of MB by T iO2 will need intermediate steps involving OH◦ radicals to be

processed.
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−9

0

Figure 5. Energy diagram with the positions of the MB redox potential, CB and VB

of anatase and rutile [21].

5. Conclusion

In this paper we described a practical work consisting in the photodegradation of MB

by T iO2 nanoparticles. This lab work only requires a simple experimental set-up which

allows us to provide evidences of the significance of the photocatalysis. However,

this phenomenon is rather complex and requires several notions from chemistry and

physics. A full and informational explanation of the phenomenon must be made, and

the report must include the following : diffusion, adsorption, redox reactions, excitation

of semiconductors by light absorption and other aspects of the photocatalysis process.

We have thus discussed the properties of the photocatalyst in terms of materials science

using XRD diffraction and considering a potential quantum size effect on the T iO2

bandgap because of the size of the nanoparticles. Then we checked the validity of the

main model developed to describe the photocatalysis effects, the Langmuir-Hinshelwood

model and eventually we commented on the photodegradation pathway of MB by

analysing the respective energetic levels positions of the photocatalyst and the organic

molecules. This analyse indicate that a direct charge transfer between T iO2 and MB

molecules is unlikely so the photodegradation pathway may use intermediate steps

like formation of hydroxyl radicals. It is a lab work that allows students to draw

links between several different science domains that have been historically explored

at different places and times.

To go further in the photocatalytic processes, students can look at the different

means developed to enhance the photocatalysis rate such as the improvements of the

semiconductor photoelectrode. As an example involving nanoscience, we can cite the so-

called plasmonic photocatalysis where metal nanoparticles added to the semiconductors

improved the photocatalytic performance through localised surface plasmon resonance
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