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Linking Theoretical Decision-making Mechanisms in
the Simon Task with Electrophysiological Data: A

Model-based Neuroscience Study in Humans

Mathieu Servant1,2, Corey White3, Anna Montagnini1, and Borís Burle1

Abstract

■ A current challenge for decision-making research is in ex-
tending models of simple decisions to more complex and eco-
logical choice situations. Conflict tasks (e.g., Simon, Stroop,
Eriksen flanker) have been the focus of much interest, because
they provide a decision-making context representative of every-
day life experiences. Modeling efforts have led to an elaborated
drift diffusion model for conflict tasks (DMC), which imple-
ments a superimposition of automatic and controlled decision
activations. The DMC has proven to capture the diversity of be-
havioral conflict effects across various task contexts. This study

combined DMC predictions with EEG and EMG measurements
to test a set of linking propositions that specify the relationship
between theoretical decision-making mechanisms involved in
the Simon task and brain activity. Our results are consistent
with a representation of the superimposed decision variable
in the primary motor cortices. The decision variable was also
observed in the EMG activity of response agonist muscles. These
findings provide new insight into the neurophysiology of human
decision-making. In return, they provide support for the DMC
model framework. ■

INTRODUCTION

Formal models of perceptual decision-making have tradi-
tionally focused on simple two-choice situations. Such
models share the assumption that sensory evidence is
accumulated until a criterion quantity of evidence is ob-
tained, at which point from where the decision termi-
nates in a choice and motor activity is engaged (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Ratcliff & Smith,
2004). However, observers typically face decisions based
on multiple streams of sensory information, each of them
being associated with multiple response alternatives.
Extending decision-making models to more complex and
ecological choice situations has recently been the focus
of much interest.
Although the majority of studies seeking to address

complex decisions have dealt with multiple-choice tasks
(e.g., Keuken et al., 2015; Ratcliff & Starns, 2013; VanMaanen
et al., 2012; Leite & Ratcliff, 2010; Albantakis & Deco, 2009;
Churchland, Kiani, & Shadlen, 2008; Usher & McClelland,
2004), others have started to uncover the mechanisms
underlying decisions about relevance (Ulrich, Schröter,
Leuthold, & Birngruber, 2015; Servant, Montagnini, &
Burle, 2014; White, Ratcliff, & Starns, 2011; Hübner,
Steinhauser, & Lehle, 2010). These studies have focused
on the conflict paradigm, where task-relevant and task-
irrelevant stimulus attributes compete for response acti-

vation. In the Simon task, for example, participants are
instructed to press a left or right button according to the
color of a lateralized stimulus (e.g., left response to a blue
target, right response to a red target). Although the loca-
tion of the stimulus is task irrelevant, it interferes in the de-
cision process: Responses are slower and less accurate
when stimulus location and response side do not cor-
respond (incompatible trial) than when they do (compati-
ble trial), a phenomenon known as the “Simon effect”
(Hommel, 2011; Simon & Small, 1969).

Performance in the Simon task is challenging for for-
mal decision-making models for at least two reasons.
First, errors are faster than correct responses in the
incompatible condition only (Van den Wildenberg et al.,
2010). Second, distributional analyses have revealed
that the Simon effect decreases as RT increases (Pratte,
Rouder, Morey, & Feng, 2010; Ridderinkhof, 2002), imply-
ing that the condition with the longer mean RT also shows
the smaller spread of RT (Schwarz & Miller, 2012). These
particular patterns are not naturally predicted by stan-
dard decision-making theories (Servant et al., 2014; White
et al., 2011; Hübner et al., 2010; Wagenmakers & Brown,
2007; Luce, 1986). Ulrich et al. (2015) have recently intro-
duced an extension of the drift diffusion model of percep-
tual decision-making (Ratcliff & McKoon, 2008; Ratcliff,
1978) able to capture RT distributions and accuracy data
in the Simon task, allowing for decomposition and quan-
tification of latent cognitive processes (hereafter referred
to as diffusion model for conflict tasks [DMC]). The aim
of the present work was to use the DMC as a tool to
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better interpret human electrophysiological measure-
ments in the Simon task. More precisely, we combined
DMC predictions with EEG and EMG measurements to
test a set of linking propositions (Schall, 2004; Teller,
1984) that specify the relationship between cognitive
processes involved in the Simon task and brain activity.
We first introduce the DMC architecture and elaborate
some linking propositions afterwards.

DMC Architecture

The standard drift diffusion model assumes continuous
and perfect accumulation of the difference between
noisy samples of task-relevant sensory information sup-
porting alternative choices. Technically speaking, accu-
mulation grows toward one of two decision termination
bounds b (correct decision) and −b (incorrect decision)
according to

dx ¼ μdt þ σdW

where dx represents the change in accumulated evi-
dence x for a small time interval dt, μ is the drift rate
(i.e., the average increase of evidence in favor of the cor-
rect choice per time unit), and σdW denotes Gaussianly
distributed white noise (Wiener process) with mean 0
and variance σ2dt. The DMC preserves this controlled
decision-making mechanism (Figure 1, left) but assumes
an additional automatic process that operates on task-
irrelevant sensory information (e.g., the location of the
stimulus in the Simon task). The automatic process brief-
ly spills over to the decision-making process. Decision-
making is thus determined by superimposed activations of
automatic and controlled processes, an architecture remi-
niscent of a model of attention and automaticity proposed
by Logan (1980).

The expected mean of the noisy automatic activation Xa(t)
is modeled as a scaled gamma function of the following form:

E Xa tð Þ½ � ¼ Ae−t=τ te
a − 1ð Þτ

� � a−1ð Þ

where a is the shape parameter of the function and A is its
peak amplitude. The peak latency is located at τ(a − 1), τ
being the characteristic time parameter. This pulse-like
function represents the short-living contribution of the
automatic process to decision-making and favors the
correct (incorrect) response in compatible (incompati-
ble) trials (Figure 1, middle). Its first derivative with re-
spect to time is the time-varying drift rate μa(t) of the
automatic process. Let μc denote the (time-constant)
drift rate of the controlled process. The time-varying
drift rate of the superimposed process is simply the
sum of μa(t) and μc (Figure 1, right). The model gen-
erates a correct (incorrect) response when the super-
imposed process hits the correct (incorrect) termination
bound b (−b). In compatible trials, automatic and con-
trolled processes converge on activation of the correct
response, thereby facilitating RT and accuracy. In in-
compatible trials, the early incorrect automatic activa-
tion hampers the decision process and increases the
likelihood of an incorrect choice. Ulrich et al. (2015)
demonstrated that the DMC captures all the behavioral
peculiarities of Simon task performance. Moreover, the
model can explain data from other conflict tasks by
variations in the characteristic time parameter τ of the
gamma automatic activation.

Linking Propositions

When perceptual decisions are assigned to particular
actions through task instructions, mounting evidence
from human neuroimaging and single-unit physiology in
behaving monkeys shows that the decision variable is

Figure 1. Architecture of
the DMC. The decision
process is modeled as the
superimposition of automatic
and controlled drift diffusion
processes. The expected mean
(i.e., accumulated drift rate)
of each process is illustrated.
See text for details. z =
starting point of evidence
accumulation; b = upper
decision termination bound
(correct response); −b = lower
decision termination bound
(incorrect response).
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represented in motor structures that prepare and execute
the response (e.g., Kelly & O’Connell, 2013; O’Connell,
Dockree, & Kelly, 2012; Purcell, Schall, Logan, & Palmeri,
2012; Selen, Shadlen, & Wolpert, 2012; Purcell et al.,
2010; Donner, Siegel, Fries, & Engel, 2009; Ratcliff,
Cherian, & Segraves, 2003; Romo, Hernandez, Zainos,
Lemus, & Brody, 2002; Gold & Shadlen, 2000; Hanes
& Schall, 1996). These findings suggest a continuous
flow of information from decision to motor brain regions
(Cisek & Kalaska, 2010; Gold & Shadlen, 2007). Recently,
Kelly and O’Connell (2013) have argued that the lateralized
readiness potential (LRP1), an EEG marker of unimanual
motor preparation, reflects key properties of the theoreti-
cal decision variable. In particular, the LRP exhibits rise-to-
threshold dynamics (see also Gratton, Coles, Sirevaag,
Eriksen, & Donchin, 1988), the slope of which scales with
the quality of sensory information in a meaningful way. The
LRP, however, is blind to the contribution of each motor
cortex (M1). A more precise measure can be obtained by
applying a current source density (CSD) transformation to
EEG signals. CSD refers to a group of mathematical trans-

formations that compute estimates of the cortical current
flowing radially through the skull (Burle et al., 2015; Kayser
& Tenke, 2015), providing a good approximation of the
corticogram (Gevins et al., 1987). Contrary to the LRP,
CSD methods allow isolation of the electrical activity from
each M1. In two-choice tasks, they have revealed a devel-
oping negativity over M1 contralateral to the response
along with a developing positivity over M1 ispilateral
(Burle, Van den Wildenberg, Spieser, & Ridderinkhof,
in press; Vidal et al., 2011; Meckler et al., 2010; Vidal,
Grapperon, Bonnet, & Hasbroucq, 2003). These compo-
nents peak around the onset of EMG activity responsible
for the response (Figure 2A). Converging results from
corticograms, intracortical data and stimulation studies
indicate that the contralateral negativity corresponds to
an activation of the motor command whereas the ipsi-
lateral positivity corresponds to an inhibition of the non-
required response (reviewed by Burle, Vidal, Tandonnet,
& Hasbroucq, 2004; see also Meckler et al., 2010). Capital-
izing upon these findings, the first linking proposition
conjectures that the activation/inhibition EEG pattern

Figure 2. Putative electrophysiological markers of the decision variable. (A) Typical CSD-converted scalp potentials observed over the motor cortices
in two-choice tasks involving left and right manual responses (adapted from Vidal et al., 2003). Top: Averaged CSD activities over M1 contralateral
(blue trace) and M1 ispsilateral (red trace) to the responding hand time-locked to EMG onset. The contralateral negativity corresponds to an
activation of the motor command whereas the ipsilateral negativity corresponds to an inhibition of the nonrequired response. Bottom: Monopolar
versus CSD topographic maps at EMG onset. The CSD transformation eliminates blurring effects caused by volume conduction, hence isolating the
electrical activity of each motor cortex. (B) EMG activity (in μV) in the muscles involved (Correct EMG, top) and not involved (Incorrect EMG,
bottom) in the required response as a function of time (in msec) from stimulus onset. The correct response is preceded by a small EMG burst in the
incorrect channel, called a “partial error.” RT = RT from stimulus onset to the mechanical response; PE = partial error; CT = correction time (from
the incorrect EMG activation to the correct one); MT = motor time (from the correct EMG activation to the correct response).
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over M1s is the neural signature of the controlled deci-
sion process hypothesized by drift diffusion models.
Specifically, activation and inhibition components would
reflect accumulated task-relevant sensory evidence for
and against the chosen response alternative. To test this
hypothesis, we manipulated the quality of the task-relevant
color evidence in the Simon task and conducted simul-
taneous EEG and EMG recordings. If Linking Proposition
1 holds, then rising slopes of activation and inhibition
EEG components should decrease as the quality of color
evidence decreases and exhibit high anticorrelation.

Electrophysiological findings in the Simon task suggest
that the location-based automatic activation reaches the
motor system. The LRP usually shows an early positive
dip in incompatible trials only, presumably reflecting an ac-
tivation of the incorrect response (reviewed by Leuthold,
2011). Moreover, EMG recordings have revealed covert in-
correct EMG activation (“partial error”; Figure 2B) in a por-
tion of trials where the correct response was finally issued.
Partial errors are more frequent in incompatible compared
with compatible trials, suggesting that the automatic activa-
tion reaches the peripheral muscular level (reviewed by
Van denWildenberg et al., 2010). On the basis of these find-
ings, the second linking proposition expands upon the for-
mer in assuming that the activation/inhibition EEG pattern
over M1s in the Simon task reflects the superimposed dif-
fusion process posited by DMC. To test this hypothesis,
we first fit the DMC to each individual behavioral data
set. Best-fitting parameters were then used to compute
the time course of the expectedmean of the superimposed
diffusion process. Finally, the grand-averaged time course
of the superimposed process was compared against the
grand-averaged time course of the activation/inhibition
EEG pattern. A comparison of EEG signals with and without
partial error trials was also conducted to gain insight into
the contribution of the automatic process.

The final linking proposition builds upon our recent
computational work, suggesting that EMG activity in
conflict tasks reflects up-to-date information about the de-
cision (Servant, White, Montagnini, & Burle, 2015). We pro-
vide an empirical test of this hypothesis by analyzing how
partial errors and correct EMG bursts scale with the quality
of task-relevant color evidence and how such scaling relates
to the theoretical decision variable of DMC. We finally show
how the model can be extended to account for EEG and
EMG profiles simultaneously and explore consequences
of this extension on decision thresholds.

METHODS

Participants

Fourteen students (mean age = 23.5 years, SD= 3.4 years,
10 women) from the University of Aix-Marseille partici-
pated in the study and were paid A15/hr. They were not
aware of the purpose of the experiment and reported to
have normal or corrected-to-normal vision and normal
color vision. This experiment was approved by the ethical

committee of the Aix-Marseille University and by the
“Comité de Protection des Personnes Sud Méditerrannée
1” (Approval No. 1041). Participants gave their informed
written consent according to the Declaration of Helsinki.

Task Design

Participants performed a Simon task in which the percep-
tual saturation (i.e., discriminability) of the task-relevant
color was manipulated (Servant et al., 2014; Hommel,
1994). The task was programmed in Python 2.7 (www.
python.org), using components of the Psychopy tool-
box (Peirce, 2007). Participants were instructed to press
a right or left button with the corresponding thumb accord-
ing to the color (blue or red) of a target circle (radius =
0.32°) centered 1.6° to the left or right of fixation (0.2° ×
0.2° gray cross). Colored circles were presented against
a black background. Color saturation was varied along
the CIE Lightness Chroma Hue device-independent2 color-
imetric space (Commission Internationale de l’éclairage,
1976), specifically designed to accurately match color per-
ception. Chroma quantifies the percentage of saturation.
Red (hue = 30°) and blue (hue = 280°) colors always
had the same lightness (L = 51), corresponding to a lumi-
nance of approximately 19 cd/m2 (the lightness of the
gray fixation cross was also adjusted to 51). Three supra-
threshold chroma levels (low quality of sensory evidence:
15%, medium quality: 25%, high quality: 60%) were chosen
to obtain approximately similar mean RT differences be-
tween each level pair 15–25% and 25–60%. We previously
demonstrated that mean RT decreases as a power func-
tion of chroma intensity in the Simon task (see Figure 6
in Servant et al., 2014), a phenomenon known as Piéron’s
law (Piéron, 1913). Color calibration was performed by
means of a Brontes colorimeter (Admesy B.V., Ittervoort,
the Netherlands). Response buttons were fixed on the top
of two plastic cylinders (3 cm in diameter, 7 cm in height,
10 cm separation between buttons), and button closures
were transmitted to the parallel port of the computer to
reach high temporal precision.
The experiment took place in a dark and sound-

shielded Faraday cage. Participants were seated in a com-
fortable chair 180 cm in front of a CRT monitor with a
refresh rate of 75 Hz. Each trial started with a fixation
cross whose duration was a random draw from a uniform
distribution bounded at 400 and 1200 msec. A target
circle was then displayed and remained on-screen until
the participant responded, with a maximum duration of
1000 msec. The offset of the stimulus and fixation cross
served to indicate to the participants the beginning of the
intertrial interval (1000 msec), during which they were
allowed to blink. Each trial was defined by a factorial com-
bination of target location (left or right), target hue (red
or blue), and chroma (three chroma levels). All types of
trials were equiprobable and presented in a pseudo-
random order so that first-order compatibility sequences
(i.e., compatible–incompatible: CI, CC, IC, II) occurred
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the same number of times. Chroma levels were paired
equally often with each of the possible compatibility se-
quence. Half of the participants gave a right-hand re-
sponse to a blue target and a left-hand response to a
red target. This mapping was reversed for the other half.
Participants were instructed to respond as fast and accu-
rately as possible to the color of the target circle. They
first performed 96 practice trials and worked through
24 blocks of 96 trials, with a short rest between blocks.
Practice trials were excluded from analyses. The experi-
ment lasted approximately 105 min.

DMC Fitting

The DMC was fit to behavioral data using the method
proposed by Hübner (2014). The model was simulta-
neously fit to the quantiles (0.1, 0.3, 0.5, 0.7, 0.9) of the
RT distributions of correct responses and to the condi-
tional accuracy functions (CAFs) of each individual data
set.3 CAFs represent accuracy as a function of time. In
the Simon task, the incompatible condition is typically as-
sociated with an early drop of accuracy, resulting in a
concave CAF shape (see Figure 5A, top). This particular
pattern implies that incorrect responses are faster than
correct responses. CAFs were constructed by sorting
the RT data into five bins of equal size; the proportion
of errors in each RT bin was then computed, providing
the error data considered in the fitting procedure. Model
predictions were obtained by running Monte Carlo simu-
lations with an integration constant dt = 1 msec and a
diffusion noise σ fixed at 4, similar to Ulrich et al. (2015).
Predicted and observed data were compared through a
likelihood ratio chi-square statistic, G2:

G2 ¼ 2
X6
i¼1

ni

X11
j¼1

pij log
pij
πij

 !

The outer summation over i extends over the three chroma
levels in each compatibility condition. ni is the number of
valid trials per condition. The inner summation over j
extends over the 11 RT bins in each condition (6 bins
bounded by RT quantiles of correct trials representing
10%, 20%, 20%, 20%, 20%, 10% of the data and 5 CAF bins,
each one representing 20% of the data). pij and πij are,
respectively, the observed and predicted proportions of
responses in bin j of condition i.
The G2 statistic was minimized with a python implemen-

tation of the Nelder–Mead SIMPLEX algorithm (optimize.
fmin function of the SciPy package; Jones et al., 2001)
to obtain best-fitting parameters. Eighty thousand trials
were simulated for each condition and minimization
cycle. Because SIMPLEX is very sensitive to the initial para-
metric guess, different sets of initial parameter values
were used. These values were taken from uniform distri-
butions U(a,b) centered on best-fitting parameters for the
Simon task reported by Ulrich et al. (2015). For each
parameter, the bounds a and b of the uniform distribu-

tion were chosen to span a large space to reduce the
likelihood of reaching a local minimum.

Across-trial variability in starting point (uniformly dis-
tributed with range σz) and nondecision time (normally
distributed with mean μr and variance σr) was incorpo-
rated.4 To account for the color saturation manipulation,
the drift rate of the controlled process μc was allowed
to vary between chroma levels. The first model we fit
had 10 free parameters (referred to as Model 1): upper
decision termination bound (b; lower bound = −b),
shape (a), characteristic time (τ), and peak amplitude
(A) of the gamma function, drift rate of the controlled
process for 15% (μc15), 25% (μc25), and 60% (μc60) chroma
levels, mean nondecision time (μr), across-trial variability
in starting point (σz), and nondecision time (σr). Because
the leading edge of the observed distribution of correct
responses was slightly shifted to the right as chroma de-
creased, we fit an alternative model that also allowed the
mean nondecision time to vary between chroma levels.
This alternative model (referred to as Model 2) had thus
13 free parameters. Model selection was performed by
computing a BIC statistic that penalizes models according
to their number of free parameters f:

BIC ¼ G2 þ f log
X6
i¼1

ni

We found that Model 2 had significantly smaller G2 (M =
87.1) and BIC (M= 185.8) values compared with Model 1
(G2: M= 114.2; BIC: M= 191.4), p= .0004 and p= .037,
respectively (paired-sample permutation tests based on
sampling permutation distribution 5000 times). Conse-
quently, we only report best-fitting parameters and pre-
dictions of Model 2 in the following sections.

Electrophysiological Recordings and
Signal Processing

EEG and EMG activities were sampled continuously from
64 scalp locations conforming to the 10–20 positioning
system (Chatrian, Lettich, & Nelson, 1988) using a BioSemi
Active II system (BioSemi Instrumentation, Amsterdam,
the Netherlands). Sampling rate was 1024 Hz. The EMG
was recorded from two electrodes pasted 2 cm apart
on the thenar eminence, above the flexor pollicis brevis.
Electrodes for vertical and horizontal electrooculogram
were respectively located at the Fp2 and below the right
eye, and on each outer canthus.

Electrophysiological data were filtered offline (EEG:
high-pass = 0.01 Hz; EMG: high-pass = 10 Hz). EEG data
were re-referenced to the right mastoid, and EMG elec-
trodes were bipolarly referenced. Ocular artifacts were
removed by independent component analysis under
EEGLAB (Delorme & Makeig, 2004). Because the EEG
signals of some participants were substantially contami-
nated by muscular activities, we used a Blind Source Sepa-
ration Algorithm based on Canonical Correlation Analysis
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(BSSCCA; De Clercq, Vergult, Vanrumste, Van Paesschen,
& Van Huffel, 2006) implemented in the AAR plug-in
for EEGLAB to remove EMG artifacts and keep as many
trials as possible in our analyses. Basically, the BSSCCA
method projects the EEG signals into maximally auto-
correlated components. Components with the lowest
autocorrelation values are assumed to be related to
EMG artifacts and are selected according to their spectral
power properties. Components having less than 10 times
more average power in the EEG band than in the EMG
band were considered EMG-related activities and re-
moved. This criterion provided satisfying results. Remain-
ing artifacts were removed manually (overall, 7.2% of
trials were rejected). CSD was estimated by computing
the surface Laplacian (SL)5 of brain potentials after spher-
ical spline interpolation, using 3 as the degree of spline
and a maximum of 15° for the Legendre polynomial. SL
is directly proportional to the radial current flow at scalp
(e.g., Perrin, Bertrand, & Pernier, 1987).

The onset of EMG activity of both hands was marked
manually after visual inspection. This method has proven
more efficient than automated algorithms (Van Boxtel,
Geraats, Van den Berg-Lenssen, & Brunia, 1993), particu-
larly for detecting small EMG bursts such as partial errors.
The experimenter who processed the EMG signals was
unaware of the type of mapping and color saturation
the EMG traces corresponded to. Trials were classified
“correct” or “error,” depending on whether button clo-
sure took place in the correct or incorrect EMG channel.
Among correct trials, trials in which an incorrect EMG
activity preceded the correct one (“partial error trials”;
see Figure 2B) were dissociated from “pure correct trials.”

Data Analyses

Unless specified, all statistical analyses were performed
by means of repeated-measures ANOVAs. Proportions
were arc-sine transformed before being submitted to
ANOVA to stabilize their variance (Winer, 1971). Data
sphericity was assessed by Mauchly’s test (Mauchly,
1940). When sphericity was violated, the statistic epsilon
ε was reported and a Greenhouse–Geisser correction
(Greenhouse & Geisser, 1959) was applied. EEG analyses
focused on electrodes at standard sites C3 and C4, located
above the motor cortices (Koessler et al., 2009). Similar
to previous work (e.g., Vidal et al., 2003, 2011), we found
that the left- and right-hand responses elicited symmet-
rical activities (i.e., the hand factor did not interact with
any of our experimental factors in all analyses performed,
all ps > .1). Consequently, these activities were merged
together. Left (odd) and right (even) electrodes respec-
tively correspond to electrodes contralateral and ipsilateral
to the responding hand (arbitrarymapping). Individual data
sets were included into EMG analyses when the number of
partial errors in each condition exceeded 20. All partici-
pants fulfilled this criterion.

RESULTS

Behavior

Anticipations (responses faster than 100 msec, 0.01%)
and misses (1.8%) were discarded from analyses. There
was a reliable Simon effect on mean RT and error rates,
F(1, 13) = 60, p = 3 × 10−6 and F(1, 13) = 8.5, p = .012,
respectively (Table 1). The color saturation manipulation
was also effective. Mean RT and error rate increased as
chroma decreased, F(2, 26) = 169.2, p = 10−15 and F(2,
26) = 55.3, p = 4 × 10−10. The interaction between S–R
correspondence and chroma on mean RT was not signif-
icant, F(2, 26) = 1.6, p = .22, but reached significance on
error rates, F(2, 26) = 3.6, p = .042.

Linking Proposition 1

Figure 3A displays the grand-averaged SL time courses
over M1 contralateral (top) and M1 ipsilateral (bottom)
to the responding hand in the six conditions for all cor-
rect trials. Signals are time-locked to the onset of the
stimulus and baseline-corrected −100 to 0 msec before
the stimulus-locking event. Anticorrelated ramping ac-
tivities start to develop around 180 msec, betraying the
contralateral activation (negativity)/ipsilateral inhibition
(positivity) pattern highlighted by previous work (e.g.,
Vidal et al., 2003, 2011; Meckler et al., 2010). Our first
linking proposition conjectures that this pattern is the
neural signature of the controlled decision process hypoth-
esized by drift diffusion models. To test this hypothesis, we
estimated activation and inhibition ramping slopes by
linear regression in a 100-msec window starting 180 msec
after stimulus onset (Figure 3A, second shaded area)
for each participant and condition and submitted them
to an ANOVA with M1 hemisphere, Compatibility, and
Chroma as factors. The anticorrelation between ramping
slopes, however, makes the analysis difficult to interpret.
For example, a main effect of Chroma would result in a

Table 1. Error Rates (%) and Mean RTs (msec) for Each
Compatibility Condition and Chroma Level Averaged across
Participants

Condition

Chroma Levels (%)

60 25 15

Error %

Comp 3.1 3.5 7.9

Incomp 4.7 6.8 12.2

Mean RT

Comp 455 478 505

Incomp 474 503 527

Comp = compatible trials; Incomp = incompatible trials.
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significant Chroma × M1 hemisphere interaction. To cir-
cumvent this problem, we multiplied ipsilateral slopes by
−1. The analysis revealed a main effect of Chroma, F(2,
26) = 5.5, p = .01 (no other effect reached significance).
Ramping slopes generally decreased as chroma decreased,
whatever the M1 hemisphere. One exception is the ramp-
ing slope of the contralateral activation in the compatible/
15% chroma condition, slightly higher compared with that
of the 25% level, presumably due to noise.
To examine dynamics of ramping activities in more de-

tail, we performed a distributional analysis. If activation
and inhibition components reflect sensory evidence accu-
mulated for and against the chosen response alternative,
their rising slope should decrease as RT increases (Hanes
& Schall, 1996). For each participant and condition, single
correct trials were sorted by RT and divided into four
equal-sized bins. The grand-averaged SL time courses
over M1 contralateral and M1 ipsilateral to the responding
hand in the six conditions for each RT bin is plotted in
Figure 4A. Ramping slopes of activation and inhibition
components generally decrease as RT increases.6 We esti-
mated activation and inhibition ramping slopes on this
grand-averaged data by linear regression in a 100-msec win-
dow starting 180 msec after stimulus onset (Figure 4A,

shaded area). Estimated slopes are plotted against the
mean RT in the corresponding bin in Figure 4B. The cor-
relation between contralateral activation slopes and RT
was high, r = .59, p = .0027, so was that between ispis-
lateral inhibition slopes and RT, r = −.91, p = 4 ×
10−10, demonstrating a high dependency between M1
ramping dynamics and RT. The anticorrelation between
activation and inhibition slopes was also high, r = −.68,
p = .0003. These analyses provide empirical support to
the hypothetical link between the activation/inhibition
pattern observed over M1s and the controlled drift dif-
fusion process (see Appendix A for further evidence in
favor of this hypothesis).

Linking Proposition 2

The second linking proposition expands upon the former
in assuming that the activation/inhibition EEG pattern
over M1s in the Simon task reflects the superimposed
diffusion process assumed by DMC. To test this hypoth-
esis, we sought to compare the grand-averaged time
course of the superimposed process with the grand-
averaged time course of the activation/inhibition pattern.
Figure 5 summarizes the very good fit of the DMC to

Figure 3. (A) Grand-averaged SL time courses in the six experimental conditions time-locked to stimulus onset in all correct trials. Signals are
baseline-corrected −100 to 0 msec before the stimulus-locking event. The top represents SL over M1 contralateral to the responding hand; the
bottom represents SL over M1 ispsilateral to the responding hand. Shaded areas illustrate time windows used for analyses. (B) Grand-averaged SL
time courses in the six experimental conditions time-locked to stimulus onset in pure correct trials. The removal of partial error trials selectively
suppresses the ipsilateral negativity preceding the inhibition ramp in incompatible trials (dashed rectangle).
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behavioral data. Figure 5A displays observed versus pre-
dicted CAFs and cumulative density functions (CDFs) of
RT for correct responses across experimental conditions
averaged over the 14 participants. The model captures
accuracy dynamics across conditions and the decrement
of the Simon effect as RT increases. Figure 5B shows ob-
served versus predicted RT quantiles of the distributions
of correct responses for each individual data set. Data
points are gathered around the ideal observed = pre-
dicted line, with no systematic deviation. Best-fitting
parameters are shown in Table 2. Consistent with Ulrich
et al. (2015), we found that the model captures the data
with an automatic activation that develops early (i.e., the
gamma function peaks at τ(a − 1) = 30 msec decision
time on average). Variations of the drift rate of the
controlled process μc scaled with the quality of sensory
evidence in a meaningful way. Ulrich et al. (2015) dem-
onstrated that variations of μc have little impact on the
magnitude of the Simon effect, providing an explanation
for the observed additive effect of compatibility and
chroma on mean RT. Finally, the mean of nondecisional

components monotonically increased as chroma de-
creased, suggesting that a degraded color signal puts higher
demands on nondecisional processes such as sensory
encoding.
Figure 6 displays the expected mean of the super-

imposed process computed from best-fitting parameters
and averaged across participants. The (1-D) diffusion pro-
cess was decoupled to illustrate perfectly anticorrelated
dynamics of winning and losing accumulators. These
theoretical dynamics closely resemble activation and inhi-
bition EEG components (Figure 3A). In particular, the
DMC predicts an early incorrect activation in incompatible
trials, reflecting the contribution of the automatic process
to decision-making. Because automatic and controlled
activations are superimposed, the magnitude of this in-
correct activation increases as chroma decreases (Figure 6,
inset). This prediction was observed in the EEG data. In
incompatible trials, the ipsilateral inhibition (positivity)
was preceded by a negativity, the amplitude of which in-
creased as chroma decreased (Figure 3A, dashed rect-
angle). To demonstrate that this early negativity reflects

Figure 4. (A) Grand-averaged SL time courses in the six experimental conditions for each of four equal-sized RT bins in all correct trials. Signals are
baseline-corrected −100 to 0 msec before the stimulus-locking event. Shaded areas illustrate the time window used to estimate ramping slopes.
These slopes are plotted against the mean RT in the corresponding bin in B.
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the spillover of the automatic process to decision-making,
we analyzed the activation/inhibition pattern in pure cor-
rect trials (i.e., without EMG partial errors, see Methods).
Partial errors in the Simon task are thought to be largely
driven by the location-based automatic process (Van den
Wildenberg et al., 2010; Burle, Possamai, Vidal, Bonnet, &
Hasbroucq, 2002; Hasbroucq, Possamai, Bonnet, & Vidal,
1999). Consistent with assumption, we found that the rate
of partial errors was generally higher in incompatible com-
pared with compatible trials, F(1, 13) = 52.4, p= 7× 10−6

(Table 3). Importantly, the rate of partial errors increased
as chroma decreased, F(2, 26) = 13.3, p = .0001, the
amplitude of the effect being larger in the compatible con-
dition, F(2, 26) = 7.8, p = .007, ε= .72. Partial error laten-
cies were also affected by chroma,7 getting longer as
chroma decreased, F(2, 26) = 26.7, p = 5 × 10−7. These
results suggest that the automatic process is combined
with the controlled process during information processing,
consistent with the DMC architecture. Figure 3B displays
the grand-averaged SL time courses over M1 contralateral
(top) and M1 ipsilateral (bottom) to the responding hand
in the six conditions for pure correct trials. Signals are time-
locked to the onset of the stimulus and baseline-corrected
−100 to 0 msec before the stimulus-locking event, similar
to Figure 3A. The removal of partial error trials selectively
suppressed the ipsilateral negativity preceding the inhibi-

Figure 5. Fit of the DMC to behavioral data. (A) Observed (data points) versus predicted (plain lines) CAF and CDFs of RT for correct responses
for each experimental condition. (B) Observed versus predicted CDF quantiles for each condition and individual data set.

Table 2. Best-fitting DMC Parameters to Behavioral Data for
Each Compatibility Condition and Chroma Level Averaged
across Participants

DMC
Parameters

Chroma Levels (%)

60 25 15

b 60.5 (8.9)

μc 0.465 (0.105) 0.430 (0.09) 0.326 (0.083)

A 15.1 (2.6)

a 2.02 (0.22)

τ 29.4 (3)

σz 18.6 (2.9)

μr 334.9 (30.8) 355.6 (34.5) 358.6 (34.7)

σr 46.4 (13.3)

SDs across participants are shown in parentheses. The DMC was simu-
lated with an integration constant dt = 1 msec and a diffusion coeffi-
cient σ = 4. b = upper (correct) decision termination bound (incorrect
decision termination bound is at −b); μc = drift rate of the controlled
process; A= peak amplitude of the gamma density function (positive in
compatible trials, negative in incompatible trials); a = shape of the
gamma density function; τ = characteristic time of the gamma density
function; σz = variability in starting point; μr =mean nondecision time;
σr = variability in nondecision time.

Servant et al. 1509



tion ramp in incompatible trials (Figure 3B, dashed rect-
angle), highlighting the spillover of the automatic process
to decision-making. These analyses provide support to
the second linking proposition.

Figure 3(A and B) reveals an interesting phenomenon.
Developing ramps of activation and inhibition components
are preceded by a phasic negative wave peaking at about
150 msec after stimulus onset (hereafter referred to as
motor negative MN150). The amplitude of the MN150
appears maximal in the M1 hemisphere contralateral to
the stimulus location. One might argue that the MN150
simply reflects a contamination of C3/C4 electrodes by
lateralized visual-evoked potentials through volume con-
duction effects. The 2–3 cm spatial resolution of the SL
(e.g., Kayser & Tenke, 2015; Babiloni, Cincotti, Carducci,
Rossini, & Babiloni, 2001) rules out this possibility. Empir-
ical evidence for a motor locus of the MN150 generator is
provided in the Appendix B.

We estimated the amplitude of the MN150 for each
participant and condition by computing the difference
between the mean SL amplitude of two 10 msec time
windows centered on the onset (100 msec) and peak la-
tency (150 msec) of the potential (Figure 3A, first shaded
area). An ANOVA performed on MN150 amplitudes with
M1 hemisphere (contralateral vs. ipsilateral to the respond-
ing hand), Compatibility, and Chroma as factors revealed a
Compatibility × Hemisphere interaction, F(1, 13) = 16.5,
p = .0013 (no other effect reached significance). In com-
patible trials, the amplitude of the MN150 was larger in M1
contralateral (mean SL amplitude = −0.075 μV/cm2) com-
pared with M1 ipsilateral (−0.021 μV/cm2) to the respond-
ing hand, F(1, 13) = 12.9, p= .0033. The reversed pattern
was observed in incompatible trials (mean SL amplitude
contralateral M1 = −0.020 μV/cm2; ipsilateral M1 =
−0.071 μV/cm2), F(1, 13) = 17.4, p = .0011. This analysis

shows that the MN150 is maximal in M1 contralateral to
the stimulus location, whatever the compatibility condi-
tion. It is also invariant to the color saturation manipula-
tion. The MN150 might thus represent the location-based
automatic activation before it spills over to the decision
process. Although this hypothesis is compatible with the

Table 3. Observed and Predicted Partial Error Rate (%), Latency
(msec), and Correction Time (msec) for Each Compatibility
Condition and Chroma Level Averaged across Participants

Chroma Levels (%)

60 25 15

EMG DMC EMG DMC EMG DMC

Partial Error Rate

Comp 11.9 8.3 14.3 9.3 18.7 12.5

Incomp 22.6 25.6 25.7 26.6 26.7 29.5

Partial Error Latency

Comp 277 94 279 98 295 110

Incomp 245 39 259 40 280 48

Correction Time

Comp 136 124 149 128 154 144

Incomp 141 110 153 113 166 127

On average, the best-fitting incorrect EMG bound parameter (−m) of
the DMC to partial error rates was −30.4 (SD = 8.4). Predicted partial
error latencies do not contain a sensory encoding time. Predicted par-
tial error latencies and correction times are not a fit to data. Comp =
compatible trials; Incomp = incompatible trials.

Figure 6. Expected mean
(i.e., accumulated drift rate) of
the superimposed diffusion
process computed from
best-fitting parameters and
averaged across participants.
The (one-dimensional)
diffusion process was
decoupled to illustrate perfectly
anticorrelated dynamics of
winning and losing evidence
accumulators. The inset in
the losing accumulator of
the incompatible condition
highlights the amplitude of
the early incorrect response
activation across chroma levels.
Evidence accumulation is
preceded by a necessary
sensory encoding latency Te.
b = correct decision termination
bound; z = starting point of
the accumulation process.
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DMC framework, it has important limitations. These limi-
tations will be introduced in the Discussion section.

Linking Proposition 3

The final linking proposition builds upon our recent
computational work suggesting that EMG activity in con-
flict tasks reflects up-to-date information about the deci-
sion (Servant et al., 2015). In other words, EMG bursts
might be driven by the evolving decision evidence. The
observed effects of compatibility and chroma on partial
error rates and latencies are consistent with this hypoth-
esis. However, we sought to provide a more direct empir-
ical test by evaluating how the magnitude of EMG bursts
scale with chroma and how such scaling relates to the
theoretical superimposed diffusion process of the DMC.

Our previous analyses suggest a link between partial errors
and the spillover of the automatic process to decision-
making in incompatible trials. This spillover takes the form
of an early incorrect activation, the magnitude of which
increases as the task-relevant color evidence decreases
(Figure 6, inset). According to the linking proposition at
stake, the magnitude of partial errors should increase as
chroma decreases in incompatible trials. To test this
hypothesis, we estimated the magnitude of partial error
EMG bursts for each participant and condition. Partial
errors were time-locked to their onset, rectified, baseline-
corrected, and averaged. The cumulative sum of the
averaged EMG burst was then computed, and the 90th
percentile was taken as an estimate of the magnitude. An
ANOVA performed on these magnitudes revealed a signif-
icant Compatibility × Chroma interaction, F(2, 26) = 4.8,

Figure 7. Grand average of rectified EMG activities time-locked to EMG onset of partial errors (A), correct EMG bursts in pure correct trials (B),
and correct EMG bursts in partial error trials (C) in the six conditions. Insets represent the grand-averaged magnitude of EMG bursts across
chroma levels, computed using the method described in the main text. An 80-Hz low-pass Butterworth filter was applied to signals for display only.
Notice that the amplitude of (covert) partial errors is considerably lower than the amplitude of (overt) correct EMG bursts.
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p = .032, ε = .7. In incompatible trials, the magnitude of
partial errors monotonically increased as chroma de-
creased, F(2, 26) = 5.5, p = .01 (Figure 7A). Although a
very small trend for a chroma effect showed up in com-
patible trials (F(2, 26) = 2.5, p = .103), partial error mag-
nitudes did not meaningfully scale with chroma levels,
consistent with the assumption that partial errors are
mainly driven by noise or fast guesses in this condition
(e.g., Hasbroucq, Burle, Vidal, & Possamai, 2009; Hasbroucq
et al., 1999; Eriksen, Coles, Morris, & O’Hara, 1985).

Besides partial errors, the third linking proposition
makes a particular prediction with regard to the mag-
nitude of (overt) correct EMG bursts. As decision time
increases, the drift rate of the superimposed process con-
verges toward that of the controlled process μc, whatever
the compatibility condition (Figure 9A). Because μc de-
creases as chroma decreases, the magnitude of correct
EMG bursts should decrease as chroma decreases. Fig-
ure 7(B and C) shows that this is the case, except when
the correct EMG burst is preceded by a partial error in the
incompatible condition. The magnitude of correct EMG
bursts was quantified in the same way as for partial errors.
For pure correct trials, the ANOVA revealed a significant ef-
fect of Chroma, F(2, 26) = 3.2, p= .05 (Compatibility: p=
.54; interaction: p= .83; Figure 7B). For partial error trials,
the ANOVA revealed a trend for a Compatibility × Chroma
interaction, F(2, 26) = 2.7, p = .084: Although the magni-
tude of correct EMG bursts in the compatible condition
scaled with chroma in the predicted direction, the opposite
pattern was observed in the incompatible condition
(Figure 7C). This result might suggest a particular partial
error correction processing scheme in the incompatible
condition.

The hypothetical relationship between the drift rate
of the controlled process μc and correct EMG bursts
can further be assessed by analyzing the motor time

MT (time between the EMG onset of the correct EMG
burst and the mechanical button press; see Figure 2B).
Specifically, MT should increase when μc decreases. We
observed this relationship in pure correct trials (60%
chroma: mean MT = 132.2 msec; 25%: 133.6 msec; 15%:
133.7 msec; main effect of Chroma, F(2, 26) = 3.6, p =
.041; Compatibility: p = .47; interaction: p = .65). No sig-
nificant effect showed up for partial error trials however
(all ps > .1).
These results provide empirical evidence in favor of

Linking Proposition 3. They also support the theoretical
extension of the drift diffusion model framework pro-
posed in our previous work (Servant et al., 2015). This
extension is introduced in Figure 8, with an application
to the DMC model. EMG activity is triggered when a
decision sample path reaches a level of accumulated
evidence |m| inferior to that required for a commitment
to a choice, |m| < |b|. We refer to |m| as EMG bound
and |b| as decision termination bound. This architec-
ture has two important consequences. First, the evi-
dence accumulation decision process carries on even if
a motor command has been sent, allowing for potential
abortion and correction of this command. Figure 8 illus-
trates an example of a simulated partial error trial. The
model generates a partial error if the decision sample
path hits the incorrect EMG bound −m but finally reaches
the correct decision termination bound b thanks to time-
varying drift rate dynamics. Second, part8 of EMG activity
directly reflects the evolving decision evidence. In other
words, our model extension implements Linking Proposi-
tion 3 in the diffusion model framework.
We used the DMC extended with EMG bounds to pro-

vide a quantitative account of the EMG data observed in
this study. For each individual data set, 80,000 trials per
condition were simulated using best-fitting parameters to
behavioral data. The incorrect EMG bound −m was fit to

Figure 8. Extension of the drift
diffusion model framework
proposed by Servant et al. (2015)
applied to the DMC. See text
for details.
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partial error rates by minimizing the following loss func-
tion with a Simplex routine:

Loss ¼
X6

i¼1
ei − εið Þ2

where e and ε represent observed and predicted partial
error rates for each experimental condition i. The param-
eter m was not allowed to vary between conditions. After
this calibration step, the DMC was simulated again to
extract predicted partial error latencies and correction
times (latency between first hits of the incorrect EMG
bound −m and the correct EMG bound m; Figure 8).
These predictions were finally compared against empi-
rical data.9 The empirical correction time is defined as
the latency between the onset of the partial error and
the onset of the correct EMG burst (Figure 2B). Table 3
summarizes the results of the simulations. Although the
extended DMC captures compatibility and chroma effects
on partial error rates10 ( p = 2 × 10−7 and p = 5 × 10−10,

respectively) and latencies ( p=3×10−9 andp=2×10−9),
it fails to explain the correction time data. Observed
correction times were faster in the compatible compared
with the incompatible condition, F(1, 13) = 32.8, p = 7 ×
10−5, and increased as chroma decreased, F(2, 26) = 20.3,
p = 5 × 10−6. The DMC, however, predicts faster cor-
rection times in the incompatible condition, F(1, 13) =
85.1, p = 4 × 10−7. To understand why, one should
compare time-varying drift rate dynamics of the super-
imposed process in compatible versus incompatible trials
(Figure 9A; time-varying drift rate computed from best-
fitting parameters and averaged across participants). The
plot shows that the Simon effect on mean RT is due to
an early decision period (from accumulation onset to
∼30 msec). After ∼30 msec decision time, however, the
drift rate of the incompatible condition becomes superior
to that of the compatible condition. Although such cross-
ing is critical to capture the decrease of the Simon effect
over time (Ulrich et al., 2015), it necessarily predicts faster
correction times in the incompatible condition, contrary
to observed data. To get more insight into this failure,
we examined the cumulative distribution of observed
versus predicted correction times across conditions, con-
structed by computing correction time quantiles (0.1, 0.3,
0.5, 0.7, 0.9). Figure 5B shows that the model systema-
tically underestimates each correction time quantile in
the incompatible condition by an approximately constant
latency, suggesting that a nondecisional processing stage
contributes to the correction process. This result echoes
our analysis of correct EMG bursts magnitude in partial error
trials (Figure 7C). The brain might reencode part of the
stimulus just after a partial error in incompatible trials. This
hypothesis, however, should be taken with caution. Some
parameters of the DMC might tradeoff, and we cannot
currently exclude that another set of parameters explain
the behavioral data equally well and capture the correction
time data. Identifying such tradeoffs would require an
extensive parameter recovery study.

Our DMC extension makes a strong EEG prediction.
Because the contralateral M1 activation of (overt) correct
responses reaches the theoretical decision termination
bound b, it should peak after EMG onset. Partial errors,
however, reflect a smaller quantity of accumulated evi-
dence, and their M1 activation should peak earlier, that
is, at EMG onset. Figure 10A displays the grand-averaged
SL time courses over M1s time-locked to the EMG onset
of the correct response in pure correct trials (left), EMG
onset of partial errors (middle), and EMG onset of the
correct response in partial error trials (right). Signals
are baseline-corrected relative to a 2-msec window cen-
tered on EMG onset (such that SL amplitude = 0 at
EMG onset) to facilitate comparison with the model pre-
dictions. For each participant and condition, we detected
the peak latency of the contralateral M1 activation com-
ponent after application of a 30-Hz low-pass Butterworth
filter to minimize spurious effects of noise. One-sample
t tests revealed that the contralateral M1 activation of

Figure 9. (A) Time-varying drift rate of the superimposed process in
the compatible (plain lines) versus incompatible condition (dashed
lines) across the three chroma levels, computed from best-fitting
parameters and averaged across participants. (B) Observed (data points)
versus predicted (plain lines) CDF of correction times for each
condition averaged across participants.
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correct responses peaked significantly after EMG onset,
whatever the trial type (all ps < .01; see Figure 10A,
arrows). The peak latency of the partial error M1 activa-
tion did not differ from EMG onset (all ps > 1). These
results are consistent with our model extension. SL topo-
graphic maps in Figure 9B show that activation and inhi-
bition components are focused over motor cortices,
discarding alternative explanations in terms of volume
conduction effects.

The alignment of EEG signals to the theoretical EMG
bound allows for a final test of our model extension. The
peak latency of the contralateral M1 activation of correct
responses should increase as chroma decreases, reflecting
drift rate dynamics of the controlled process. This pre-

diction was verified in pure correct trials (main effect of
Chroma: F(2, 26) = 3.4, p = .049; Compatibility: p = .21;
interaction: p = .31; see Figure 10A, arrows). The main
effect of Chroma failed to reach significance in partial error
trials ( p = .53), presumably due to the low signal-to-noise
ratio.

DISCUSSION

This study leveraged DMC predictions and EEG/EMG
measurements to elaborate and test a set of linking
propositions that specify the relationship between cog-
nitive processes in the Simon task and brain activity. In

Figure 10. (A) Grand-averaged SL time courses in the six experimental conditions time-locked to EMG onset of correct responses in pure
correct trials (left), partial errors (middle), and correct responses in partial error trials (right). Signals are baseline-corrected relative to a 2-msec
window centered on EMG onset. Arrows indicate the peak latency of the contralateral activation component (detected after application of a 30-Hz
low-pass Butterworth filter to minimize spurious effects of noise) for each condition. (B) SL topographic map at contralateral M1 activation peak
latency in the incompatible/15% chroma condition for each EMG burst category. A different baseline was used to better emphasize the activation/
inhibition pattern.
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doing so, we sought to enhance our understanding of
neurophysiological data. Reciprocally, we sought to bet-
ter constrain the DMC architecture beyond adequate fits
to behavioral data, a method known to have limitations
for theory testing (Roberts & Pashler, 2000). The sections
below summarize our main findings and discuss their
theoretical consequences.

A Representation of the Superimposed Drift
Diffusion Variable in M1s

Our analyses of SL EEG signals over M1s showed that
ramping slopes of activation and inhibition components
scale with the quality of task-relevant color evidence
and more generally with RT, as expected for a neural
integrator (Kelly & O’Connell, 2013; O’Connell et al.,
2012; Donner et al., 2009; Roitman & Shadlen, 2002; Hanes
& Schall, 1996). The high anticorrelation (r = −.68)
observed between activation and inhibition ramps re-
vealed a form of inhibition between competing accumu-
lators, consistent with the general drift diffusion model
architecture (Ratcliff & McKoon, 2008; Ratcliff, 1978).
The observed anticorrelation, however, was high but
not perfect. The high amount of noise inherent to EEG
measurements might have reduced the underlying anti-
correlation between neural generators. Perfect anticorrela-
tion might also be implausible from a neurophysiological
point of view, due to, for example, ceiling effects of neural
firing rates. Consistent with this hypothesis, single-unit re-
cordings of accumulator neurons in behaving monkeys
have revealed anticorrelations similar to that reported in
this study (reviewed by Gold & Shadlen, 2007).
Although the drift diffusion model is agnostic to the

way inhibition is implemented (Bogacz et al., 2006), em-
pirical evidence suggests that it occurs in a flexible and
feedforward manner (i.e., via crossed inputs). The ipsi-
lateral M1 inhibition component is absent when responses
are made by two fingers of the same hand (Meynier, Burle,
Possamai, Vidal, & Hasbroucq, 2009) and when no re-
sponse choice is required (Vidal et al., 2011). Furthermore,
functional dissociations have been reported between
activation and inhibition components, some manipula-
tions affecting only one of the two (Burle et al., in press;
Tandonnet, Burle, Vidal, & Hasbroucq, 2006). These re-
sults speak against an interpretation of inhibition as a
passive by-product of reciprocal interhemispheric con-
nections (Ferbert et al., 1992). Two aspects of the present
data are consistent with this hypothesis. Figure 10A (left)
shows that the ipsilateral M1 inhibition component in
pure correct trials carries on even after the contralateral
activation peak. Moreover, Figure 9(A and B, middle)
suggests a lack of M1 inhibition associated with partial
errors. To test this hypothesis, we estimated the slope
of the inhibition component by linear regression in a
50-msec time window ending at EMG onset for each par-
ticipant and condition. Slopes did not differ from 0 in any
of the conditions (one-sample t tests, all ps > .1).11 These

results highlight the high flexibility of the brain mecha-
nism regulating motor inhibition.

Beyond the relationship between task-relevant sensory
information accumulation and activation/inhibition EEG
components, we found evidence that the location-based
automatic activation spills over to the decision process, as
hypothesized by the DMCmodel (Ulrich et al., 2015). The
contribution of the automatic process to decision-making
is particularly visible in incompatible trials, where the ipsi-
lateral inhibition ramp is preceded by a short-living nega-
tivity (Figure 3A, dashed rectangle). By comparing correct
trials with and without EMG partial errors, we were able
to unambiguously establish the link between this nega-
tivity and the theoretical location-based automatic activa-
tion of the incorrect response. Our experimental design
allows for a deeper test of the DMC assumption. In in-
compatible trials, the model assumes that the automatic
activation increases as chroma decreases because of the
integration of task-relevant and task-irrelevant informa-
tion into a single decision variable. This prediction was
verified in the EEG data. We also found that the rate,
latency, and magnitude of partial errors increase as chro-
ma decreases in the incompatible condition. This result
provides strong empirical support for the DMC architec-
ture and refutes alternative models in which automatic
and controlled processes race independently against each
other (see Figure 2 in Van den Wildenberg et al., 2010).

It remains to be determined whether the integration of
automatic and controlled processes occurs at the M1 level
or in upstream structures. Recent evidence suggests that
the decision variable is computed in supramodal brain
areas and flows down to the motor system (Kelly &
O’Connell, 2013; O’Connell et al., 2012). These experi-
ments, however, draw upon simple decision tasks and
are agnostic with respect to the automatic process. Evi-
dence for a motor locus of the integration might come
from the MN150, a phasic negative wave that precedes
the activation/inhibition pattern (Figure 3, first shaded
area). The amplitude of the MN150 is maximal over M1
contralateral to the stimulus, whatever the compatibility
condition, and is not sensitive to chroma. This component
might be the neural signature of the location-based auto-
matic activation before it spills over to decision-making.
Although this hypothesis is compatible with the DMC
framework, it has important limitations. First, one would
expect that the Simon effect disappears with vertical
stimulus and response arrangements. This has never been
observed (e.g., Vallesi, Mapelli, Schiff, Amodio, & Umilta,
2005; Valle-Inclan & Redondo, 1998; De Jong, Liang, &
Lauber, 1994). Second, the Simon effect would reverse
when the arms are crossed. A regular Simon effect has
been systematically documented with this setting (e.g.,
Hasbroucq et al., 2009; Roswarski & Proctor, 2003;
Wascher, Schatz, Kuder, & Verleger, 2001; Wallace, 1971).
An alternative interpretation of the MN150 comes from a
line of EEG research in spatial compatibility tasks showing
early lateralized motor deflexions that do not reflect
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movement-related activities. Using an auditory version of
the Simon task, Leuthold and Schröter (2006) reported a
lateralized frontocentral activity in the time range of the
MN150 that was not modulated by the effector condition
(hand, foot, eye), presumably reflecting amotor-attentional
mechanism (see also Praamstra & Oostenveld, 2003;
Wascher & Wauschkuhn, 1996). This linking proposition
should be tested in future work.

EMG Activity and the Decision Variable

The final linking proposition conjectures that part of
EMG activity reflects the evolving decision variable. Con-
sistent with this proposition, we found that covert and
overt EMG bursts scale with the quality of sensory
evidence in a way predicted by the superimposed deci-
sion variable of DMC. At first sight, this result suggests
a continuous flow of the decision variable down to the
effectors. The transmission of information from M1 to
the flexor pollicis brevis, however, cannot be purely con-
tinuous: EMG bursts do not exhibit a ramp-like activity
but instead a discrete onset, suggesting that a mechanism
gates the flow of information. Incorporation of EMG
bounds into the drift diffusion model framework is a
simple realization of this idea (Servant et al., 2015). We
extended the DMC with EMG bounds and provided a
quantitative account of the EMG data. This extension
made additional predictions on evidence accumulation
threshold dynamics that were verified in the EEG data.

It is unclear whether the link between EMG activity
and the decision variable extends beyond conflict tasks.
Also, the functional significance of EMG bounds remains
to be clarified. We previously hypothesized that the brain
might engage motor activity in an adaptive way, that is,
when the decision variable reaches a sufficiently high de-
gree of confidence for a particular response alternative
(Servant et al., 2015). Electrophysiological and micro-
stimulation studies in behavingmonkeys have revealed that
the very same neurons that encode the decision variable
also encode a confidence signal (Fetsch, Kiani, Newsome,
& Shadlen, 2014; Kiani & Shadlen, 2009). Recent behavioral
and computational evidence suggest that changes of mind
in decision-making and confidence are linked by a com-
mon generative mechanism (Van den Berg et al., 2016).
In the drift diffusion model framework, confidence cor-
responds to the log posterior odds of a correct response
and can be derived from the diffusion process using Bayes’
rule (Kiani & Shadlen, 2009). Our theoretical EMG bounds
might correspond to a log posterior odds level.

Extension to Other Conflict Tasks

An important strength of the DMC architecture is its
ability to account for behavioral data from different con-
flict tasks. Contrary to the Simon effect, the magnitude of
flanker and Stroop compatibility effects increases over time

(Servant et al., 2014; White et al., 2011; Hübner et al., 2010;
Pratte et al., 2010; but see Burle, Spieser, Servant, &
Hasbroucq, 2014). The DMC explains these distributional
differences by variations in the characteristic time param-
eter τ of the automatic activation. Specifically, an automatic
activation that develops relatively early (late) relative to the
controlled activation tends to produce a decrease (in-
crease) of the compatibility effect as RT increases (Ulrich
et al., 2015). In line with this hypothesis, we found that
the DMC captures the present Simon task data with an
automatic activation that develops early (the peak latency
of the gamma function was ∼30 msec on average).
Two aspects of our electrophysiological data appear

consistent with the early activation hypothesis. First,
the ipsilateral negativity preceding the inhibition ramp
in incompatible trials (Figure 3A, dashed rectangle) peaks
∼40 msec after its onset (onset and peak latencies detected
after application of a 30-Hz low-pass Butterworth filter and
averaged across chroma levels). Second, partial errors are
not associated with a reliable M1 inhibition (Figure 10A
and 10B,middle). This result might suggest that the latency
of partial errors is very close to the onset of the decision
process. Consistent with this hypothesis, we found that
partial error latencies generated by DMC extended with
EMG bounds are very fast, particularly in the incompatible
condition (range 39–48 msec after evidence accumulation
onset; see Table 3). If the lack of M1 inhibition for partial
errors in the Simon task is due to the early automatic
activation, then a reliable inhibition should be observed
in the flanker task. Figure 8 of Burle, Roger, Allain, Vidal,
and Hasbroucq (2008; standard flanker task, EEG time-
locked to the onset of partial errors) suggests that this
is the case. A reanalysis of their EEG data revealed a reli-
able M1 inhibition associated with partial errors (one
sample t test against 0, t(9) = −2.4, p = .04, data col-
lapsed across flanker compatibility conditions). These re-
sults provide support to the general DMC framework.
Combining DMC predictions with EEG and EMG measure-
ments in other conflict tasks such as the flanker or the
Stroop should provide additional insight into the relative
time course of controlled and automatic activations.

Conclusion

Our model-based neuroscience study contributes to the
growing body of evidence showing a representation of
the decision variable in the motor system (e.g., Kelly &
O’Connell, 2013; O’Connell et al., 2012; Purcell et al.,
2010, 2012; Selen et al., 2012; Donner et al., 2009; Ratcliff
et al., 2003; Romo et al., 2002; Gold & Shadlen, 2000;
Hanes & Schall, 1996), even down to the effectors (Servant
et al., 2015). It also demonstrates that the decision variable
is not shielded against task-irrelevant sensory information.
Our findings provide new insight into the neurophysiology
of human decision-making. In return, they provide sup-
port for the DMC model framework.
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APPENDIX A: FURTHER EVIDENCE IN FAVOR
OF LINKING PROPOSITION 1

Another (complementary) way of investigating Linking
Proposition 1 consists of relating the variance in individ-
ual DMC parameter estimates with the variance of the
neural signal over M1s. Specifically, one should expect

a significant intersubject correlation between the drift
rate of the controlled process μc and the slope of ac-
tivation and inhibition EEG components. This analysis,
however, is contaminated by the spillover of the auto-
matic process to decision-making. To attenuate this con-
tamination, we estimated ramping slopes of activation and
inhibition M1 components in pure correct trials (i.e.,
without partial errors). Another issue concerns the high
amount of noise in individual EEG data. To increase the
signal-to-noise ratio, we averaged ramping slopes from
compatible and incompatible trials and averaged activa-
tion and inhibition ramping slopes (multiplying inhibition
slopes by −1), resulting in 14 (subjects) × 3 (chroma
levels) = 56 data points. The correlation between M1
ramping slopes and the best-fitting drift rate of the
controlled process μc in pure correct trials was signifi-
cant, r = −.35, p = .024 (Figure A1, left). Not surpris-
ingly, the same correlation performed in all correct trials
did not reach significance (r = −.25, p = .12; Figure A1,
right).

APPENDIX B: EMPIRICAL EVIDENCE
FOR A MOTOR LOCUS OF THE
MN150 GENERATOR

Figures B1 and B2 display the grand-averaged SL time
courses in the six experimental conditions for stimuli
presented on the right (B1) versus left (B2) side in all

Figure A1. Intersubject correlation between the best-fitting drift rate of
the controlled process μc and M1 ramping slopes of activation and
inhibition EEG components for pure correct (left panel) and all correct
(right panel) trials. See text for details

Figure B1. Grand-average SL time courses at standard sites C3, CP3, P3 and PO7 in the six experimental conditions for stimuli presented on the
right side. Signals are time-locked to the onset of the stimulus and baseline-corrected −100 to 0 msec before the stimulus-locking event.
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correct trials. Signals are time-locked to the onset of the
stimulus and baseline-corrected −100 to 0 msec before
the stimulus-locking event. The peak latency of the
MN150 (indicated by the red dotted line) systematically
precedes that of the lateralized sensory-related negativ-
ity at electrodes PO7/PO8 (all ps < .05). Moreover, SL
topographic maps at MN150 peak latency shown in
Figure B3 clearly show a gap between motor (C3/C4)
and sensory (PO7/PO8) activities. The different time

courses and topographies of these activities demon-
strate they are not generated by the same underlying
dipole.
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Notes

1. The LRP is computed by subtracting electrical activities re-
corded over M1 ipsilateral from those over M1 contralateral to
the responding hand.
2. Although the CIE LCH is considered a device-independent
color space, it needs a white point reference. We chose the
standard and widely used CIE D65 illuminant.
3. The DMC was also fit to behavioral data aggregated across
participants (data not shown for the sake of brevity). Parameter
estimates were very close to the averages of parameter esti-
mates obtained by fitting the model to individual data.
4. Ulrich and colleagues used a beta distribution to model
across-trial variability in starting point. We used a uniform dis-
tribution, as commonly done for the standard drift diffusion
model (e.g., Ratcliff & McKoon, 2008). Ratcliff (2013) showed
that the model is robust to changes in the across-trial distribu-
tions of parameter values.

Figure B2. Grand-average SL time courses at standard sites C4, CP4, P4 and PO8 in the six experimental conditions for stimuli presented on the
left side. Signals are time-locked to the onset of the stimulus and baseline-corrected −100 to 0 msec before the stimulus-locking event.

Figure B3. SL topographic maps at 150 msec after the stimulus-locking
event in the 15% chroma condition. Maps are plotted as a function of
stimulus-response compatibility and stimulus side.
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5. Hereafter we will use the term surface Laplacian (SL) in-
stead of CSD.
6. Notice the outlier contralateral activation signal in the com-
patible/15% chroma condition of the 25–50% RT bin, steeper
than other chroma levels. This outlier is likely responsible for
the high ramping slope observed in this condition on average
(Figure 3A).
7. Partial error latencies were also significantly longer in
compatible compared with incompatible trials, F(2, 26) =
22.4, p = .0004.
8. Decision termination bounds cannot directly correspond
to a mechanical button press: some residual motor latencies
are necessary to account for, for example, the corticomuscular
delay. Consequently, our model extension assumes that both
decision-related and non-decision-related motor components
contribute to EMG activity.
9. Notice that observed and predicted partial error latencies
cannot be directly compared: one would need knowledge of
the duration of sensory encoding time Te that affects the partial
error latencies generated by the decision accumulator. Although
we previously developed a methodology to estimate Te (Servant
et al., 2015), we will focus on the effects of experimental factors
on partial error latencies generated by the accumulator for the
sake of brevity. Comparing the observed and predicted cor-
rection times circumvents this problem, as they are calculated
as the difference between two EMG onsets after sensory encod-
ing has occurred.
10. The extended DMC slightly underestimates partial error
rates in the compatible condition. Some partial EMG bursts
might reflect motor noise, hence contaminating the results.
These spurious bursts, however, should be evenly distributed
across conditions and should not modulate the effects of our
experimental variables (Hasbroucq et al., 1999, 2009).
11. The test remained nonsignificant when the data were
collapsed across conditions to increase power, t(13) = 1.2,
p = .24).
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