
HAL Id: hal-01407399
https://amu.hal.science/hal-01407399

Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extreme multifunctional proteins identified from a
human protein interaction network.

Charles E Chapple, Benoît Robisson, Lionel Spinelli, Celine Guien, Becker
Emmanuelle, Christine Brun

To cite this version:
Charles E Chapple, Benoît Robisson, Lionel Spinelli, Celine Guien, Becker Emmanuelle, et al.. Ex-
treme multifunctional proteins identified from a human protein interaction network.. Nature Com-
munications, 2015, 6 (1), pp.7412. �10.1038/ncomms8412�. �hal-01407399�

https://amu.hal.science/hal-01407399
https://hal.archives-ouvertes.fr


ARTICLE

Received 21 Jul 2014 | Accepted 6 May 2015 | Published 9 Jun 2015

Extreme multifunctional proteins identified
from a human protein interaction network
Charles E. Chapple1,2, Benoit Robisson1,2, Lionel Spinelli1,2,3,4,5, Céline Guien1,2,w, Emmanuelle Becker1,2,w
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Moonlighting proteins are a subclass of multifunctional proteins whose functions are

unrelated. Although they may play important roles in cells, there has been no large-scale

method to identify them, nor any effort to characterize them as a group. Here, we propose the

first method for the identification of ‘extreme multifunctional’ proteins from an interactome

as a first step to characterize moonlighting proteins. By combining network topological

information with protein annotations, we identify 430 extreme multifunctional proteins

(3% of the human interactome). We show that the candidates form a distinct sub-group

of proteins, characterized by specific features, which form a signature of extreme multi-

functionality. Overall, extreme multifunctional proteins are enriched in linear motifs and less

intrinsically disordered than network hubs. We also provide MoonDB, a database containing

information on all the candidates identified in the analysis and a set of manually curated

human moonlighting proteins.
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H
ow common are multifunctional proteins? Is protein
multifunctionality the exception or the rule? Is there
a scale of multifunctionality? These questions are

particularly relevant in the context of the C-value paradox, the
fact that genome size does not correlate with organismal
complexity1. Protein multifunctionality may be one of the ways
a cell makes more with less.

Like gene/protein function2, gene/protein multifunctionality
can be defined at each of the different organizational levels,
ranging from molecular to organismal. At the molecular level,
the catalytic promiscuity of a single domain, that is, its ability
to catalyse both a primary substrate-specific function and a
different, secondary reaction, can account for multifunctionality.
So does the presence of multiple different catalytic domains
within the same protein3. At the cellular level, multifunctionality
corresponds to gene products involved in multiple biological
processes (BPs), often revealing regulatory roles. Finally, at the
organismal level, pleiotropy is detected when changes in a single
locus lead to multiple phenotypic effects.

Although protein multifunctionality is widely recognized and
certain multifunctional proteins have been extensively studied
(for example, TP53), multifunctional proteins as a group have not
received much attention in the literature. As a result, multi-
functional proteins suffer from a lack of characterization, unclear
definitions and have only been studied individually, on a case by
case basis. This may be partly due to the lingering effects of the
one gene, one enzyme and by extension, one function hypoth-
esis4. As proteins tend to be studied in terms of their known
function, alternate functions—often serendipitously discovered—
are arbitrarily relegated to secondary status.

The past few years have seen a growing interest in moonlighting
proteins (MPs), a special sub-class of multifunctional proteins3,5.
They are defined as ‘special multifunctional proteins, because they
perform multiple autonomous, often unrelated, functions without
partitioning these functions into different protein domains’6. The
human aconitase is an oft-cited example: an enzyme of the
tricarboxylic acid cycle that turns into a translational regulator
when the iron concentration changes7; as is hyaluronan-mediated
motility receptor (HMMR), a nuclear microtubule-associated
protein that, in certain cancers, is exported to the extracellular
matrix where it binds CD44, ultimately promoting metastasis
(reviewed in refs 8,9).

MPs may play important roles in normal or pathological
contexts and their study could improve our understanding of
complex genotype–phenotype relationships. However, owing to
the serendipitous nature of their discovery, the number of
proteins explicitly described as MPs is still very low, impairing
our ability to define common characteristics on which a
systematic search can be based. Consequently, there has been
no large-scale attempt to identify them. In addition, although
sequence analysis tools and computational domain predictions
are very useful in establishing a protein’s molecular functions,
they rarely predict the cellular or physiological functions, and are
therefore ill-suited for the identification of MPs. Furthermore,
multifunctionality often blurs the possible functional inferences
made from sequence similarity searches10 and current algorithms
rarely identify additional functions with a high confidence
score11, hindering conclusive predictions. Finally, that known
MPs can switch between functions upon change of (i) subcellular
localization, (ii) physicochemical environment, (iii) oligomeric
state, (iv) interacting partners or a combination thereof12 means
that predicting alternate functions should go beyond sequence
analysis.

Protein–protein interaction (PPI) networks (interactomes)
highlight the modularity of cellular processes and allow decipher-
ing protein functions at the cellular level. PPI networks represent

the set of all detected interactions between each of their
constituent proteins in a time and cell-type independent manner.
All possible interactions of a given protein are thus shown
simultaneously in the same network, therefore enabling the
identification of proteins involved in different processes in
different contexts, a prerequisite for the study of MPs. Indeed,
MPs are expected to specifically interact with different sets of
protein partners, either simultaneously or not, depending on the
function performed.

We therefore reasoned that, as a first step towards the large-
scale identification of MPs, PPI networks can be used to identify
proteins whose multiple functions are very dissimilar to one
another. Although these ‘extreme multifunctional proteins’
(EMFs) will not all adhere to the strict definition of MPs,
detecting this form of multifunctionality is interesting in itself
and, in addition, we can expect ‘classical’ MPs to be a subset of
EMFs.

By associating network topological information with existing
protein annotations, we have identified 430 such EMFs in the
human interactome. We show that they form a distinct sub-group
of proteins in the human network, characterized by specific
features, which set them apart from other multifunctional
proteins and which, when combined, form a signature of extreme
multifunctionality. We also present MoonDB, a database
containing diverse information on our set of 39 manually curated
human ‘known MPs’ and on all the candidates identified in this
analysis. Finally, we discuss the relationship between extreme
multifunctionality and moonlighting in light of our results.

Results
Principle of inference for EMFs. Multifunctional proteins are
expected to perform their different functions through different
interaction partners. We therefore need to identify proteins at the
intersection of sets of functionally related proteins. First, over-
lapping protein sets were identified in the human interactome
using overlapping cluster generator (OCG)13, an algorithm that
covers a network with a system of overlapping clusters. These
clusters are formed by highly interconnected proteins, which tend
to be involved in the same cellular processes and may include
protein complexes. We chose OCG because, as we have previously
demonstrated13, it is particularly well suited for the detection of
multifunctional proteins and it fares better than other algorithms
on sparse graphs such as PPI networks. Second, the cellular
process(es) in which the clusters are involved were identified based
on the BP Gene Ontology (GO)14 annotations of their constituent
proteins: GO terms annotating at least 50% of a cluster’s proteins
are assigned to the cluster, which can now be called a ‘functional
module’. Each individual protein then inherits the annotations of
its module(s) in addition to its own. This annotation procedure
favours the detection of functionally homogeneous clusters—
likelier to represent functional modules—and maximize the
number of clusters successfully annotated. Finally, to distinguish
extreme from ‘classical’ multifunctional proteins, proteins found at
the intersection of functional modules annotated to dissimilar
functions were identified.

Function (dis)similarity is given by two metrics of GO term
association (made available in the PrOnto database; see Methods
and (http://tagc.univ-mrs.fr/pronto)) based on the frequency of
co-occurrence of a GO term pair either in a protein’s or in a pair
of interacting partner’s annotations. Using these metrics ensures
that the multiple functions in which the candidate protein is
found to be involved are very rarely performed (i) by a single
protein and (ii) by interacting proteins, two proxies that we
consider indicators of unrelated functions. Our pipeline
(MoonGO) is explained in more detail in the Methods section
and is summarized in Fig. 1.
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A set of 430 EMF candidates. We have applied our pipeline to a
large, high-quality human interactome (74,388 interactions
between 12,865 nodes, Supplementary Data 1) built by extracting
data from online databases (see Methods). The 855 overlapping
clusters returned by OCG contained 33.4 proteins on average. Of
these, one or several BPs were assigned to 633 (74%), based on the
annotation of their constituent proteins (Supplementary Data 2).
All network proteins belonged to at least one annotated cluster.
As expected from a previous analysis, around a third of the
interactome (3,846 proteins, 29%) belonged to several clusters
and can therefore be considered multifunctional13. Of these, 430
proteins (10%) are found at the intersection of clusters annotated
to dissimilar functions and are considered EMF candidates
(Supplementary Data 3).

As candidates are defined with respect to their module’s
annotations, their identification is dependent on the quality of
these annotations. Said quality was assessed by performing three
types of randomization tests. First, the annotations of all proteins
were shuffled, and candidates were identified using these
randomized annotations. Over 100 trials, on average only
104.78 of 855 clusters were annotated compared with 633 for
the real data, demonstrating that such high number of
functionally homogeneous clusters cannot be found by chance.
Consequently, the number of identified candidates markedly
decreased in these conditions (7.55 versus 430 for the real data).
Second, the network topology was randomized by drawing
random edges between the nodes. As expected, since this
destroys the modular structure of the network, virtually no
candidates were found. The process was repeated ten times and
only 0.4 candidates were identified on average, clearly showing
that our results cannot be found in a random network. Third, the
topology was randomized while keeping the same degree
distribution. In other words, the number of nodes with a given
degree was the same but which node had which degree
was randomized. The process was repeated ten times and our
pipeline was applied to these randomized networks. As expected,
we found almost no results: only 26.8 EMF candidates were
identified on average.

Candidate identification also depends on the annotation
probabilities establishing the functional dissimilarity of modules.
We therefore recalculated the number of candidates when
reshuffling the probabilities of association between GO term pairs.
An average of 1.03 candidates were identified over 100 runs, once
more indicating that our results cannot be obtained by chance.

The validity of the functional module approach was verified by
demonstrating that the GO terms that led to the candidates’
discovery are not among their existing annotations but were
brought in by the annotation inheritance process depending on
their module membership. Indeed, only 71 candidates (17%) were
already annotated to both terms used to identify them, 209 (51%)
were annotated to one term and inherited the other from their
modules’ annotations, whereas 128 (31%) were not annotated to
either term, therefore inheriting both terms from their modules.
This further confirmed the power of interaction network analyses
for function prediction.

Finally, the quality of the inferred annotations was assessed
using a leave-one-out approach. For each of the clusters
identified, we removed one of its proteins’ annotations, annotate
the cluster and infer the cluster’s annotations to the protein.
Doing so, we assign at least one of the known annotations
correctly in 62.6% of cases, indicating that our approach is
capable of rescuing known protein annotations, therefore
suggesting that the novel annotations we infer are trustworthy.

As MPs are a subset of EMFs, we compiled a list of 39 known
human MPs from the literature and checked whether they were
found as candidates. Six of the thirty-nine belonged to dissimilar
modules and were found. Although finding 6 out of 39 when
identifying 430 candidates out of 12,865 represents an enrichment
of 4.6-fold compared with expected, with a significant P-value
(1.4e� 3, hypergeometric), 6 of the remaining 33 could not be
found by MoonGO since they belonged to clusters that could not
be annotated. We cannot thus exclude that the remaining 27
proteins were missed because of ill-annotated clusters or because
all their interactions have not been discovered yet. Overall, these
different assessments confirmed the specificity of our approach
and consolidated our confidence in the identified candidates.

The candidates were found linking 141 different pairwise
function combinations between 55 different GO terms. These
annotation pairs are functionally dissimilar by both annotation
and interaction probabilities (Supplementary Data 4). Most of the
candidates (490%) were found annotated to dissimilar functions
involving on the one hand nucleic acid-linked metabolic
processes and on the other (i) signalling activity, (ii) localization
or (iii) transport (see Table 1 and Supplementary Data 4).

Candidate characterization. To investigate whether EMF
candidates (Cands) form a distinct group of proteins with respect
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Figure 1 | MoonGO: the EMF identification pipeline. Overlapping clusters

are extracted from a PPI network using OCG. Clusters are annotated

according to the GO annotations of their constituent proteins. Potential

EMFs are then identified at the intersection of clusters involved in unrelated

biological processes according to PrOnto GO term association probabilities.

Table 1 | Dissimilar biological processes.

% Dissimilar biological processes

53.5 Nitrogen or nucleic acid metabolism Signalling
7.3 Nucleic acid metabolism Localization
6.8 Macromolecular metabolic process Transport
5.9 RNA metabolic process Signalling
4.7 Nucleic acid metabolism Transport
4.5 Gene expression Transport
3.6 Macromolecular metabolic process Localization
2.9 Nucleic acid metabolism Physiological processes
2.7 Nucleic acid metabolism Phosphorus metabolism
1.2 Nucleic acid metabolism Development

Top 10 dissimilar function pairs by the percentage of candidates identified.
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to the other proteins of the network, the candidates were analysed
to identify common trends and features that characterize them
(Table 2). For each characteristic studied, they were compared

with several categories: (i) the entire network’s proteins,
(ii) proteins that belong to multiple clusters but are not
candidates as those clusters are not annotated to significantly
different GO terms (Multi-non-candidate (NC)), (iii) all multi-
clustered proteins (Multi), (iv) proteins belonging to a single
cluster (Mono), (v) all NC proteins and (vi) network hubs,
defined here as those nodes whose degree is at least twice the
network average (Z25). Note that these categories are not all
mutually exclusive. Since the candidates are defined as those
proteins found at the intersection of modules annotated to
dissimilar terms, they are all, by definition, multiclustered.
Therefore, to identify characteristics common to EMFs that
distinguish them from other multifunctional proteins, features
shared by candidates but not by the Multi-NCs need to be found.

Candidate network topological features. Candidates have a
significantly higher degree than the Multi-NCs. On average,
they interact with 74.6 proteins compared with 21.9 for the Multi-
NCs (Wilcoxon test P-value¼ 1.27e-96; Fig. 2a). They conse-
quently belong to more network clusters (mean Cands (15.2)
versus Multi-NCs (3.8), Wilcoxon test P-value¼ 1.15e-150;
Supplementary Fig. 1) and are significantly more central to the
network than Multi-NCs (mean Cands (235,005.6) versus Multi-
NCs (46,177.2), Wilcoxon test P-value¼ 1.44e-112) as shown by
their betweeness scores (Supplementary Fig. 2), a measure of how
central a given node is in the network, calculated by quantifying
the number of times a node acts as a bridge along the shortest

Table 2 | Candidate features.

Candidates compared with: Multi-NC Hubs Network

Annotations (BP) * * *
Betweeness * * *
Clusters * * *
Conservation * *
Degree * * *
Disorder +
ELMs * *
Domains * *
Expression * *
Isoforms *
Length *
OMIM * * *
Kinases *
Shortest Paths + * +

BP, Biological Process; ELM, eukaryotic linear motif; OMIM, online mendelian inheritance in man;
NC, non-candidate.
Comparison of the mean values of different features of candidate proteins as compared with
Multi-NC, hubs and the network as a whole. + Indicate that candidates had significantly lower
mean values than the compared group and * significantly lower. Cells are left blank when there
was no significant difference in means. The Wilcoxon test with a significance threshold of
r0.05 was used to determine significance. ‘Kinases’ refers to the number of different kinases
predicted to phosphorylate the protein. For details, see Methods.
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Figure 2 | Protein features. (a) Protein degree. (b) Protein isoforms. (c) The number of Pfam domains (including PfamB) predicted on each protein.

(d) Protein disorder as calculated by disopred. The numbers shown are the percentage of a protein’s residues that are disordered. Outliers are not shown.

Red dots indicate mean values and the camel dots between Candidates and Hubs are the values of the known moonlighting proteins.
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path between two other nodes. Not surprisingly, candidates are
also more connected to each other according to a shortest path
analysis than the Multi-NCs (Supplementary Fig. 3).

Note that although candidates tend to be more connected than
hubs (mean Cands (74.6) versus Hubs (55.5)) not all candidates
have a high degree (see Fig. 2a) and only 20% of network hubs
were found as candidates, demonstrating that a high degree is
neither necessary nor sufficient for consideration as a candidate.

Candidate sequence and structural features. Protein interaction
and functional annotation databases tend to refer to genes rather
than gene products and do not differentiate between different
protein isoforms15. It is therefore possible that the multiple
functions of our candidates are actually carried out by different
isoforms of the same gene. However, candidates do not have
significantly more isoforms than the Multi-NCs (mean Cands
(2.2) versus Multi-NCs (2.1), Wilcoxon test P-value¼ 0.2;
Fig. 2b), suggesting that the number of isoforms is not a
defining characteristic. As expected for highly multifunctional
proteins, candidates have more domains than the Multi-NCs
(mean Candidates (3.2) versus Multi-NCs (3.0), Wilcoxon test
P-value¼ 0.0001, Fig. 2c). They are not, however, significantly
longer (mean Cands (664.7) versus Multi-NCs (614.4), Wilcoxon
test P-value¼ 0.09, Supplementary Fig. 4).

The candidates were also, like the hubs, more conserved than
the Multi-NCs (mean Cands (43.7) versus Multi-NCs (42.6),
Wilcoxon test P-value¼ 0.007; see Methods and Supplementary
Fig. 5).

As structural disorder can allow conformational changes, we
used DISOPRED16 to predict disordered residues and analysed
both the percentage of disordered residues per protein (Fig. 2d)
and the number of stretches of consecutive disordered residues of
different lengths (Supplementary Fig. 6). Interestingly, although
candidates are not distinguishable from either Multi-NCs or
the network average, they are significantly less disordered than
hubs (mean Cands (37.3) versus Hubs (40.5), Wilcoxon test
P-value¼ 0.028, see Fig. 2d). This trend was confirmed by the
results of ten other disorder predictors whose results
were retrieved from the D2P2 database17 (see Supplementary
Figs. 7–16). These results suggest that, despite their high average
degree, EMFs, unlike regular hubs, are under stronger selective
pressure to maintain a stable secondary structure.

Eukaryotic linear motifs (ELMs) are short stretches of amino
acids often located within intrinsically disordered regions, which
have been shown to help the targeting of proteins to specific
subcellular localizations, determining the modification state of
proteins, or regulating protein activity in a context-dependent
manner18. We checked their numbers in proteins of each group,
particularly in their disordered regions. Interestingly, candidates
are enriched in ELMs per residue compared with the Multi-NCs
(mean Cands (0.0051) versus Multi-NCs (0.0035), Wilcoxon test
P-value¼ 3e-4, Fig. 3), a trend which is more pronounced when
considering only ELMS that fall within disordered regions
(mean Cands (0.009) versus Multi-NCs (0.006), Wilcoxon test
P-value¼ 8e-4, Supplementary Fig. 17). Notably, ELMs are more
enriched among disordered residues in candidates (1.8-fold, mean
per disordered residue (0.009) versus per residue overall (0.005),
Wilcoxon test P-value¼ 0.03) than in Multi-NCs (1.5-fold, mean
per disordered residue (0.006) versus per residue overall (0.004),
Wilcoxon test P-value¼ 0.29). These results indicate that
candidates contain more ELMs, particularly in disordered
regions. With respect to hubs, the same trend was observed,
although not statistically significant. It therefore appears that
candidates differ from hubs in their disorder content and from
Multi-NCs in the number of linear motifs per residue.

Finally, the different groups were also checked for the presence
of proteins identified as containing ELMs involved in functional
switches, the status of which ultimately affects the function
of the ELM-containing protein (collected in the switchELM
database19). Candidates show a 6.2-fold enrichment in such
proteins (hypergeometric P-value¼ 1.2e-27), compared with a
1.8-fold among Multi-NCs (P-value¼ 2.44e-14), 4.68-fold for
hubs (P-value¼ 1.07e-62) and a depletion in Mono (2.7-fold less,
P-value¼ 2e-49). When different types of functional switches are
considered, the candidates are enriched in proteins containing
binary switch motifs (with an ON/OFF state) modulated by
allosteric effects (1.6-fold, P-value¼ 4.85e-2), compared with
Multi-NCs and hubs, which show no enrichment. As numbers are
low (27 such proteins in the interactome, 9 of which are EMF
candidates, P-value¼ 4.85e-2), we cannot reasonably extrapolate
this observation to the complete EMF data set. However, this
particular finding combined with the higher occurrence of ELMs
in the candidates reinforces their functional significance as
extreme multifunctional and potential MPs.

Candidate annotations and expression. The candidates have
significantly more BP annotations (mean¼ 16.8, Supplementary
Fig. 18) than both hubs (mean¼ 13.0, Wilcoxon test
P-value¼ 0.00014) and Multi-NCs (mean¼ 9.3, Wilcoxon test
P-value¼ 1.56e-21), as expected for proteins involved in multiple
functions. This is not introducing a bias in the analysis as only
17% of the candidates were already annotated to the dissimilar
GO pairs used to identify them as candidates (see ‘A set of 430
EMF candidates’). Finally, the candidates are more ubiquitously
expressed at the mRNA level (mean¼ 24.8 tissues,
Supplementary Fig. 19) than Multi-NCs (mean¼ 19.8 tissues,
Wilcoxon test P-value¼ 5.53e-05), raising the possibility that
their different functions could be performed in different tissues.

Candidate involvement in disease. Multifunctional proteins in
general and EMFs in particular are expected to be involved in
disease since impairing their function can affect multiple cellular
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processes. We therefore used online mendelian inheritance in
man (OMIM)20 annotations to test our candidate’s involvement
in human diseases and found a total of 113 out of 430 candidates
associated with 229 different diseases.

There was a 7.6-fold overrepresentation of disease-associated
proteins among candidates (hypergeometric P-value¼ 2.1e-07),
but only a 6.2-fold and 5.8-fold in all Multis (hypergeometric
P-value¼ 9.3e-19) and hubs (hypergeometric P-value¼ 0.0003),
respectively. As proteins that are involved in multiple processes
are more likely to cause disease when perturbed, these results
support our claim that multi-clustered proteins are likely multi-
functional and reinforce the differences between candidates and
hubs.

We also used the list of 435 cancer genes from ref. 21 to check
for overrepresentation of cancer-associated genes among
candidates. Once more, we found that those are clearly
overrepresented (3.8-fold, hypergeometric P-value¼ 6.8e-2)
among the candidates, whereas their overrepresentation among
all Multis (twofold, hypergeometric P-value¼ 2.7e-38) and hubs
(threefold, hypergeometric P-value¼ 2.8e-43) is less important.
This suggests that although all multi-clustered protein groups are
enriched in cancer genes, candidates are once more different from
other multi-clustered proteins and hubs.

A signature of EMFs. The signature was built by combining all
tested features that displayed a significant statistical difference
between the candidates and the Multi-NCs on the one hand and
the hubs on the other.

Our analyses therefore describe a first set of characteristics
(summarized in Fig. 4) of EMFs that differentiates them from
other multi-functional proteins. They tend to have more
interactors, to belong to more clusters, to be more central and
more connected to each other in the network; they also have more
annotations, more domains are more conserved and contain
more linear motifs. They have a greater tendency to be involved
in disease and tend to be expressed more ubiquitously.

Another set of characteristics was defined with respect to hubs.
Candidates tend to have more interactors, to be more central to
the network although less connected to each other and to belong
to a greater number of network clusters. They are more likely to
be involved in disease and have more BP annotations. Very
interestingly, they tend to be less disordered than hubs, with the
same average disorder as the network.

To ensure that these signatures are not influenced by highly
studied proteins (such proteins often have an artificially high
degree in PPI networks because their interactions have been
exhaustively characterized), we repeated the analysis on a smaller
human PPI network built exclusively from large-scale yeast two-
hybrid data (CCSB network22). Despite the much smaller size of
this network (15,617 interactions between 4,494 proteins), we
could still observe the same global trends in the 43 candidates
found by our pipeline for most of the features of the signatures
(Supplementary Figs 20–31). Although the low number of
candidates kept most of these observations below the
significance threshold, it is interesting to note that the 43
candidates were still significantly less disordered than the hubs
(mean Cands (36.0) versus hubs (47.5), Wilcoxon test
P-value¼ 0.01). As these results were obtained in a bias-free
network, they reinforce the robustness of our findings on the
large interactome.

Example candidates. Although a discussion of each of our can-
didates is clearly beyond the scope of a single paper, we highlight
a few particularly interesting cases here. Note that the cluster’s
Cellular Component (CC) annotations shown below are only
indicative and were not used in the prediction of candidates.

Receptor tyrosine-protein kinase erbB-2 (ERBB2) is a member
of the epidermal growth factor receptor family and an essential
component of the neuregulin-receptor complex, which regulates
outgrowth and stabilization of peripheral microtubules23. Besides
its signalling role, ERBB2 is also a transcription factor involved in
the transcription of rRNA genes by RNA Pol I (ref. 24). We find
ERBB2 at the intersection of two clusters, one annotated to
‘cellular nitrogen compound metabolic process’ (BP,
GO:0034641), a parent term of ‘transcription, DNA-templated’,
and to ‘cytosol’ and ‘nucleus’ (CC), the other annotated to ‘signal
transduction’ (BP, GO:0007165) and ‘plasma membrane’ (CC).
Our method, therefore, correctly identified ERRB2 as an EMF and
assigned it to its different and unrelated real functions.

Protein RPP40, a component of the nuclear ribonuclease P,
known to cleave the 5’ end of tRNA molecules during their
processing, was found at the intersection of a cluster annotated to
‘cellular nitrogen compound metabolic process’ (BP,
GO:0034641)—a parent term of its bona fide annotation ‘tRNA
processing’—and ‘nucleus’ (CC), and another annotated to ‘signal
transduction’ (BP, GO:0007165) and ‘plasma membrane’, and
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‘cytosol’ (CC), suggesting a possible signaling role for this nuclear
protein. Interestingly, the mitochondrial counterpart of RNase P
assumes the same function, although formed by three proteins
not related at the sequence level to the nuclear form. It has been
proposed that this mtRNase P complex ‘was not built simply from
components of a preexisting nucleolytic pathway but by
combining components from different, essentially unrelated
biochemical pathways’25, which would strongly suggest possible
moonlighting functions for the proteins dedicated to this cellular
process.

WBP4 is a spliceosome-associated protein, which promotes
pre-mRNA splicing. It is found at the intersection of a cluster
annotated to ‘RNA splicing, via transesterification reactions with
bulged adenosine as nucleophile’ (BP, GO:0000377) and ‘nucleo-
plasm’ (CC), which would correspond to its known function, and
another annotated to ‘response to endogenous stimulus’ (BP,
GO:0009719) and ‘cytosol’,‘nucleoplasm part’ and ‘intracellular
non-membrane-bounded organelle’ (CC), suggesting a novel role
for this protein. Although no involvement in a signalling pathway
has been shown to date, the protein contains two WW domains
able to interact with proline- or phosphoserine-phosphothreo-
nine-containing motifs and known to mediate regulatory
interactions in various signalling pathways such as Hippo26.

MoonDB. We have collected our results in MoonDB, a database
that includes the 39 human MPs used here as well as the full list
of EMF candidates. For all proteins, MoonDB provides easy
access to diverse information (sequence, domain organization,
functional annotations, involvement in disease and so on). In
addition, for the candidates identified here, information about the
functional modules from the graph and the functional dissim-
ilarity of the GO pairs, which allowed their identification, are
provided. MoonDB is available at http://tagc.univ-mrs.fr/
MoonDB.

Discussion
What are MPs except proteins whose different functions have
been serendipitously discovered and whose current definition has
been molded to fit them? Do MPs really form a protein class unto
themselves, with their own as yet undiscovered characteristics?
Are they proteins that play truly different roles in the cell, or do
we consider these roles different because we have not discovered
their functional links yet?

In this context, we have chosen to avoid the term moonlighting
here, largely because the current definition is too stringent.
According to the primary definition5, a multifunctional protein
must not partition its functions into different domains to be
considered moonlighting. However, it is very likely that when no
second domain is identified in silico, it is simply because the
domain in question is either unknown or below detection
thresholds. To establish that a protein’s two functions are
performed by the same domain would therefore require
experimental analyses. Human protein XRRC5, for example,
was known to be involved in DNA repair yet was found to
interact with metalloproteinases of the extracellular matrix27. It
was only after this discovery that the protein was shown to
contain a vWF domain whose sequence had diverged to the point
that it was below the detection thresholds. We have, therefore,
coined the term EMFs to describe proteins whose multiple
functions are very different to one another. We feel that such
proteins are of interest irrespective of whether they split their
functions across multiple domains or whether their functions are
independent. In addition, some multifunctional proteins are not
considered moonlighting simply because their alternate functions
are very well known. TP53, for example, fits the definition of MPs

yet has never been considered as one. This is just one of many
such ‘sunlighting’ proteins, which, were they to be discovered
today, would be classed as moonlighting. EMFs include both
classes of protein.

We have previously shown that using algorithms like OCG that
is able to cluster proteins into multiple graph modules allows the
identification of multifunctional proteins13. These modules
correspond to the functional units of the network, are
composed of groups of highly connected proteins involved in
the same cellular function28 and permit function prediction when
containing uncharacterized proteins29,30. In the present work, we
have used the functional module approach to identify those
multifunctional proteins that exhibit extreme multifunctionality.
This was made possible by the tailored development of the
MoonGO pipeline, which uses an original function dissimilarity
measurement, the PrOnto probabilities. The latter are based on
the frequency of co-occurrence of GO term pairs in protein
annotations or among the annotations of interacting protein pairs
and are specific to the species being studied. These probabilities
reflect biases towards infrequent association implying functional
dissimilarity or, conversely, frequent association indicating
functional similarity. Finally, although there have long been
calls for PPI network analyses for the identification of highly
multifunctional and MPs31, such an extensive and global
approach has never been undertaken. We show here that EMF
candidates can be identified without a priori by the combination
of interaction data analysis and the processing of current
knowledge on protein function such as GO annotations.

Our method identified 3.3% of the human interactome (430 of
12,865 proteins) as candidate EMFs. Although an estimation of
the expected proportion of EMFs is rather difficult, it is of note
that our candidates from the bias-free CCSB network represent a
similar proportion (1%), another argument confirming the
significance of our results.

We have used the different characteristics shared by this group
of proteins to define a signature of extreme multifunctionality,
which distinguishes them from other network proteins. Impor-
tantly, this signature is reinforced by the fact that the same trends
were observable in the candidates identified in the much smaller
CCSB network, which is free of the biases associated with highly
studied proteins.

Although EMFs are in many ways similar to hubs (degree of at
least twice the network average, Z25) and have many of the same
characteristics, not all EMFs are hubs. It is particularly interesting
that EMFs tend to be less disordered than hubs given that
intrinsic protein disorder can enable proteins to adopt different
conformations that can assist EMFs in their multiple functions
(as already suggested for MPs32). Furthermore, although intrinsic
disorder has been shown to be important for hub’s multiple
interactions (for example, see refs 33,34), candidates are
significantly less disordered than hubs (see Fig. 2d) despite 361
of them (88%) being hubs. Disorder therefore appears to be
important only for a specific subset of hubs, those which are not
EMFs. That EMFs are just as disordered as the network average
extends the observation made by Hernandez et al.35 on a small
number of known MPs to the broader class of EMFs.

So, what makes EMFs special compared with other multi-
functional proteins? In terms of network topology, a typical EMF
is likely to have a higher degree, to belong to more network
modules and to be more central to the network. It is more likely
to be involved in multiple diseases and to be expressed
more ubiquitously, suggesting that it can perform different
functions in different tissues. It will also have more domains, be
more conserved than a classical multifunctional protein, and
contain more short linear motifs (ELMs). These ELMs are short
conserved sequences mostly located in disordered regions.
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They form low-affinity interaction interfaces, are involved in
transient interactions and, importantly, mediate molecular
decision-making in cell regulation19,36,37. That ELMs (i) can
bind competitively or sequentially to different interaction
partners in a context-dependant manner, (ii) provide a large
panoply of conditional regulatory types through interactions19

and (iii) are more numerous in EMFs, provides a possible
molecular explanation of the functional versatility of these
proteins. This clearly calls for further studies.

Overall, the signatures we defined clearly show that EMFs form
a distinct subgroup of multifunctional proteins exhibiting
characteristics that distinguish them from hubs, classical multi-
functional proteins and the network in general and can pave the
way towards a better understanding of protein moonlighting.

Methods
Networks. Interaction data were retrieved using the PSIQUIC38 interfaces of the
APID39, BioGrid40, IntAct41, DIP42, MINT43, MatrixDB44, Reactome45,
InnateDB46, MolCon, Spike47 and TopFind48 databases. They were filtered
according to their identification methods and only binary interactions between
proteins were kept. Protein names were mapped to UniProt IDs, and sequences
clustered using CD-HIT49. TrEMBL/SwissProt protein pairs sharing Z95%
similarity were considered to be the same protein: interactions of the TrEMBL
protein were then inherited by the Swiss-Prot protein. Self interactions were
discarded. The final result was high-quality interactomes consisting entirely of
experimentally verified, direct, binary interaction pairs.

The CCSB network was downloaded from the CCSB Human Interactome
database22.

Cluster Identification and annotation. Clusters were generated using OCG13 and
default options. The clusters were annotated according to the BP GO annotations
of its constituent proteins. A cluster will be annotated to a GO term iff Z50% of
annotated proteins in that cluster share that GO term and all member proteins will
inherit the annotation(s) of the cluster. Both direct GO annotations and all parent
terms are taken into account. Note that those clusters that can only be annotated to
the root of the ontology (that being the only term shared by Z50% of their
constituent proteins) are given the annotation ‘BP unknown’. Because the quality
of computationally inferred GO annotations has now been shown to rival that of
curated non-experimental annotations50, we use all BP GO annotations in this
study, irrespective of their evidence codes.

Function association probabilities. We have developed two measures of GO term
functional similarity, one (the annotation probabilities) measures whether two GO
terms are found annotating the same protein more often than expected by chance.
The second (interaction probabilities) measures whether there are more interac-
tions between proteins annotated to GO term X and proteins annotated to GO
term Y than would be expected by chance.

For both metrics, we have calculated the probability of association between two
GO terms GO1 and GO2 using the hypergeometric distribution H (N, K, n, k),
where, for the annotation probabilities, N is the number of proteins with at least
two different direct annotations, K is the number of proteins directly annotated to
GO1, n is the number of proteins annotated to GO2 and k is the number of proteins
annotated to both terms.

For the interaction probabilities, N is the number of interactions in our network
between proteins with at least two different annotations, K is the number of
interactions involving proteins annotated to GO1, n the number of interactions
involving proteins annotated to GO2 and k the the number of interactions between
a protein annotated to GO1 and one annotated to GO2. To be considered dissimilar
by our pipeline, two GO terms must have a probability of r0.05 for both metrics.

We have made these probabilities available in the PrOnto database, which is
freely available at http://tagc.univ-mrs.fr/pronto/. Note that although PrOnto offers
cross-ontology probabilities, only the BP probabilities were used in the present
work to identify candidates.

A more detailed explanation of our choice of developing PrOnto rather than
using existing semantic similarity measures and a comparision of PrOnto and
Semantic Similarity measures are provided as a Supplementary Note 1.

MoonGO. MoonGO, our EMF prediction tool, uses the annotated clusters and
PrOnto probabilities to search the network for proteins found connecting clusters
annotated to dissimilar BP GOs. It then looks for nodes that are members of both
clusters (see Fig. 1)

As the number of GO term pairs analysed is very large (106618), MoonGO will
correct for multiple testing by multiplying the P-value of association between two
terms by the number of tests performed to obtain a corrected e-value. MoonGO
uses both the annotation and the interaction probabilities to identify its candidates.

A candidate is kept if both the annotation and interaction e-values of the BP GO
term pairs associated with it are significant. For the work presented here, we have
used an e-value significance threshold of r0.05.

Analyses. The betweeness and shortest path analyses were done using the R
igraph library51. Domain predictions were made using pfam_scan.pl52, the results
shown in Fig. 2c include both PfamA and PfamB domain predictions. Protein
disorder values were obtained using disopred16 with default settings. Figure 2d was
generated by plotting the sum of disordered residues of each protein. Protein
isoform information and OMIM annotations were downloaded from UniProt and
protein annotations from the EBI’s QuickGO server (https://www.ebi.ac.uk/
QuickGO/). Expression data were taken from ref. 53. Protein phosphorylation
predictions were made using GPS 2.1 (ref. 54).

Conservation. The protein sequences of all network proteins and their annotated
homologues in yeast, mouse, fly and worm were aligned against each other using
t_coffee55. The homologous sequences were taken from EnsEMBL56. To obtain an
indicative conservation value, the bit score of the alignments was divided against
the length of the human homologue and the resulting values were compared.

ELMs. The coordinates of all annotated ELMs in our network’s protein were
obtained from the ELM database57. These were mapped to the disordered regions
predicted by DISOPRED. Only ELMs that fell entirely within or which overlapped
perfectly with a disordered region were counted. ELMs that overlapped but
extended beyond the disordered region were ignored. To avoid misrepresentations
caused by differing protein or disordered region lengths, the number of ELMs in
disordered regions was divided by the total number of disordered residues of each
protein. Similarly, the number of ELMs per protein was divided by the total
number of residues of each protein.

Known MPs and MoonDB database. The MoonDB database was written using a
combination of HTML 4.01, PHP 5.5 and Javascript, the data are stored in a
MySQL 5.5 database. We have compiled a manually curated list of bona fide
human MPs, which we have made available, along with our own predictions, at the
MoonDB database.
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