

trans-1,2-Disiloxybenzocyclobutene + O₂ & pseudopotentials for hybridized carbon atoms

Yannick Carissan

trans-1,2-Disiloxybenzocyclobutene + O₂

Secondary reaction in lactonamycinone synthesis

With benzocyclobutene same reaction at 190-240 °C.^[1]

^{[1].} W. R. Roth, T. Ebbrecht, A. Breitat Chem.Ber. 1988 121, 1357-1358

Suggested pathway

Theory : opening and color

Absorbs blue : appears yellow

Suggested pathway

9/32

Intermediate : proof of existence

Transition state of O₂ approach at 15kcal/mol.

Spin trapping : the two radical centers are characterized.

Theory : Singlet and triplet states are quasi degenerated.

Suggested pathway

ISC

CAS(8,8) + CISD along the closing of C-O.

Complete pathway

14/32

Theory

Experiment

Emission with excitation at 400nm

Experiment

Emission with excitation at 312nm

Pseudopotentials for hybridized carbon atoms

General aim

- A new model :
 - Treat explicitly electrons of interest only (π)
 - Replace part of a molecule by a simpler object
- Constraint :
 - Use any quantum chemistry package
 - Use any quantum chemistry method

J. Am. Chem. Soc. 2009, 131, 12218-12229

Atomic pseudopotentials

A non local atomic pseudopotential reads :

$$\hat{P} = a|\varphi\rangle\langle\varphi| \tag{1}$$

with
$$\varphi = R(r)Y_m^l(\theta, \phi)$$
 (2)

 \hat{P} is a shift operator on orbital φ : it modifies ϵ_{φ} . R(r) is usually a gaussian function $\exp(-\alpha r^2)$. Y_m^l defines the angular momentum influenced by the potential.

Atomic pseudopotentials : Perturbation analysis

$$\hat{F}^{(0)}\Phi_n^{(0)} = \epsilon_n^{(0)}\Phi_n^{(0)}$$
(3)

$$\hat{F} = \hat{F}^{(0)} + a|\varphi\rangle\langle\varphi| \tag{4}$$

$$\epsilon_{n} = \underbrace{\langle \Phi_{n}^{(0)} | \hat{F}^{(0)} | \Phi_{n}^{(0)} \rangle}_{\epsilon_{n}^{(0)}} + \underbrace{\langle \Phi_{n}^{(0)} | a | \varphi \rangle \langle \varphi | \Phi_{n}^{(0)} \rangle}_{\Delta \epsilon_{n}}$$
(5)
$$\Delta \epsilon_{n} = a \langle \varphi | \Phi_{n}^{(0)} \rangle^{2}$$
(6)

Two parameters to modify the original orbitals :

- 1. *a* (eigenvalue)
- 2. shape of φ (angular momentum and spatial extent)

From atomic to molecular shaped pseudpotentials

We aim at treating the π electrons *only*. For carbon atoms :

- 1 electron in 1 p_z atomic orbital;
- effective atomic charge Z=1.

Ring a bell?

Combination of CC bonds : all trans even polyenes

26/32

Fused rings

27/32

Extraction of $C_{\sigma,\pi}$:

— 1 electron in p_z and 1 electron in sp

Aix*Marseille

Bonding to an active part

Conclusion

- We could create pseudopotentials for hybridized carbon atoms
- Use any QC package and any QC method
- Spectroscopy and geometry optimization
- Extension to other atoms with π electrons
- Other kind of hybridization tricky ($\sigma \pi$ orthogonality used)

Merci

- UV analysis
 - Jalila Simaan
 - Bruno Faure
- Co-workers
 - Béatrice Tuccio
 - Laurent Commeiras
 - Jean-Luc Parrain
- iSm2

— You for your attention