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Uncertainties In CMM Measurements, Control of ISO Specifications
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Abstract

In the scope of quallty control, accurate evaluatien of measurement uncertaintles Is a real challenge to Im-
prove the use of Coordinate Measuring Machines (CMM). In our work, a8 new method, based on a statistical
approach of the problem, was therefore developed, to deduce Instantaneous measursement uncertainties di-
recily from the set of acquired coordinates. The covarlance matrix of the Intrinsic parameters which charac-
terize each anatyzed surface Is also evaluated, thus allowing an accurate propagation of the measurement
uncertainties to the ISO specifications to be controlled. The experiments carried out In our study lliustrate this

new statistical approach and demonstrate s relevance.

Keywords:

Coordinate measuring machine, Lincertainty, Statistical

1 INTRODUCTION

Coordinate measuring machines are now widely used to
quallty Industrial workpleces. Nevertheless, the actual
CMM software |s usually restricted to the determination
of mean values. This Is the case for both the character-
zation of Individual surfaces and for the determination of
geometric deviations. However, In accordance with qual-
Ity standards, the uncertalmty of each measurement
should also be specified [1]. This becemes Increasingly
Impertant In Industral routine. For simple processes, llke
calllper or micrometer measurements, the evaluation of
uncertaintles by a conventional method as recom-
mended by the GUM [2] Is stralghtforward. However, this
procedure becomes extremely tedlous or even Impossk
ble for coordinate measuramaents.

Actually, the unceriaintles of such measurements are
therefore elther deduced from repeated expensive ex-
periments or estimated through numerca simulations
[3.4]. The latter methods require however to decompose
the measurement process Into a set of elementary func-
tions and to Identify all the assoclated Independent ran-
dom variables. In addition, the Intrinsic parameters of the
anatyzed surfaces are then assumed to be Independent
one of the other, thus |leading to a wrong determination
of the error bars of the ISO specifications to be qualified.
Moreover, these methods de not accourt for uncem-
trolled events and resulting perturbatlons which may
occur during the acquisition.

Ancther way to evaluate the uncertaintles of CMM
measurements |5 to use a statistical approach of the
problem. In fact, the set of digiized coordinates forms a
statistical sampling of the true analyzed surface. It con-
tains therefore some mixed Information about the distr-
butlon of the materal around the Ideal geometric ele-
ment and about the quallty of the measurement. This
property has already been pointed out by different au-
thors [5,6,7], but has not yet been used to evaluate the
uncertaintles of CMM measurements. A new methoed
was therefore developed In our laboratery, to deduce
Instantaneous measurement uncertairtles drecly from
the set of acquired coordinates [8]. The covariance ma-
trix of the Intrinsic parameters which characterize each
analyzed surface |s alse evaluated, thus allowing an

accurate propagation of the measurement uncertaintles
to the |1SO speciications to be controlled. The expert-
ments carrled out In our study will lllustrate this new
statistical approach and will demonstrate the relevance
of the methods developed In our work.

2 PRINCIPLE OF THE METHOD

2.1 Fitting of elementary surfaces

The first step required In the treatment of coordinate
measurements |s the description of each digtlzed sur-
face by an Ideal feature. Each geometric entity Is charac-
tertzed by a set of p Intrinsic parameters a; coordinates
of the centre of the measured surface, cosines of the
normal to a plane or of the directlon vector of an axls,
radlus, angle of a cone, eic. The fitting of the acquired
data comes thus to the optimization of these parameters
8; In order to obtaln the best layout of the measured
coordinates around the Ideal feature. It |s usually based
on the minimtzation of the dstance d. betwaen N ac-
quired points M: and the assoclated geometric element.
Diferent procedures are used for that purpose llke the
classical least squares methed or the Tchebychev crite-
ron. In our study, these methods have been extended
to a statistical approach of the problem [8].

The distribution ef the measured coordinates around the
Ideal feature s characterized therefore by s probability
density function f{dy). According to the maximum likel-
hood criterlon, the best statistical estimator's 4; of the
parameters g, have to maximtze the conditional probabll-
Ity ¢ of all the realzed Independent measurements:
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We suppose now that all the systematlc errors have
been corrected In the acquired data. Therefore, the
deviations Included In the measured coordinates |ust
result from the convoltion between statistical perturba-
tlons of the coordinate measuring machine and the dis-
tribution of the matter around the Ideal geometric ele-
ment. Since the Instrument depends on a great number



of uncontrolled parameters, the first deviation Is usualy
assoclated with a normal law. The second componernt Is
more difficult to define. However, for high quality sur-
faces, measurements carrled out on different Industrial
pleces, have shown that the scattering of the matter
around the Ideal geometric element can then be rea-
sonably approximated by a Gausslan distributlon. This Is
a first step of our statistical approach, but other distribu-
tions will be tested In the near future for rough surfaces.
Under these assumptlons, the likellhood criterion simpll-
fies to the classical |east squares method and the opth
mizatlon conditions become:
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If the p parameters a; of the geometric element assocl-
ated to the digitized surface were perfacily defined, the

standard deviation < could also be estimated In the
same way:
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Howsever, such estimator would lead to a blased evalua-
tion of o because a set of p parameters 4, has already
been derlved from the acquired data. Therefore, the
standard deviation of the measurement has to be com-
puted with the following expression, also called residue
of the least squares optimization:

6= J——3d? 4)

This deviation & can be propagated to deduce the co-
variance matrix of the estimated parameters &, using
equation (2) and the classical differentlal expressions of
the uncertaintles [2]. From the dlagonal components of
the covarlance matrix, the error bars of 4;are then easlly
calculated, since the statistical distribution of these ran-
dom varlables corresponds to a Fisher-Student law.

2.2 Uncertalnties of ISO 1101 speciications

The covarilance matrix determined on each elementary
feature can now be used to propagate the standard
deviations of the fited surfaces to any derived geomaetric
element. The uncertaintles of the dimenslons and geo-
metric deviations to be verified can thus be evaluated. At
present, however, our method restricts to the control of
ISO 1101 specifications. According to this standard,
each dimenslion and geometric error Is then qualified by
a distance 4 This distance & Is derived from different
geometric constructions and Is linked to » of the parame-
ters &, determined by the fitting of the elementary fea-
tures. Using a differentlal fomulatlon of ks standard
deviation o5 it comes:
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Introducing the Jacoblan matrix J of the distance & and
Its transpose J, this expression can also be rewritten as
a matrix product:

UE:JGJ' ., where J,-:% and €, = Cov{g.a;) (B)
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The evaluation of the standard deviation o5 comes thus
to the determination of the Jacoblan matrix J. For that
purpose, 8 generic algorithm has been developed which
allows computing is components whatever geometric
constructlon has been used to derive the distance 4.

3 EXPERIMENTAL APPLICATION

In order to valldate our new statistical approach, differant
experiments have been carrled out In our laboratory
using a coordinate measuring machine equipped with a
touch frigger probe system mounted on an Indexing
head. All the measurements have been conducted In
programmed automatic mode. The acqulsiion speed
was kept constant and set to half the maximum sampling
rate of the coordinate-measuring machine.

3.1 Uncertainties of single point measurements

The uncertalntles obtalned In single point measurements
have been characterized first o define the random per-
turbatlons of the coordinate measuring machine. A MCG
checking gauge was used for that purpose with a plvot-
Ing arm of 151 mm (Figure 1).

four positions of
the pivoting arm

Flgure 1: Machine checking gauge system.
Such a system, designed to test the volumetric perform-
ance of a coordinate measuring machine, permits ana-
lyzing the reference pivoting arm In a great range of (¢.,8)
Inclinations. Single point measurements were thus car-
ried out for 24 evenly distributed directions. The acqulsk
tlens were repeated 144 times. This allowed, for each
Inclination of the system, to compute the covariance
matrix of the digittzed coordinates, using classical statls-
tical formulae. Since the points were always acquired in
the direction nomal to the pivoting arm, all the compo-
nents of this matrix were found of second order, except
for the direction of measurement. The standard deviation
of the piveting radius Is thus sufficlent to characterize the
acquisitions. The resulis are presented In Table 1.

8 ()

o) | 45 | 90 | 135
180 | 0,75 | 0,68 | 0,78
135 [ 0,60 [ 0,72 | 0,93
90 | 0,69 | 0,68 [ 1.00
45 | 080 | 0,76 | 0,75

o | 078|065 085

45 | 068 | 0,66 | 0,67
-90 | 0,95 | 0,61 | 0,66

-135 | 0,94 | 0,83 [ 0,92

Table 1: Standard deviations of measurement In pm.



With a confidence level of 89 %, Fisher tests applied to
this data demonstrate that the standard deviation can be
censidered as constant for all the scanned directions.
The whole acquired points could therefore be used to
characterize the stochastic noise of our coordinate
measuring machine. Figure 2 shows the histogram of the
deviations measured in this first experiment.
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Figure 2. Histogram of the stochastic noise of the CMM.

This graph demonstrates that the random perturbations
of our machine can be accurately described by a Normal
distribution.

3.2 Uncertainties of elementary features

In the second step of our experiments the artifact of
Figure 3 was tested to check our new statistical ap-
proach.

Plane P,

2 &

Figure 3: Artifact used in our experiment.

For this sample, all the planes were acquired in 20
evenly distributed points. The cylinders were character-
ized by three circles defined by 16 points. The meas-
urements were repeated 151 times to allow the standard
deviations of the results to be defined in a classical way.
Figure 4 shows the results obtained for the testing of
Plane P, which is a surface of high quality.
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Figure 4. Histogram of the residues of plane P1.

For this feature, the standard deviations were found to
be the same for all the acquired points. The whole 151 x
20 digitized coordinates of the experiment were there-
fore used to define the histogram of the least squares
optimization residues. This result has been compared to
the data obtained for single peint acquisitions (Figure 5).

0.30; Frequency

0.25) » Single Point
0.20] o Plane P1

0.15] —Normal law
0.10]

0.05] deviation (um)
0.00

| 1 T L L T 1
-40-30-20-1.000 10 20 30 40

Figure 5: Comparison between the deviations obtained
for single point acquisitions and for testing of Plane P.

Both distrbutions are practically the same. This means
that for surfaces with low form defect, like plane P, the
least squares fiting residues are directly linked to the
stochastic noise of the coordinate measuring machine. It
demonstrates clearly that the random deviations of the
CMM are included in the set of acquired coordinates and
can therefore be characterized by cur statistical ap-
proach.

The next experimental part is now dedicated to the con-
trol of the location deviation between cylinder C and
plane P, Three circles Cq, C;, C; have therefore been
measured on the cylindrical surface to define the axis of
this entity. Figure 6 shows the histogram of the least
squares residues cobtained for the first acquired circle C;.
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Figure 6: Distribution of least squares residues of C..

Again, the distribution of the least squares residues is
Gaussian. However, in that case, its standard deviation
is about two times greater than the value found for single
point measurements. This is due to the form defect of
the cylindrical surface, which was evaluated to 11 um.
Such result demonstrates now that the acquired coordi-
nates also include statistical information about the distri-
bution of the matter around the perfect ideal feature
which is fitted to the measured peints. The same type of
results is obtained too for the two other circles.

It has however to be pointed cut that the layout of the
matter around the fitted feature cannot always be de-
scribed by a normal distribution because it closely de-
pends on the manufacturing process. In the general
case the deviations included in the measured coordi-
nates will then result from the convolution between the
Gaussian contribution of the coordinate measuring ma-
chine and the process related geometrical surface de-
fects of the analyzed sample.

The characterization of the location deviation between

cylinder C and plane P; required finally to acquire this
last surface.
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Fligure 7: Histogram of the residues of plane P;.

Figure 7 shows the histogram obtained for this entity. As
for plane P,, due to the low form defect of the surface,
the resldues of the |east squares fitting correspond to the
stochastic nolse of the coordinate measuring machine.

3.2 Uncertaintiex of geometric deviations

From each set of acquisitions carried out on circles C,
C;, C; and plane Py the geometric errors of cylinder C
could finaltly be defined. According to 1SO 1101 stan-
dard, the location deviatlon of cylinder C has been de-
duced from the distances between the centers of circles
Cy, C;, C; and plane P;. Since the experiment was re-
peated 151 times, the standard deviations of these dis-
tances could also be computed In a classical way.

On the other hand, as already pointed out, our new
statistical approach allows also to estimate the covarl-
ance matrix of the Intrinslc parameters evaluated for
each elementary surface. This information has been
propagated to the calculated distances, thus defining the
standard deviatlons In a second manner. For each set of
data, these values are then Just dertved from the 20
points acquired to characterize plane P; and the 3 x 16
coordinates which define cyliinder C. The results are
presented In table 2.

standard deviation (um)
classical | deduced from
method residue
Distance 1,30 1,51
Cq/P;
Distance 1,39 1,35
Ca/P;
Distance 152 1,37
CiPz

Table 2: Standard deviatlons of the measured distances.

The deviations deduced from the residue of the least
squares optimlzation were of the same order for all the
set of acquired surfaces. Only thelr mean values were
therefore reported In this table. The results show clearty
that the Instantaneous standard deviations defined
trough our new statistical approach are very close to the
values calculated by a classical method based on re-
peated measurements. This demonsirates cleary the
relevance of our method.

4 CONCLUSION

In our work a new statistic approach has been devel
oped to evaluate Instantaneous uncertaintles of coordl-
nate measurements. These uncertaintles are derived
from the residue between the perfect Ideal features fitted
to the acquired points and the related digittzed coord-
nates. The method shows that due to the form defects of
the measured surface, the deviations of the results ob-
tained with a given algorithm not only depend on the
stochastic nolse of the CMM but are also linked to the
points distrbution selected on the measured surface.
The experimental results obtalned In our study demon-
sirate clearty that the uncertainties derived from a single
measurement using our statistical method are very close
to the values defined by repeated tests. The Instantane-
ous uncertainty evaluated through our approach will thus
give a relevart Indicator allewing te check a given CMM
control process In order o optimlze Its procedures and
experimental condiions.

At present, the method Is limited to the verification of
ISQ 1101 tolerances and geometric deviations. The
statistical approach will now be extended to the control
of envelop requirements.
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