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Abstract In this report we summarize and describe the recent unique updates and

additions to the Molcas quantum chemistry program suite as contained in release

version 8. These updates include natural and spin orbitals for studies of magnetic

properties, local and linear scaling methods for the Douglas–Kroll–Hess transforma-

tion, the generalized active space concept in MCSCF methods, a combination of

multiconfigurational wave functions with density functional theory in the MC-PDFT

method, additional methods for computation of magnetic properties, methods for di-

abatization, analytical gradients of state average complete active space SCF in associ-

ation with density fitting, methods for constrained fragment optimization, large-scale

parallel multireference configuration interaction including analytic gradients via the

interface to the Columbus package, and approximations of the CASPT2 method

to be used for computations of large systems. In addition, the report includes the

description of a computational machinery for nonlinear optical spectroscopy through

an interface to the QM/MM package Cobramm. Further, a module to run molecular

dynamics simulations is added and two surface hopping algorithms are included to

enable nonadiabatic calculations. Finally, we report on the subject of improvements

with respects to alternative file options and parallelization.

a)Electronic mail: valera.veryazov@teokem.lu.se
b)Electronic mail: roland.lindh@kemi.uu.se
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I. INTRODUCTION

The Molcas quantum chemistry package was for a long time a programming project

confined to Lund University, the group of the late Björn O. Roos, and a few external co-

workers (see the Introduction of Ref. 1). During the last seven to eight years, however,

this situation has drastically changed, and the project has turned into an international

collaboration. Our recent report1 in 2009 included contributions from nine different research
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institutes, and we are pleased to note that the current report exceeds this with contributions

from some twenty-two different affiliations and thirty-eight contributors. During the last

three years the program developers of this project have gathered for annual meetings –

Zürich, Switzerland (2013), Alcalá de Henares, Spain (2014), and Siena, Italy (2015) –

gathering some 40 developers at the last meeting. This reflects the changing nature of

program and method development in the field of quantum chemistry. While in the past a

small group of developers could harness most of the aspects needed to develop and maintain

a quantum chemistry package, this is no longer possible. Today, program development for

state-of-the-art quantum chemistry applications, in the context of small groups with limited

funding for this task, has to be carried out in collaboration between international partners

and with shared responsibility for maintenance, code verification and facilitating a common

optimal program development environment. Typically national funding for development of

quantum chemical method and program development is too small and short term to support

any but the simplest quantum chemistry program packages. While this could be viewed

as a criticism of the current granting and financing system of such projects, it has also

been an enormous incitement for honest and sometimes even altruistic collaborations in the

field. It has fostered a unique understanding among young quantum chemists of the added

value of networking, cooperation, and partnership. In this respect the last six years of

developments of the Molcas quantum chemistry program package have been spectacular.

In particular, the Molcas development environment has seen a number of long-needed

updates and modernizations to support the new form of extensive international collaboration

around a single program package. This has enabled and facilitated fast development and

a number of new and unique implementations have seen the light of day. With the release

of Molcas 8, in 2014, we yet again provided the chemistry community with novel and

interesting tools for state-of-the-art computational chemistry. To offer potential users a

chance to see all these improvements in a single read, we have gathered a compact summary

of these unique features (some already in version 8.0, others to be available in the upcoming

release of 8.2) here.

This communication includes reports with respect to alternatives, extensions, and im-

provements for the treatment of dynamic and nondynamic electron correlation (nondynamic

correlation is sometimes called “near-degeneracy correlation”, “strong correlation”, or “static

correlation”), facilities for computation of magnetic properties, methods for scalar rela-
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tivistic corrections to large molecular systems, and approaches for molecular dynamics for

semiclassical or full quantum nuclear dynamics of nonadiabatic processes. Some technical

improvements will be given an explicit presentation.

II. ELECTRON CORRELATION METHODS

The multiconfigurational approach is one of the hallmarks of the Molcas quantum

chemistry program package. Central to this treatment are the CASSCF and CASPT2

methods. The essential building blocks are the separate treatments of the dynamic and

nondynamic electron correlation. In this section we present (a) a brief overview of the

scaling properties of a complete and restricted active space, (b) an implementation of a

generalization of the CASSCF methods, the GASSCF method, (c) an alternative method

for the introduction of dynamic electron correlation already in the CASSCF model, (d)

approximations to the CASPT2 method to enable applications to large systems, (e) an

implementation of an efficient parallelization of the CASPT2 method, and (f) a job-farm

approach for parallel separate MS-RASPT2 states.

A. Scaling properties of the active space

The total number of Slater determinants NSD that can be generated by considering all

possible distributions of m electrons in n orbitals with a spin projection Ms (which includes

the determinants for all S ≥Ms withMs half-integer or integer depending upon odd or even

electron cases) is given by the following formula:

NSD(m,n,Ms) =
(

n
m
2 +Ms

)(
n

m
2 −Ms

)
(1)

When expressed with α and β as the number of α and β electrons respectively, this

equation leads to:

NSD(n, α, β) =
(
n

α

)(
n

β

)
(2)

as m = α + β and Ms = α−β
2 .

The notation NSD(n, α, β) is implied during the remainder of this section. To get the
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number of configurations with spin S = Ms, we only need to eliminate the amount of

determinants that originate from higher spins:

NCSF(m,n, S) = NSD(m,n,Ms)−NSD(m,n,Ms + 1)

= NSD(n, α, β)−NSD(n, α + 1, β − 1)

=
(
n

α

)(
n

β

)
−
(

n

α + 1

)(
n

β − 1

) (3)

Note that we assume here that for the binomial coefficients,
(
n
k

)
= 0 when k < 0 or k > n.

We’ve plotted the number of determinants and configurations for a series of increasing

sizes of an active space CAS(m,n) (m electrons in n orbitals) for m = n and Ms = 0

in Figure 1. The grey area represents the zone where the calculations require significant

computational resources. Beyond the grey area, calculations become unfeasible. As can be

seen, the number of determinants/configurations grows exponentially with the number of

orbitals in the active space. If we rework part of the expression for binomial coefficient, we

can set an upper bound:

(
n

k

)
= n!
k!(n− k)! = (n− k + 1) · · ·n

k! ≤ nk

k! (4)

For Ms = 0, we have α = β, and the number of determinants is thus bounded by:

NSD(n, α, α) =
(
n

α

)(
n

α

)
≤ n2α

α!2 (5)

For a constant number of electrons, the number of determinants is bounded by a poly-

nomial. When the number of electrons grows with the number of orbitals, e.g. m = n = 2α

as in our example, an upper bound to the number of determinants can be set by using

NSD(n, α, α) ≤ n2α

α!2 ≈
n2α

2πα
(
α
e

)2α = nn

πn
(
n
2e

)n = (2e)n
πn

(6)

where we used Stirling’s approximation for the factorial (n! ≈
√

2πn(n
e
)n). If instead of an

upper bound we use Stirling’s approximation exclusively, the number of determinants can

be estimated as 2
πn

4n, and similarly the number of configurations as (1− ( n
n+2)2) 2

πn
4n which

can even be further approximated as 8
πn2 4n for large n, or even 2

n2 4n to quickly get the order

of magnitude. The approximations are represented by solid lines in Figure 1.
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It can be easily shown that the exponential scaling applies to any general situation by

considering the total number of possible determinants for any number of electrons in n

orbitals. The number of ways one can fill 2n spin orbitals with electrons is equal to 22n = 4n,

i.e. each spin orbital can be either occupied or unoccupied, independent of the other spin

orbitals.

Sometimes, the scaling of the number of determinants/configurations with the number

of active orbitals is called “factorial” scaling (referring to the binomial coefficients), but we

do not recommend this term as this would imply an nn growth (i.e. growing faster than

exponential).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
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34,763,300

449,141,836

5,924,217,936

NSD(n, n2 ,
n
2 )

NCSF(n, n, 0)

FIG. 1: Number of determinants (blue dots) and configurations (green squares) for a
complete active space of m electrons in n orbitals, where m = n and Ms = 0. Solid lines

represent Stirling’s approximation (NSD = 2
πn

4n, NCSF = (1− ( n
n+2)2) 2

πn
4n).

For a restricted active space, the total number of determinants will be reduced because

of the extra conditions imposed on the distribution of the electrons. Considering again an
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active space of m electrons in n orbitals, now with n1, n2, n3 orbitals in each of the RAS

spaces respectively, and a maximum of h holes in RAS1 and p electrons in RAS3. In this

case the total number of determinants is given by:

NSD(n, α, β) =
n1∑

α1,β1=n1−h
α1+β1≥2n1−h

p∑
α3,β3=0
α3+β3≤p

(
n1

α1

)(
n1

β1

)(
n3

α3

)(
n3

β3

)(
n2

α− α1 − α3

)(
n2

β − β1 − β3

)
(7)

The number of configurations can be obtained in a similar way as for the complete active

space, i.e. NCSF = NSD(n, α, β)−NSD(n, α + 1, β − 1).

In order to give an idea of the scaling of the number of determinants for certain RAS

setups, we plotted the scaling for two reference setups. The first is for a total active space

of n electrons in n orbitals, with a fixed number of RAS2 orbitals, and symmetric RAS1

and RAS3 spaces (same number of orbitals and matching holes/excitations) (Figure 2).

With an empty RAS2 space (the yellow circles), we can comfortably use up to 40 active

arbitals as long as only up to triple excitations (sdt) are considered. For up to quadruple

excitations (sdtq), the active space limit is reached somewhere between 28 and 36 orbitals

(without symmetry). For each increase of the inner RAS2 space with 4 orbitals, the number

of determinants goes up by 1 to 2 orders of magnitude. With an inner RAS2 space of 12

electrons in 12 orbitals, RAS1/RAS3 excitation levels beyond two electrons do not stretch

the limit on the total number of active orbitals any longer.

The second figure is for a fixed RAS2 space of n electrons in n orbitals, with a growing

number of empty orbitals in RAS3 (Figure 3). In general, an increase of 4 orbitals in RAS2

causes an increase in the number of determinants of 2 to 3 orders of magnitude. We can

see that even with a RAS2 space of 12 electrons in 12 orbitals, the total active space can

be stretched up to about 40 orbitals as long as one limits the excitation level to single or

double (s, sd). When allowing higher excitation levels (sdt, sdtq), a smaller RAS2 space is

needed to keep the calculations feasible for such a large number of active orbitals.

So far, any numbers shown are for non-symmetric systems. It is important to note that

any additional symmetry constraints will reduce the number of determinants/configurations

too, enabling some calculations that would be unfeasible without symmetry. The computa-

tional resources required by the Molcas programs rasscf and caspt2 are discussed in the
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FIG. 2: Number of determinants for a restricted active space of n electrons in n orbitals
(Ms = 0), for various sizes of the inner RAS2 and different excitation levels out of/into
RAS1/RAS3. The solid line represent the upper bound of the number of determinants.

Supporting Information, in sections S1 and S2 respectively.

B. The Generalized Active Space Self-Consistent Field Method

Strong or nondynamic electron correlation is a key component of any electronic structure

calculation that aims for quantitative accuracy in calculated energies. With Molcas it is

possible to calculate strong electron correlation by using multiconfigurational self-consistent

field methods, MCSCF. Earlier versions of Molcas allowed two possible kinds of MCSCF

calculations: the complete-active-space self-consistent-field (CASSCF)2–4 method and the

restricted-active-space self-consistent-field (RASSCF) method5–7. The present version of

Molcas allows a more flexible choice, namely the generalized-active-space self-consistent-

field (GASSCF) method.8 This method, like RASSCF, allows restrictions on the active space,
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FIG. 3: Number of determinants for a restricted active space of n electrons in n orbitals
(Ms = 0), for various sizes of the inner RAS2 and different excitation levels into RAS3.

The solid line represent the upper bound of the number of determinants.

but it is more flexible than RASSCF, and it can be applied to larger and more complex sys-

tems at affordable cost. If the active space is well chosen and the restrictions are not too

severe, MCSCF methods recover most of the nondynamic correlation energy, and part of

the dynamic correlation energy. MCSCF methods are generally used when near-degeneracy

effects are present, e.g. in many transition metal complexes, excited states, bond breaking

and weakening, many structures along reaction paths, and many radicals. In CASSCF the

orbital space is divided (by the user) into an inactive space consisting of orbitals that are

doubly occupied in all considered configuration state functions, CSFs, an active space con-

sisting of orbitals whose occupation may take any value between 0 and 2, and a virtual space

consisting of orbitals that are unoccupied in all considered CSFs. In CASSCF, a number

of active electrons are distributed in all possible ways, compatible with the required spin
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and space symmetry, among the active orbitals, to generate the CI space in which the wave

function will be optimized. Both orbital and CI parameters are simultaneously optimized.

The size of the CI expansion increases factorially with the size of the active space. The

largest active space currently affordable is formed by 18 electrons in 18 orbital for a singlet

spin state. Only a fraction of correlation energy is covered for most of chemical systems

of practical interest, while most of the dynamic correlation, which is essential for a quanti-

tative treatment of chemical properties, is not included. Restrictions on the CI space can

be applied through the restricted active space, RASSCF, and the generalized active space,

GASSCF, methods available in Molcas. The underlying philosophy of these approaches is

to partition the active space in subspaces and impose some user-defined restrictions on the

electron excitations in such a way that one removes the configurations that contribute only

marginally to the total wave function. Without restrictions, both RASSCF and GASSCF

methods become equivalent to CASSCF. These restrictions are particularly useful when the

cost of using the full CI expansion of the active space is beyond reach. It is noteworthy that

truncations of the complete active space, while reducing the size of the CI problem, may

result in difficult optimization computations. In RASSCF, the active space is divided into

three subspaces, namely the RAS1, RAS2 and RAS3 spaces. The RAS1 orbitals are doubly

occupied in the reference wave function. The RAS2 orbitals may have occupation numbers

varying from 0 to 2, while the RAS3 orbitals are empty in the reference wave function. The

CI expansion is then generated by all the possible excitations in RAS2 plus all those config-

urations with up to a user-specified number of holes in RAS1 and a user-specified number

of particles in RAS3. The GASSCF method is a generalization of the RAS concept. In

the GASSCF method, instead of three active spaces, an arbitrary number of active spaces

(GAS1, GAS2, . . . ) may in principle be chosen by the user. Instead of a maximum number

of holes in RAS1 and particles in RAS3, accumulated minimum and maximum numbers

of electrons are specified for GAS1, GAS1+GAS2, GAS1+GAS2+GAS3, etc. in order to

define the desired CI expansion. The GAS scheme can be seen as the generalization of

the RAS method, and indeed it can reduce to CAS and RAS, respectively when one and

three active spaces, respectively, are chosen. The GAS approach has points in common

with the occupation-restricted-multiple-active-space (ORMAS) method.9,10 To illustrate the

motivation for and advantages of the GASSCF method, we consider three examples. In the

first example, we have an organometallic material or Metal-Organic-Framework (MOF) with
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separated metal centers such that the orbitals are not delocalized across the metal centers.

Then one can include the near-degenerate orbitals of each center in its own GAS space. This

implies that one may choose as many GAS spaces as the number of multiconfigurational cen-

ters. A second example is for lanthanide or actinide metal compounds where the f -electrons

are near the HOMO–LUMO region but do not participate in bonding. In this case one can

put the f-electrons into one or more separated GAS spaces and not allow excitations from

and/or to other GAS spaces (see Ref.8 for details). Thus the wave function would be largely

simplified without losing accuracy. A third example would be organic molecules or other

molecules where there are localized bonds. Then each bond and its correlating orbital could

form a separate GAS space as in GVB.11 Symmetry considerations may also be invoked for

the partitioning of GAS spaces. There is no rigorous scheme to choose a GAS partitioning.

The right GAS strategy is system-specific. This makes the method versatile but at the same

time it is not a “black box” method. CASSCF, RASSCF and GASSCF use the Davidson

method as CI eigensolver and the direct-CI algorithm by Olsen.12 New approaches, where

very large CI expansions are represented without explicit representation of CI vectors, could

be used in MCSCF calculations to replace the deterministic CI eigensolver approaches and

are envisioned for the next generations of Molcas.13–16

Perturbation Theory Approaches. Due to the limited size of affordable active spaces,

most of the dynamic correlation is not recovered by MCSCF methods. The CASPT2 method

(perturbation theory through second order on top of a CASSCF wave function)17,18 and its

extension to the Multi-State variant, MS-CASPT219, has been available in Molcas since

the nineties. RASPT2 is defined similarly starting with RASSCF wave functions.7,20 The

GASPT2 variant has been implemented locally21 and it is envisioned to be released in a next

version of Molcas. For these perturbative approaches, the preceding MCSCF method pro-

vides a well-behaved wave function and should recover most of the strong correlation and

part of the dynamic correlation, while PT2 should yield good approximations to the dy-

namic correlation energy. The CASSCF/CASPT2 method has reached a mature state and

has proven successful for atoms and molecules in their ground states as well as excited states.

It is worth mentioning that other post-SCF methods are also available to recover the miss-

ing correlation, such as NEVPT222 or SplitGAS23. The SplitGAS method developed in the

Lucia program, can easily be interfaced to Molcas and used as accurate and reliable alter-

native to CASPT2. In order to run a SplitGAS calculation one- and two-electron integrals
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are required as input quantities, and they can be provided by Molcas via TRAONE and

TRAINT files.

C. Multi-Configuration Pair-Density Functional Theory

In the present version of Molcas, another method has been recently added for com-

bining MCSCF with a density functional calculation for dynamic correlation energy, the

multi-configuration pair-density functional theory (MC-PDFT).24,25 Dynamic correlation ef-

fects not described at the MCSCF level can be recovered by MC-PDFT in a way that is

much less expensive than CASPT2. In Kohn–Sham density functional theory, KS-DFT26,

the electronic energy is expressed as a functional of the spin densities, their gradients, and

possibly some orbital-dependent quantities such as Hartree–Fock exchange calculated from

occupied orbitals or correlation energy calculated from virtual orbitals. KS-DFT can be

used for systems that are too large to be treated with CASSCF/CASPT2, since it uses a

single-determinantal description of the electron density. However, with currently available

density functionals it does not always give a reliable answer when a single-configuration

approximation does not provide a good description of the wave function. In such cases it

is often necessary to use ad hoc weighted averages of broken-symmetry wave functions to

obtain reasonable energies.27–30 As a consequence of using approximate functionals in a spin-

unrestricted formalism, energies are obtained that are based on an ambiguous state which

results from a solution that does not have correct symmetry properties. MC-PDFT combines

the strengths of wave function theory and DFT. It uses spin- and space-adapted wave func-

tions and describes correlation effects inexpensively by functionals of spin free densities. The

required density functionals are called on-top density functionals, and the first generation of

on-top functionals has been obtained by translation of exchange-correlation functions origi-

nally developed for KS-DFT. In MC-PDFT, a multiconfigurational wave function is used to

compute total density and on-top pair density of the correct symmetry

ρ(r) = N
∫
|Ψ(x1, x2, x3 . . . , xN)|2dσ1dx2 . . . dxN

∣∣∣∣∣
r1=r

(8)

Π(r) = N(N − 1)
2

∫
|Ψ(x1, x2, x3 . . . , xN)|2dσ1dσ2dx3 . . . dxN

∣∣∣∣∣
r1=r2=r

(9)
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The present version of Molcas supports MC-PDFT based on three kinds of MCSCF wave

functions: CASSCF, RASSCF and GASSCF. In the MC-PDFT method the energy is cal-

culated as

E = Vnn + 〈Ψ|T̂ + V̂ne|Ψ〉+ VC [ρ] + Eot[ρ,Π] (10)

where |Ψ〉 is the multiconfigurational wave function, Vnn is the nuclear repulsion term, T̂ is

the kinetic energy operator, V̂ne is the electron–nuclear interaction operator, and VC [ρ] and

Eot[ρ,Π] are respectively the electronic Coulomb energy and the on-top density functional

of the total density and the on-top pair density. This energy expression may be written in

terms of the one-electron density matrix, D, and the on-top pair density, Π, as

E = Vnn +
∑
pq

hpqDpq + 1
2
∑
pqrs

gpqrsDpqDrs + Eot[ρ,Π] (11)

The wave function is thus used to compute the electron-nuclear interaction, the kinetic

energy, and the classical Coulomb energy, and functionals of the total density and on-

top pair-density are used to compute exchange and correlation energy contributions. In

the current implementation the on-top pair density functionals are obtained by translation

(abbreviated “t”) of KS-DFT exchange-correlation functionals, which depend on the total

density and spin magnetization density, to functionals that depend on the total density and

on-top pair density. Three translated functionals are available in the current version of

Molcas: tLSDA, tBLYP and tPBE. The method is still developing but the initial results

are quite encouraging. Aside from the cost of the MCSCF wave function there is no extra

cost to compute the MC-PDFT energy besides evaluating the density and on-top pair density

and their derivatives on a grid and computing the contribution to the energy by numerical

integration.

In the current implementation, MC-PDFT can be used also in combination with state-

average multiconfigurational wave functions, thus allowing one to compute excited states

with the same spatial and spin symmetry as the ground state (excited states with a dif-

ferent symmetry than the ground state can be computed by performing separate CASSCF

calculations for each symmetry). The method is also very useful for computing ground-state

potential energy curves.
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D. Multiscale perturbation theory for computational photophysics and

photochemistry

Multiconfigurational perturbation theory in the form of CASSCF/CASPT2 is the workhorse

of the Molcas package. The method is particularly appreciated for its robustness in tack-

ling problems featuring strong correlations for ground and excited states. It has therefore

become a de facto gold standard for computational studies in areas such as photochem-

istry and photophysics where other electronic structure methods fail to provide comparable

uniform accuracy or cannot compete in terms of computational costs.

In fact, thanks to the development of the Cholesky decomposition (CD) approximation,

algorithms for CASSCF/CASPT2 calculations allow at present the study of systems com-

parable in size to those affordable at the DFT level of theory — whenever the active space

required is within the current practical limit of 18 electrons in 18 orbitals.

In such cases, the bottleneck in the use of the CD-based CASSCF/CASPT2 method

with large basis sets and many electrons resides in the CD-CASPT2 step. Two multi-scale

extensions have been explored in order to lower the computational costs associated with the

CASPT2 treatment of the dynamic correlation: FNO-CASPT231 and FD-CASPT2.32

The first of these approaches employs the so-called frozen natural orbital (FNO) approx-

imation. In FNO-CASPT2, one truncates the number of virtual orbitals by retaining only

those that account for most of the dynamic electron correlation. Such truncation of the vir-

tual space is not possible in the canonical representation, as the resulting loss of accuracy is

too severe, but can be effective when the orbital representation is chosen based on different

criteria. In particular, one can define a transformation matrix from the (pseudo)canonical

orbitals to a set of approximate natural orbitals (NOs) by diagonalizing the following virtual-

virtual block of the following MP2-type density matrix:

D̃
(2)
ab =

∑
ic

tacii t
cb
ii , (12)

with the amplitudes defined as:

tabii = − (ai|bi)
εa + εb − 2εi

, (13)

where the index i includes all the inactive orbitals as well as those (pseudo)canonical active
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orbitals with negative energy. By their nature, even the NOs defined through the diago-

nalization of an approximate density matrix such as that of Eq. (12) allow a hierarchical

build-up of dynamic electron correlation, and therefore elimination from the virtual space

of NOs with small occupation numbers is possible in this orbital basis. The two-electron

integrals included in Eq. (13) can be conveniently computed by means of their CD/DF

representation,33 without introducing any fifth-order step that would otherwise make the

truncation of the virtual space too costly compared to the full CD-CASPT2 calculation.

The selection of the relevant NOs is performed by means of the following estimator of

the correlation energy:

%Tr = 100
∑ν
a ηa

Tr(D̃(2))
, (14)

where the number of retained virtual NOs ν is determined by including more and more

virtual NOs — preordered according to the decreasing occupation numbers η’s (eigenvalues

of D̃(2)) — until a chosen value of %Tr is reached. Typically, even with double-zeta basis sets

more than 98% of the trace is determined by only half of these NOs, thus allowing for very

significant speed-ups in the calculation. In fact, experience tells that a threshold for %Tr in

the range 90–95% is in general sufficiently accurate for vertical excitations whereas 97–99%

provides results that are nearly indistinguishable from those obtained with full CD-CASPT2

even along ground and excited states reaction pathways. An example of performance of

FNO-CASPT2 is shown in Fig. 4.

In contrast to the use of NOs, in freeze-and-delete (FD)-CASPT2 the computational costs

are lowered by resorting to a localized orbital picture in CD-based CASPT2 calculations. For

situations where the active orbitals are localized within a small region of a large molecule, a

suitable “active site” (A) can be identified as the collection of atoms where the active orbitals

effectively extend. The selection of an atom is based on the measure of the Mulliken charge

contribution of the active orbitals to that atom, as compared to a chosen threshold (τ).

Accordingly, the inactive and secondary orbitals can be separately localized and partitioned

between this active site and the remaining atoms of the “environment” (B). The two regions

are assumed to be uncoupled, and therefore two separate sets of canonical orbitals can be

deduced for the active site and the environment.

Assuming such partitioning of the molecule in active site and environment, we can ap-
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FIG. 4: CASPT2(16,12)/ANO-L O[5s4p1d]/H[2s1p] potential energy curves describing the
photodissociation of the water dimer with respect to the intramolecular O1−H4 distance.34
Dashed lines represent the water donor localised electronic excited state energies whereas

full lines refer to the ground state. The geometries of the water dimer at the
Franck–Condon region (left-hand side) and at the dissociation limit (right-hand side) have

also been given to provide a visual aid for the photo-process.

proximate the first-order correction to the CASSCF wave function Ψ(0) as:

Ψ(1) ≈
[A]∑
pqrs

t̃prqsâ
†
pâ
†
râqâsΨ(0) +

[B]∑
aibj

t̃abij â
†
aâ
†
bâiâjΨ(0) . (15)

The hypothesis of decoupled regions allows furthermore to determine the two sets of ampli-

tudes separately. In practice, this means that the standard algorithm for CASPT2 can be

used to obtain the (small) set of amplitudes defined in A, whereas the much larger number

of amplitudes defined in B correspond to a straightforward MP2 model for which their ex-

pression in terms of integrals and orbital energies is known and it is computationally easier

than for CASPT2. As shown in Table I, significant speed-ups are therefore possible for large

molecules, and with a minor penalty for the accuracy.

E. Parallelization of multiconfigurational methods in Molcas

The rasscf and caspt2 programs have always been among the key components of the

Molcas package. The rasscf program is used to produce a CASSCF or RASSCF wave

function (recently also GASSCF), which can then be used as reference wave functions by

the caspt2 program as a basis for the CASPT2 or RASPT2 perturbation steps respectively.
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full FD(τ)
(0.0) 0.1 0.2–0.4 0.5

O 50 25 24 11
V 241 81 81 32
η 1 35 38 1171
S1 4.90 5.10 5.11 5.98
S2 6.24 6.39 6.40 7.13
S3 6.27 6.47 6.47 7.51

TABLE I: Number of occupied (O) and virtual (V) orbitals assigned to the active site for
various FD-CASPT2 calculations on d-Thymidine using ANO-S-VDZP basis set, and

corresponding FD-CASPT2 vertical excitation energies (in eV). The third row reports the
factor in reduction of floating point operations (η).

Note the distinction between the program (the Molcas module name) and the METHOD

acronyms. Although CASPT2/RASPT2 is computationally cheap compared to other, in

principle more accurate multiconfigurational methods such as MRCI, it is heavily memory

and I/O bound. As such, it has always been important to have access to machines with a

lot of memory and fast data storage, to be able to study larger and more complex molecular

systems. As the size of individual systems (i.e. shared-memory environment) does not grow

sufficiently to support larger calculations, one needs to harness the collective resources of

multiple machines. Since the rasscf/caspt2 programs in Molcas have always been serial

implementations, they needed to be adapted to be able to take advantage of a distributed

environment. Another indirect consequence is that such a parallel rasscf/caspt2 imple-

mentation could also run faster even on a single shared-memory machine by using multiple

processors/cores. In this contribution, we focus mainly on the parallelization of the caspt2

program35, and at the end include some information about both caspt2 improvements and

rasscf parallelization which has already been implemented and will be available soon.

We should first start by saying that multiconfigurational perturbation theory isn’t

uniquely defined, and several different methods exist, such as complete or restricted active

space second-order perturbation theory (CASPT2/RASPT2)7,17–20,36,37, quasi-degenerate

multireference perturbation theory (QDMRPT)38–40, n-electron valence perturbation the-

ory (NEVPT)41–43, and occupation-restricted multiple active space perturbation theory

(ORMAS-PT)44. While methods such as NEVPT have been parallelized22, to the best of

our knowledge, this is the first fully parallel implementation of the CASPT2 method.
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In CASPT2/RASPT2, one solves a set of equations of the Rayleigh–Schrödinger type as

a large matrix equation, which eventually reduces to the following expression:

(ΛD + ˜̃FN − E01)˜̃c = − ˜̃R (16)

where Ω˜̃c = c, ˜̃R = Ω†R, and Ω = UΛ−
1
2

S W such that ΛS = U †SU and ΛD = W †F̃DW

with F̃D = (UΛ−
1
2

S )†FDUΛ−
1
2

S . The present implementation of the CASPT2 method consists

of four phases: (i) computing and diagonalizing the S and FD matrices; (ii) constructing the

right-hand side (RHS) vector R; (iii) solving the equation system that gives the amplitudes
˜̃c describing the perturbation; and finally (iv) using these to compute energies and other

properties of interest1.

Construction and diagonalization of S and FD

In the first phase, the overlap matrices (S) and the diagonal blocks (FD) of the zeroth-

order Hamiltonian matrix, that make up the left hand side of the equation, are constructed.

Hereto, several density matrices need to be constructed, of which the largest is the 3-body

density matrix Γ. The size of Γ scales roughly with the sixth power of the number of active

orbitals, while the amount of floating point operations to compute a single matrix element

is proportional to the number of configurations (2 ·NCSF). The total work required to set up

Γ thus scales as n6
a ·NCSF. The elements are computed using task-based parallelism, where

each task computes a set of elements. After the S and FD matrices have been constructed,

they need to be diagonalized, for which the amount of floating point operations scales as n9
a.

The diagonalization is carried out through a call using the scalable linear algebra package

(ScaLAPACK) interface, which can then be substituted by any appropriate parallelized

implementation of it.

The dominating factor for large complete active spaces (e.g. 16 electrons in 16 orbitals)

will be the construction of the density matrix, in particular the amount of work needed

per element, while the size of the total matrix remains relatively small. In this case, the

diagonalization will not be a significant bottleneck. On the other hand, for a restricted active

space reference, the number of active orbitals could easily double (because the number of

configurations can be kept small). This could lead to very large density matrices that need

to be stored across different machines. In this case, diagonalization will also be a reasonably

significant bottleneck.

20



Construction of the right-hand side

In the second phase the right-hand-side (RHS) vector R is constructed. The latter vector

consists of different blocks, each related to a specific excitation case. The size of this vector

is dominated by an inactive–virtual block, that is the part of the first-order wave function

which is generated by excitations (X̂P = Êajcl) from the inactive orbitals (j, l) to the virtual

orbitals (a, c). The size of this block thus scales as n2
i · n2

v, the product of the number of

inactive (ni) and virtual (nv) orbitals squared. For a long time, the RHS by itself was too

large to be kept in memory and this resulted in substantial I/O bottleneck. However, the

ever increasing size of memory available on single machines has lifted this bottleneck and

the RHS can be typically kept fully in memory for medium-sized systems. When going to

very large basis sets, we can use the combined resources of multiple machines to distribute

the RHS.

For the distribution of the work during construction of the RHS, the parallel imple-

mentation of the Cholesky decomposition technique is used33,45. The Cholesky vectors are

distributed over the available computational units, such that each unit stores a range of

columns which are transformed to MO basis at the beginning of the program. Two algo-

rithms are available to compute the RHS. The first algorithm computes for each element

of the RHS, a contribution from the local set of Cholesky vectors. The downside of this

method is that for a large number of computational units, communicating the entire RHS

becomes a communication bottleneck. The second algorithm first collects all the Cholesky

vectors on each computational unit and then computes only its local part of the RHS.

Iterative solution of the CASPT2 equation

In the third phase, the CASPT2 equation is solved by means of the preconditioned

conjugate gradient (PCG) method46,47. This method iteratively solves a system of equations

Ax = b, where A is a sparse matrix, which in this case corresponds to the zeroth-order

Hamiltonian, x is the solution vector, which corresponds to the first-order wave function,

and b corresponds to the RHS. An iterative method is needed because the matrix A is too

large to be constructed explicitly and hence cannot be inverted. The basic operations during

the PCG iterations consist of one matrix-vector multiplication, vector inner products, scalar-

vector multiplication, and vector addition. The PCG routine in Molcas stores 6 vectors, for

use during the intermediate computations. During the sparse matrix vector multiplication,

the different blocks of the RHS vector will need to interact with each other, causing elements
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from one process to be communicated to another for at least one block. The algorithm is

written to avoid communicating any elements from the largest part of the solution vector,

i.e. the inactive–virtual block.

Overall performance

For large CAS references, execution time is dominated by the density matrix construction

and scaling is good although dependent on the available memory bandwidth. This is clear

in Fig. 5b, where the scaling is better for a distributed parallel environment. After the

initial speed-up, execution time levels off as the serial part becomes dominant, which shows

a serious drop in parallel performance from 16 to 32 processes. The calculation with large

RAS reference is completely dominated by memory bandwidth, showing very bad scaling on a

single shared-memory machine (Fig. 5c). Execution time is dominated by the diagonalization

step, which scales well up to 32 processes in a distributed environment. Finally, for a system

with a very small reference but large basis set, total execution time is essentially defined

by the RHS step, which is again dependent on the available memory bandwidth and scales

badly on a single machine (Fig. 5d). When going to multiple processes, communication

overhead becomes too large, and the total execution time will start to increase beyond a

certain number of processors. This is the reason to switch to a new method where the

Cholesky vectors are collected first, after which no more communication would be needed.

This alternative has been implemented but is still in a testing phase and will be available

soon.

To conclude this subsection, saturation of memory bandwidth and communication over-

head lead in practice to a parallel performance that typically scales well with the number

of physical CPUs but not with the number of available cores. Furthermore, I/O bottlenecks

on a single machine can be only be further reduced by running on multiple machines, or

by providing enough memory and alleviating the I/O bottleneck. Even with these limita-

tions, significant time savings for large calculation can be achieved by increasing the number

of processes on a single machine, as long as memory bandwidth allows. Calculations that

took more than 3 days on a serial machine, could be performed in less than 5 hours on an

InfiniBand cluster, where the individual nodes were not even capable of running the cal-

culation because of memory and I/O requirements. This ensures the continuing study of

larger molecular systems by means of CASPT2/RASPT2 through the use of the aggregated

computational resources offered by distributed computing systems.
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(a) CASSCF with large active space (16
active orbitals, 14 · 106 CSFs, 527 basis

functions, Cs symmetry)
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(b) CASPT2 with large CAS reference (16
active orbitals, 14 · 106 CSFs, 527 basis

functions, Cs symmetry)
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(c) RASPT2 with large RAS reference (35
active orbitals, 15 · 104 CSFs, 527 basis

functions, Cs symmetry)
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(d) CASPT2 with large basis set (2 active
orbitals, 3 CSFs, 1074 basis functions, no

symmetry).

FIG. 5: Parallel efficiency for different calculations.

Last but not least, the rasscf program which delivers the reference wave functions for

the caspt2 program, had been partly parallelized before by making use of the distribution

of Cholesky vectors. However, the part that handled the configuration interaction was

still serial. Now, this has also been parallelized in the current development version and

will appear in a next iteration of Molcas-8. This parallelization is not intended to use

aggregate resources but to speed up the configuration interaction part of the method. This

greatly benefits studies of systems with very large active spaces, and is the last piece in

the parallel execution of the seward/rasscf/caspt2 chain for Cholesky-based calculations.

As can be seen from Figure 5a, the parallel efficiency follows a similar pattern as for the

matching CASPT2 calculation (Figure 5b), although performance is slighlty worse. The
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walltime for the CASSCF part goes from 21% of the total 17h CASSCF+CASPT2 walltime

in serial to 27% of the total 1.5h walltime when run in parallel with 32 processes.

F. Parallel computation of separate MS-RASPT2 states using a job-farm

Even considering all the improvements given by the usage of Cholesky decomposition and

parallelization of the RASPT2 code, the calculation of RASPT2 energies for large molecules

remains a task that may require many hours of CPU time. This is even more true when

dealing with MS-RASPT2.

The accurate description of the spectra of many molecules was at the base of the success of

the MS-RASPT2 methodology48,49. As previously described, a reference multiconfigurational

wave function is prepared, as a state average between all states of interest, and subsequent

RASPT2 calculations are performed for each root. However, there are cases when a RASPT2

treatment alone is not sufficient. For example, when two (or more) states are energetically

very close to each other, as in the case of a conical intersection or an avoided crossing, it is

indispensable to employ a multistate treatment.

As multistate RASPT2 (MS-RASPT2) is currently implemented in Molcas, the infor-

mation about the Hamiltonian effective coupling terms is prepared at each RASPT2 step.

In the final multistate step, this information is collated and symmetrized, in order to pro-

duce the MS-RASPT2 results. For this reason, a typical MS-RASPT2 calculation has to

be performed all in one go. As an example, if each RASPT2 calculation for a given large

system requires one day of CPU time, computing a three roots MS-RASPT2 would require

at least 3 days, and the larger/more complex the molecule under scrutiny, the longer would

be the necessary time. By increasing the time required to complete a task, the probability

that something goes awry with the machine performing the actual calculation also increases.

Unfortunately, in case of computer malfunction, a MS-RASPT2 calculation would stop, and

would have to be submitted again from the beginning, since it cannot be restarted from any

given point (at least, not as yet).

However, the implementation of two sets of keywords for the caspt2 module allows to

divide a MS-RASPT2 calculation into its RASPT2 components, plus the respective coupling

terms. By this simple expedient, an effective coarse parallelization is achieved: following the

previous example, the three roots can be submitted in parallel as separate jobs. The coupling
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terms will then be collected and used to quickly calculate the MS-RASPT2 energies. The so

obtained coarse parallelization will take the same amount of time it takes for a single state,

as long as the computational resources increase linearly with the requested roots. Each

calculation can also still take advantage from the usage of Cholesky decomposition and fine

grain parallelization for further speed up, as previously described. The detailed usage of this

new possibility is given in a working example in section S5 of the Supporting Information.

The job-farm intended use is for when a multistate treatement is necessary, and each

RASPT2 calculation is expected to take a very long time (e.g. even with single-root fine-

grained parallellization enabled), shortening the overall calculation by days. Possibly, the

speed up obtained by splitting a MS-RASPT2 calculation, as described here, together with

the fine grain parallelization previously presented, will prompt the usage of this methodology

also for larger systems, which were until now considered untreatable with a multistate,

multireference perturbation theory approach, because too lengthy to be computed.

III. RELATIVISTIC FEATURES

The non-relativistic electronic Schrödinger Hamiltonian does not provide accurate ener-

gies for all elements of the periodic table. In fact, it is only sufficiently accurate for molecules

containing atoms with small nuclear charges such as carbon, hydrogen, oxygen, and nitro-

gen. Qualitatively speaking, the lack of Lorentz invariance of the Schrödinger equation is

not significant for molecular systems with small nuclear charges, so relativistic effects on ob-

servables may be neglected. A quantum mechanical theory that is valid for the full periodic

table of the elements is provided by the (first-quantized) relativistic many-electron theory

based on the Dirac one-electron Hamiltonian which accounts for kinematic relativistic effects

as well as for spin–orbit coupling.50

In this section we present (a) a linear scaling implementation of the computation of the

DKH correction to one-component wave function model and new capabilities associated with

calculations related to magnetic properties, in terms of (b) calculation and visualization of

natural orbitals and natural spin orbitals and (c) anisotropic magnetic properties.
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A. Local Relativistic Exact-Decoupling for Energies and Properties

The Dirac Hamiltonian is composed of four-dimensional operators. As a consequence, the

electronic one-electron wave function must be described by four scalar functions, which form

the so-called four-component spinor, or 4-spinor in short. Compared with one-component

Schrödinger-based orbitals, these 4-spinors require not only more basis functions, but must

also obey a special relation among the different components, called kinetic balance. Although

relativistic quantum chemistry has found ways to deal with all difficulties that emerge from

such a first-quantized four-component theory, it is desirable to find a representation of the

relativistic electronic Hamiltonian, which is sufficiently accurate and easy to interface with

the conventional non-relativistic quantum chemical methods. Such a reduced dimensional

Hamiltonian, from which the charge-conjugated degrees of freedom have been eliminated

to produce an electrons-only Hamiltonian, features further advantages over the full four-

dimensional Dirac Hamiltonian. Most importantly, at most two-component spinors are

necessary — only one-component functions if spin–orbit coupling can also be neglected —

so that the four-index transformation of electron–electron repulsion integrals, which precedes

a standard ab initio electron-correlation calculation, is reduced in computational cost to that

of the non-relativistic Schrödinger case.

Our new implementation of relativistic Hamiltonians employed in the Molcas package

comprises the one-component exact decoupling X2C51–54, Barysz–Sadlej–Snijders (BSS)55–57

and arbitrary-order Douglas–Kroll–Hess (DKH)58–65 Hamiltonians as well as the atomic

mean-field description of spin–orbit coupling interaction treated as perturbation66. More-

over, local approaches for calculating and applying the exact-decoupling transformations

are employed to reduce the computational cost for polyatomic molecules dramatically. This

so-called DLU local decoupling scheme67 produces a marginal loss of accuracy compared to

the full transformation and can be applied to all three Hamiltonians: X2C, BSS, and DKH.

A similar approach was proposed by Seino and Nakai68,69 for the infinite-order DKH Hamil-

tonian. For actual calculations, we recommend the X2C Hamiltonian — possibly combined

with the DLU scheme for large molecules. As a caveat, we may note that the DLU scheme

may require tailored basis sets with not too diffuse functions or the elimination of these very

diffuse basis functions from the basis set.70 This basis-set issue may arise for huge basis sets

not optimized for the application in local exact-decoupling calculations.
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The central idea of exact decoupling approaches is to block-diagonalize the four-component

Dirac Hamiltonian hD by a unitary transformation U

hbd = UhDU
† =

 h+ 0

0 h−

 , (17)

to eliminate the small component of the molecular 4-spinors, which would otherwise give rise

to unwanted negative-energy (positronic) states. The electronic states are fully described

by the two-component operator h+ which can be further decomposed into scalar-relativistic

and spin–orbit parts. Only large-component basis functions are required for relativistic

two-component calculations. There is no need for the small-component basis, but it is

implicitly involved in the decoupling transformation step. The decoupling transformation

matrix is evaluated for the one-electron Hamiltonian of the Fock operator only and the

two-electron contribution is averaged in the atomic mean-field operator. Therefore, the

one-component relativistic calculation comprises the same two-electron integral evaluation

and self-consistent-field procedure as in the non-relativistic case. The evaluation of the one-

electron relativistic Hamiltonians and any property requires the evaluation of one additional

relativistic one-electron integrals matrix each. In addition, relativistic calculations of core-

shell properties like contact densities may require more computational effort since large basis

sets such as ANO-RCC71,72 with many steep functions are required to correctly describe the

behavior of the relativistic wave function close to the atomic nuclei.73,74

The decoupling transformation U in equation (17) is not unique. One can easily observe

that applying further two independent two-component unitary transformation (one for h+

and another one for h−) to hbd still result in a block diagonal structure. In fact, an infinite

number of exact decoupling transformations exists.59 In practice, three principal ways of

unitary decoupling have been realized. In DKH theory, the unitary transformation U is

decomposed into a sequence of transformations · · ·U2U1U0, which results into an order-by-

order decoupling in terms of the external potential. It has been shown that the sequence

converges to the reference four-component results61,65 even for systems with very large nu-

clear charges. The polynomially-scaling arbitrary-order algorithm65 of the DKH method

has been implemented into the Molcas package75 to replace the old exponentially-scaling

one61. The expansion technique of the DKH method to approach exact decoupling can be

replaced by the iterative technique which yields the BSS method. The so-called X2C method
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provides another way to achieve exact decoupling, where a preliminary diagonalization of a

four-component one-electron matrix is used to obtain the exact decoupling transformation

matrix. For a detailed comparison of these approaches, we refer the reader to the numerical

examples in Ref. 75, which were obtained with the Molcas package.

Although the computational cost for relativistic transformations is small compared to that

for two-electron integrals, it will increase rapidly if the molecule becomes larger. Since the

relativistic effects are mainly localized in atomic centers, the local (atomic) DLU scheme67

was proposed to reduced the computational cost. It is important to note that the local

structure should be exploited at the level of the unitary transformation rather than for the

Hamiltonian.67 The unitary transformation matrix is then decomposed to the following form

U = UAA ⊕ UBB ⊕ UCC ⊕ · · · , (18)

where labels A,B,C denote different atomic blocks. It was found that the DLU approxima-

tion introduces very small errors for total energies, which are less than 0.01 milli-hartree

for molecules including heavy atoms. The evaluation of relativistic picture change corrected

molecular properties had been implemented63,73,74,76 following the general prescription

〈ô〉 =
∑
ij

γij〈ψi|(UôU †)|ψj〉 (19)

where ψi denotes the relativistic orbitals, ô a one-electron property operator of observable o,

and γij is a generalized occupation number. In Eq. (19), U is directly employed to account

for the picture change of molecular property operators. Therefore, the DLU approximated

U can be directly substituted to calculate the picture-change-corrected properties with lower

cost. The errors for molecular properties due to DLU are also very small.67 It is important to

note that for every physical observable the change of picture must be taken into account.77

B. Natural orbitals and spin orbitals from SO-RASSI calculations

To facilitate recent studies of magnetic properties of various actinide systems78–80, we

have implemented the calculation of the u = x, y, and z components of the spin magne-

tization, and the calculation and visualization of natural orbitals (NOs) and natural ‘spin’

orbitals (NSOs), within the spin–orbit (SO) restricted active space state-interaction level
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(RASSI)66 framework. This allows extracting chemically intuitive information about the

electronic structure and magnetic properties directly from SO-RASSI calculations. Illustra-

tive examples are provided below.

In terms of a two-component relativistic SO-RASSI wave function ψ, the electron density

ρ(r) and the components mu(r) of the spin magnetization can be defined as

ρ(r) = N
∫
ψ†ψ dτ ′ (20a)

mu(r) = 2
∫
ψ†Ŝuψ dτ

′ (20b)

The notation dτ ′ indicates integration over all but one spatial electron coordinates, and the

notation ψ† · · ·ψ indicates ‘integration’ over all spin degrees of freedom. Further, N is the

number of electrons and Ŝu = ∑N
i=1 Ŝu(i) is the component u of the one-electron spin vector

operator. The function mu(r) is a component of the spin magnetization vector field which

varies as a function of the electron position r. The reason for the factor of 2 in Equation

(20b) is the following: Without SO coupling, and with the usual choice of u = z for the

spin quantization axis, the function mz corresponds to the usual spin density ρα−β, which

integrates to 2MS = 2〈Sz〉 for spin eigenfunctions. For the spin multiplet component with

MS = S, two times MS counts the number of excess α spin electrons over β.

In the SO-RASSI calculations, the electron density ρ and the components mu of the spin

magnetization vector field are represented in the atomic orbital (AO) basis set in the form of

real symmetric matrices. Diagonalizing these density matrices gives a set of real orthonormal

NOs ϕp with eigenvalues np (NO occupations) and a set of real orthonormal NSOs ϕup with

eigenvalues nup (‘spin populations’)

ρ(r) =
∑
p

np[ϕp(r)]2 with
∑
p

np = N (21a)

mu(r) =
∑
p

nup [ϕup(r)]2 with
∑
p

nup = 2〈Su〉 (21b)

The index p spans the dimension of the molecular orbital basis.

In Equations (21), the np and nup may be non-integer, and the nup can be positive as

well as negative. For a closed-shell Hartree–Fock (HF) reference, np = 2 for all occupied

orbitals, zero otherwise. With an added unpaired electron, for instance, one gets a doublet.
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�u �u ıu ıu

UO2
+ +0.442 +0.442 -0.056 -0.056

NpO2
2+ +0.437 +0.437 -0.058 -0.058

PuO2
2+ +0.480 +0.480 +0.470 +0.470

FIG. 6: NSOs ϕzp of Equation (21b) corresponding to the non-bonding 5f orbitals of UO2
+

(5f 1), NpO2
2+ (5f 1), and PuO2

2+ (5f 2), and the corresponding contributions nz to 2〈Sz〉.
Adapted from Ref. 79. A ground state doublet component with 〈Sz〉 > 0 was chosen in
each case. Isosurface values: ±0.03 atomic units. The isosurfaces shown here are for
NpO2

2+. Those for the other two systems are visually indistinguishable from the ones
shown.

For a restricted open-shell HF (ROHF) scalar relativistic reference (no SO coupling), one

would have np = 1, nzp = ±1 for the unpaired orbital, depending whether MS is ±1/2, and

np = 2, nzp = 0 for the remaining occupied orbitals. A spin-triplet would afford two orbitals

with nzp = ±1 for MS = ±1. Dynamic and nondynamic electron correlation as well as SO

coupling causes the eigenvalues to deviate from these reference values. SO coupling also

causes 〈Sz〉 to deviate from MS as the spin projection ceases to be a good quantum number.

Zeng et al.81,82 previously devised two-component ‘natural spinors’, which are generally

complex, and reserved the term ‘natural orbital’ for an eigenvector of the density matrix of

a non-SO calculation. The NOs defined here are determined from the symmetric part of the

one-particle density matrix of the SO calculation after integrating over the spin degrees of

freedom. This is the density matrix used to calculate expectation values of real spin-free

operators in the SO-RASSI step.

Examples are shown in Fig. 6, which are taken from a recent comparative study of

the magnetic properties of UO2
+ (5f 1), NpO2

2+ (5f 1), and PuO2
2+ (5f 2) and equatorially

coordinated complexes of these ions.79 For reasons of brevity we only discuss mz and the

associated NSOs of the actinyl species. In the absence of SO coupling (i.e. in a SR or

non-relativistic framework), the 5fφ orbitals of the 5f 1 systems would have nzφ = 1/2 each,

due to the orbital degeneracy of the 2Φ ground states. Under the SO interaction, fφ mixes

with fδ of opposite spin, which leads to a reduction of the positive nzφ of the U and Np

5f 1 systems and generation of negative nzδ accordingly. The combined nz values from the
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π π π∗

SR 1.635 1.635 0.323

SO 1.489 1.489 0.306

π∗ fδ fδ
SR 0.323 0.034 0.034

SO 0.306 0.148 0.148

FIG. 7: Selected NOs ϕp of Equation (21a) of (C5(CH3)4H)3UNO, and the corresponding
occupation numbers. Adapted from Ref. 80. Isosurface values: ±0.03 atomic units. The

isosurfaces shown here are for the SO calculation. The corresponding SR orbitals have very
similar appearances.

figure represent 〈Sz〉 values of 0.386 and 0.379 for uranyl and neptunyl, respectively. These

are very close to the total calculated expectation values of 0.382 and 0.388 – the small

differences are due to other active orbitals. The ground states of UO2
+ and NpO2

2+ derive

from the |j,mj〉 = |5/2,−5/2〉 spinors of the U5+ and Np6+ ions, with a small admixture of

|7/2,−5/2〉 due to the lowering of the symmetry from spherical to linear (mj remains a good

quantum number). For comparison, 〈5/2,−5/2|Ŝz|5/2,−5/2〉 = 5/14 or 0.357 which is close to

the ab-initio values calculated for uranyl(V) and neptunyl(VI).

The ground state of PuO2
2+ (plutonyl(VI)) derives from the atomic multiplet 3H4 with

L = 5, S = 1, J = 4 with the total spin and total orbital angular momentum projections

anti-parallel. The 5fφ and 5fδ orbitals of the ground state doublet contribute with the same

sign to 〈Sz〉, as seen in Fig. 6. The ground state doublet derives from SR wave functions

with MS = ±1, and each of the 4 orbitals shown would contribute ±1/2 to 2〈Sz〉 = 2MS.

The action of the crystal field suppresses the effect from SO coupling in this system to a

large degree, and correspondingly the nzp are close to the SR limit. Another interesting

case, from Ref. 80, is (C5(CH3)4H)3UNO, which is so far the only experimentally char-

acterized U(IV) complex exhibiting temperature-independent paramagnetism up to room

temperature.83 The ground state is non-degenerate and derives from a SR spin-singlet. Se-

lected NOs and their occupation numbers are shown in Fig. 7, comparing SR with SO. The

π bonds formed by the uranium 5fπ orbitals and the NO ligand are evident. The system has
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multireference character, as indicated by the relatively large occupations of the antibonding

π∗ combinations, leading to an effective U−NO bond order of only 1.31 instead of 2. At the

SO level the bond order is further reduced to 1.18 because SO coupling mixes 5fπ with 5fδ,

with the latter being non-bonding with respect to the NO ligand. The SO-induced increase

of the 5fδ orbitals at the expense of 5fπ is clearly visible in Fig. 7.

C. Calculation of magnetic properties in Molcas. The single_aniso module

The multireference CASSCF/(CASPT2)/RASSI-SO84 spin–orbit calculations proved

suitable in providing accurate solutions for arbitrary large complexes, in particular, those

containing strongly anisotropic metal sites like lanthanides. This computational approach

provides the spin–orbit eigenstates, and the matrix elements of the orbital l̂ and spin ŝ

momenta in the basis of multiplet eigenstates of the complex. The accuracy of their es-

timation depends on the quality of ab initio calculation. Given the strong interest from

the molecular magnetism community for accurate calculation of magnetic properties of

complexes, we have recently developed and implemented in Molcas computational tools

allowing the investigation of anisotropic magnetic properties of complexes using the results

of ab initio calculations. These developments for mononuclear complexes have been imple-

mented into the single_aniso module, available in standard version of Molcas package.

The observables calculated by the single_aniso module can be divided into two groups,

(i) the magnetic properties and (ii) the parameters of effective (magnetic) Hamiltonians of

complexes and fragments (see Fig. 8). Below we review typical predictions obtained with

this module.

Derivation of pseudospin magnetic Hamiltonians from RASSI-SO calcula-

tions.85 Magnetic Hamiltonians are defined for a chosen group of N (usually low-lying)

multielectronic multiplet states obtained in ab initio calculation. To these states, a pseu-

dospin S̃ is subscribed (normally it would be the true spin S in the absence of spin–orbit

coupling) according to the relation N = 2S̃ + 1. For instance, the two wave functions of

a Kramer’s doublet correspond to S̃ = 1/2. A typical example is a Dy3+ ion in a low-

symmetry ligand field environment: the ground term is 6H with the spin S = 5/2 and a

near-degenerate L = 5 orbital momentum. Strong spin–orbit coupling within the ground 6H

manifold stabilizes the total momentum J = 15/2 in the ground state, which is usually split
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Single_Aniso

Parameters of effective
Hamiltonians

gab

Dab

Bn

m

Magnetic properties

- susceptibility tensor
- powder susceptibility
- magnetization vector
- powder magnetization
- Zeeman splitting

- blocking barrier

cab( )T

c( )T

M ( , )a T H

M( , )T H

Ueff

- first rank gyromagnetic tensor
- second rank ZFS tensor
- higher ranks ZFS and Zeeman

Hamiltonians
- sign(g g g )X Y Z

- CF parameters for Ln
3+

complexes

FIG. 8: The current single_aniso module.

by the ligand field in Kramer’s doublets. In general, derivation of pseudospin Hamiltonians

from ab initio calculations requires, as prerequisite, to establish a correspondence between

the eigenstates of the pseudospin, characterized by a definite projection of the pseudospin

momentum on the quantization axis, with the ab initio eigenstates of the multielectronic

Hamiltonian.86 Such unique correspondence is relatively easy to achieve for S̃ = 1/2 and

S̃ = 1, as well as for arbitrary S in the case of weak spin–orbit coupling effects. These cases

are handled by the present single_aniso module.

The current version of the single_aniso module is able to compute the following pa-

rameters of magnetic Hamiltonians:

• First-rank (linear after pseudospin) Zeeman splitting tensor gαβ, its main values (gX ,

gY , gZ), main magnetic axes (Xm, Ym, Zm) in a given coordinate frame and the sign

of the product of the main values gXgY gZ .87

• Second-rank (bilinear after pseudospin) zero-field splitting tensor Dαβ, its main values

(DX , DY , DZ) and main anisotropy axes (Xa, Ya, Za).

• Higher-rank ZFS tensors (D4, D6, . . ., etc.) and Zeeman splitting tensors (G3, G5, . . .,

etc.) for complexes with S̃ > 3/2 and S̃ > 1, respectively, and weak to moderate

spin–orbit coupling effects.

• Angular moments along the main magnetic axes.

An example of derivation of the parameters of magnetic Hamiltonians for a complex with

weak spin–orbit coupling effects is shown in Fig. 9.85 The calculated main values of D and g
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FIG. 9: Main magnetic axes (Xm, Ym, Zm, green arrows) and main anisotropy axes (Xa,
Ya, Za, purple arrows) of the ground pseudospin S̃ = 1 of the Ni2+ (3d8 configuration) with

respect to the molecular coordinate system (x, y, z). The results are obtained in a
CASSCF/CASPT2/RASSI-SO/single_aniso calculation using the ANO-RCC basis sets

for all atoms with VTZP contraction for the Ni2+ and first coordinated atoms, VDZ
contraction for all other atoms, active space CAS(8,10) comprising 3d + 3d’ shells of the

Ni2+, 10 spin triplet and 15 spin singlet states optimized in state-average CASSCF
calculations followed by standard Multistate-CASPT2, with subsequent mixing of all spin
states by spin–orbit coupling in rassi. Color scheme: turquoise Ni2+; red O; blue N; grey

C; white H. Adapted from Ref. 85.

tensors compare well with experiment. Note that, in general, anisotropy axes and magnetic

axes are not parallel, an effect which cannot be caught by ligand field models.86 An example

of calculation of the g tensor for the ground Kramer’s doublet of a Ln3+ complex is shown

in Fig. 10.

We should stress high accuracy of calculated magnetic properties of lanthanides by Mol-

cas. This was first proven for individual Dy centers in Dy3 triangles, for which ab initio

calculations predicted the directions of local main magnetic axes88 very close to the experi-

mental results89. Comparable accuracy of ab initio calculated directions of local anisotropy

axes have been demonstrated for other mononuclear lanthanide complexes as well by direct

comparisons with the results of single-crystal investigations.90–92

Ab initio computation of magnetic properties of complexes.93 The code is able to

compute all basic static magnetic properties (see Fig. 8): field- and temperature-dependent

molar magnetization Mmol(B, T ) for powder, magnetization vector for a specified direction

of applied magnetic field ~M(~B), Van Vleck magnetic susceptibility tensor χαβ(T ) and pow-

der susceptibility χ(T ). For the molar magnetization, the Zeeman matrix is built on the

basis of several low-lying spin–orbit energy states (user-defined size) and diagonalized. The
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FIG. 10: a) Molecular structure of the macrocyclic DyZn3 compound.94 Red dashed line
shows the main magnetic axis in the ground Kramer’s doublet. Color scheme: Dy, violet;

Zn, yellow-green; O, red; N, blue; C, grey; H, white. These calculations have been
performed using ANO-RCC basis sets of the following contractions: [8s7p5d4f2g1h] for Dy,
[5s4p2d1f] for Zn, [4s3p1d] for O and N from the first coordination sphere, [3s2p] for C,
and all remaining N and O, and [2s] for H; the active space of the CASSCF method

included nine electrons spanning seven 4f orbitals, CAS (9 in 7); b) Ab initio calculated
magnetism for 6H, 6F and 6P terms mixed by the spin–orbit coupling. c) the same as (b)

for all sextets, 128 quartets and 130 doublets originating from the 4f 9 electronic
configuration of the Dy(III). Adapted from Ref. 93.

resulting eigenstates are used to compute molar magnetization where Zeeman states are

being populated according to the Boltzmann distribution law. Contribution to the mag-

netization arising from the states which did not enter explicitly into the Zeeman matrix is

considered within the second-order perturbation theory. Molar magnetic susceptibility (ten-

sor and powder) is computed using the zero-field limit of the molar magnetization, where

we implemented expressions not requiring Zeeman Hamiltonian to be explicitly computed,

enabling much faster computation of these properties compared to the computation of mo-

lar magnetization. Intermolecular interactions are accounted for in a mean-field approach,

using one single parameter. Fig. 10 shows calculated powder Van Vleck susceptibility and

field-dependent magnetization for a DyZn3 complex and their comparison with experiment.

As a further example, Fig. 11 shows the polar plot of angular dependence of single-crystal

susceptibility for two molecules in the unit cell of the crystal. The relative shift of the ab

initio and experimental plots is due to the deviation of the calculated main anisotropy axes
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FIG. 11: a) Orientation of the main magnetic axis in the ground Kramer’s doublet of
[Cp∗ErCOT] (S̃ = 1/2).95 Color scheme: Er, purple; C, yellow; H, white. (b) Polar plot of
the angular dependence of the single-crystal magnetic susceptibility recorded in the a− b
plane, comparison between the results of the ab initio calculation for two molecules (Eq.
22) in the unit cell (left and right plot, respectively) and the contributions extracted from

the fit of the experimental data (color code in insets). Computational details:
ANO-RCC-VTZP basis for all atoms, active space CAS(11,7), comprising the 4f shell of
the Er3+, 35 spin quartet states and 112 spin doublet states were optimized in state-average
CASSCF calculations and mixed by spin–orbit coupling in rassi. Adapted from Ref. 95.

of the two molecules from the experimental ones by a few degrees.95 These plots are obtained

from the calculated susceptibility tensors χαβ using the expression:

χ(~n) =
∑
α,β

cos θαχαβ cos θβ (22)

where ~n is the direction of the applied field and cos θα, (α = x, y, z), are the directional

cosines.

Ab initio crystal field for lanthanides.93,96 The main difficulty encountered by phe-

nomenological crystal-field models is the large number of unknown crystal-field parame-

ters which are to be extracted from available experimental data (27 parameters for lan-
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thanides). This over-parameterization problem is usually solved by simply neglecting most

of the crystal-field parameters, the remaining ones being found by the least-squares fitting

procedure. Besides, the problem of determination of the true set of parameters always exists

with these models.

Ab initio calculations via RASSCF/RASSI-SO approach are able, in principle, to provide

accurate energies and wave functions of low-lying multiplets in lanthanide complexes. Due

to the fact that the crystal field description of lanthanide complexes is still of great interest,

we have developed a scheme to project the complete ab initio energy matrix (re-written

in the basis of J−pseudospin basis) on the crystal-field Hamiltonian, acting on the ground

J−multiplet of the lanthanide:

ĤJ
CF =

∑
n,m

(Bm
n O

m
n (Ĵ/J) + Cm

n Ωm
n (Ĵ/J)), (23)

where Om
n and Ωm

n are Stevens operators97 containing components of angular momentum

operator Ĵ acting on the ground atomic multiplet, Bm
n and Cm

n are crystal-field parameters.

The developed approach allows the computation of an unique set of all 27 crystal-field

parameters. Another advantage of this procedure is that it permits to project out the

crystal field contributions (23) from the total energy matrix and to assess the importance

of higher rank (n > 6) non-crystal field contributions. The program also gives the ab initio

wave function of the ground J−manifold in the basis of the J−pseudospin eigenstates.98–101

These parameters can be further employed in standard crystal field programs to simulate

the low-lying ab initio results.101

Ab initio blocking barriers for single-molecular magnets.102 We have also im-

plemented an approach allowing investigation of the structure of the blocking barriers of

magnetization in molecular magnets using the results of ab initio calculations. The struc-

ture of these barriers is defined as the most efficient relaxation paths from a state with

maximal magnetization in the ground exchange doublet to the time-reversed state, cor-

responding to reversed magnetization. The two basic relaxation mechanisms are due to

quantum tunneling of magnetization and the spin–phonon transitions. The rate of the lat-

ter is proportional to the matrix elements of the transversal magnetic moment connecting

the states with opposite magnetization. The blocking barrier is defined by the shortest path

where these quantities are the largest99,102,103 (see Fig. 12). The method is currently used

37



FIG. 12: Left: Orientation of the main magnetic axes of the ground and first excited
doublet states (dashed line) with respect to the molecular structure in [Er(COT)2]–.99

Right: The magnetization blocking barrier in [Er(COT)2]– anion.99 The thick black lines
represent the components of the low-lying Kramer’s doublets as function of their magnetic
moment along the axis connecting the centers of cyclooctatetraene (COT) rings. The green
dashed lines correspond to diagonal quantum tunneling of magnetization (QTM); the blue
dashed lines represent Orbach relaxation processes. The numbers at each arrow stand for

the mean absolute value of the corresponding matrix element of transition magnetic
moment ((|µX |+ |µY |+ |µZ |)/3). The path shown by the red arrows represents the most

probable path for magnetic relaxation in this compound. Adapted from Ref. 99.

for the study of single-molecule magnets.101,104,105

IV. MOLECULAR DYNAMICS FEATURES

The ability to simulate dynamical processes is vital to study time-dependent phenomena

and can be used in combination with a quantum chemistry code. This capability to run

so called “on the fly” molecular dynamics simulations is now present in the new Molcas

version. In the following we present some implementations associated with (a) semiclassical

adiabatic and nonadiabatic molecular dynamics and tools to generate (b) diabatic states

and potential energy surfaces, including (c) an interface to the program Cobramm.

A. Molecular Dynamics Simulations

The new dynamix module provides the capability to run molecular dynamics (MD)

simulations. In a MD simulation the nuclei are moved classically exploiting the Born–

Oppenheimer (BO) approximation. Their equations of motions are solved numerically using
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the velocity-Verlet algorithm.106 The algorithm requires coordinates, velocities and forces

as input. The dynamix module can be used with any electronic structure method available

in Molcas. In addition the simulations can also account for the surrounding. Solvent ef-

fects can be considered implicitly using the reaction field keyword in gateway. Also hybrid

QM/MM calculations are feasible in conjunction with the espf program. Temperature can

be taken into account through the coupling to a thermostat.107

In order to introduce the temperature as a constraint in the system and take into account

the thermal energy redistribution in condensed media, the Nosé–Hoover chain of thermostats

approach has been implemented. It allows one to perform simulations at constant temper-

ature that produce statistics belonging to the canonical ensemble (NV T )108. In this case

the initial conditions are prepared by getting random velocities from a Maxwell–Boltzmann

distribution.

Nonadiabatic MD simulations The nonadiabatic molecular dynamics (NAMD) sim-

ulation of many-electronic-state problems requires the simultaneous description of different

electronic states as well as their corresponding couplings. In these simulations, a trajectory

surface hopping (TSH) algorithm allows nonadiabatic transitions between different states.

For this purpose two algorithms are available in Molcas.

The first option takes a deterministic approach to decide about surface hopping based

on the approximate evaluation of nonadiabatic coupling as introduced by Robb and cowork-

ers.109–112 The details of the derivation can be found in Ref. 113 and in the supporting

information of Ref. 114. Briefly, an approximate coupling between two states, k and j, is

computed using the numerical approximation

〈
Φk(t)

∣∣∣∣∣ ∂∂tΦj(t)
〉
≈ 〈Φk (t) |Φj (t+ ∆t)〉

∆t (24)

where Φk is the wave function and ∆t the time step. The coupling is used to estimate the

interaction of the two states and to decide if a hop between the states occurs (Fig. 13). If a

given threshold is reached a transition between k and j is induced.

The second option is the widely-used Tully’s fewest switches algorithm115, available in the

new module surfacehop. This approach requires the coupled propagation of both the nuclei

and the electronic motion. The former is performed by integration of Newton’s equations

of motion for the nuclei. The step size for integration is on the femtosecond timescale.
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FIG. 13: The wave function change of the two states j and k with time along the
trajectory, permits the numerical estimation of the nonadiabatic coupling as the scalar

product between Φk (t) and Φj (t+ ∆t).

However, the electron motion is much faster. Hence, it is carried out by integrating the

time-dependent Schrödinger equation (TDSE) on the (tens of) attosecond timescale (see eq.

25).

ih̄ċk =
∑
j

cj
(
Vkj − ih̄Ṙdkj

)
(25)

where cj are the expansion coefficients and Ṙ are the velocities of the nuclei. The indices j

and k are labeling different electronic states. The following terms:

dkj = 〈Φk(r; R)|∇RΦj(r; R)〉 (26)

are the nonadiabatic couplings, and

Vkj = 〈Φk(r; R)|H(r; R)Φj(r; R)〉 (27)

are the electronic Hamiltonian elements for a given geometry R. The wave function in

the present implementation, Ψ(r; R, t), is expanded as a linear combination of the differ-

ent adiabatic electronic states Φj(r; R) defined by CASSCF or CASPT2 wave functions:

Ψ(r; R, t) = ∑
j cj(t)Φj(r; R).

Within the adiabatic basis currently implemented, the dkj terms are key parameters in

determining surface hopping, as they are the only terms promoting the electronic states

mixing. Nevertheless, in the integration of equation (25) the Ṙdkj terms, rather than the
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FIG. 14: Energy profiles and electronic-state populations for the ultrafast dynamics of a
Z–E photoisomerizing molecular motor involving four electronic singlet states (S0 -grey-,

S1 -red-, S2 -blue-, S3 -green- and the simulation state -violet-).

nonadiabatic coupling vectors (dkj terms), have to be computed. Therefore, by applying the

chain rule the wave function gradient is transformed into a wave function time-derivative,

where the Ṙdkj(R) elements are calculated using the right-hand side of equation (24). These

terms are determined numerically along the trajectory at each step of the nuclear motion

integration defined by ∆t coinciding with the exact calculation of the CASSCF or CASPT2

wave function. Nevertheless, the time-step of the electronic integration is typically at least

one or two orders of magnitude smaller than ∆t. Consequently, to get accurate results in the

integration of the TDSE, an interpolation between consecutive values of Ṙdkj is required.

The implementation chosen for Molcas-8 follows the interpolation-extrapolation scheme of

Hammes-Schiffer and Tully116 for the determination of time-derivative coupling terms used

in eq. (25). Additionally, in order to preserve the consistency of the population density

matrix, we have implemented the decoherence correction proposed by Granucci–Persico.117

By integrating eq. (25) the populations of each electronic state |ci|2 are obtained. De-

pending on the variation of these populations, the fewest-switches algorithm115 stochastically

decides whether the trajectory should continue on the same state or should jump onto an-

other one. In case of hop, the next energy gradient for the nuclear motion is calculated using

the new state while the nuclear velocities are scaled to preserve the total energy.

Applications The NAMD implementation in Molcas allows to study problems in pho-

tochemistry and photobiology. It is currently being used by several groups for simulating

excited state dynamics in many chemical and biological systems.118–127 The success stems

from the variety of electronic structure methods for excited state calculations in Molcas.

Applications in the gas phase were done to a molecular motor with a chiral hydrogen
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bond environment (see Fig. 14)127 and to a chiral model indanylidene–pyrrolinium (NAIP)

switch.125 In these applications CASSCF level of theory was used. However, the first

CASPT2 trajectories were performed for a halogenated methyl radical CF2I.122 Recently,

also a truncated retinal model with three double bonds was subject to a NAMD investi-

gation.118 In this study 100 CASSCF and 100 CASPT2 trajectories were computed and

analyzed.

In addition, the modular structure of Molcas permits combination with other mod-

ules such as espf to do simulations in the QM/MM framework. The first QM/MM

application was the calculation of the photoisomerization mechanism in rhodopsin and

bathorhodopsin.124 Further studies were focussed on the retinal in anabaena sensory

rhodopsin protein121 and NAIP molecular switches in methanol solution.119,126

Most recently, it has been possible to run semiclassical QM/MM trajectories at the

CASPT2 level of theory on proteins containing reduced chromophore models.128 These stud-

ies did not only provide a proof-of-principle for the feasibility of these calculations but also

were shown to yield mechanistic informations close to the one obtained with the full chro-

mophore (Fig. 15).

B. A New Approach For Generating Diabatic States: The

Dipole–Quadrupole (DQ) Method

Diabatization is a method for transforming from an adiabatic basis to a diabatic basis. In

an adiabatic basis, the potential energy surfaces have cuspidal ridges at conical intersection

seams, and the nonadiabatic coupling of the adiabatic states is singular at these seams.

A diabatic basis is more convenient for dynamics calculations; diabatic potential energy

surfaces are smooth and their couplings are nonsingular. References for various methods for

diabatization are assembled and discussed elsewhere129–133.

The dipole–quadrupole (DQ) method for direct diabatization was developed recently134

and has now been added to Molcas. In the DQ scheme, a diabatic state is defined by an

adiabatic-to-diabatic transformation

φA =
N∑
I=1

ψITIA (28)
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FIG. 15: Comparison between CASSCF/6-31G*/AMBER and CASPT2/6-31G*/AMBER
QM/MM nonadiabatic (Tully) trajectories describing the photoisomerization of the

sensory rhodopsin from the cyanobacterium Anabaena PCC 7120. A. Reduced
13-cis-retinal chromophore model used in the calculation. The reduced chromophore model
has been inserted in the protein cavity optimized for the full chromophore model (top).
The cavity has then been re-defined as comprising all side-chains within 4.0 Å from any
atom of the reduced chromophore while the rest of the protein has been kept fixed. B.
Evolution of the dihedral angle describing the change in the double bond geometry (red
part of the molecule). The set of ten CASSCF-based and CASPT2-based trajectories,
selected by a Boltzmann-type equilibrium (to be published) demonstrate a qualitatively
consistent behavior of the two levels of theory with a tendency of the CASPT2-based

trajectories to decay at a later time and on a wider region.

where ψI is an adiabatic state and φA is a diabatic state; therefore, the diabatic states span

the same space as the N chosen adiabatic states. The adiabatic states are eigenfunctions of

the Born–Oppenheimer electronic Hamiltonian, and diabatic states have smoothly varying

electronic wave functions and energies and negligible momentum couplings.135 The motiva-
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tion for working in a basis of diabatic states is the relative ease with which one can obtain

an analytical representation and carry out dynamics calculations. In the adiabatic repre-

sentation, states and surfaces have discontinuous gradients, and the momentum couplings

are vectors with singularities. However, diabatic states are smooth by definition and are

coupled by the off-diagonal elements of the electronic Hamiltonian, which are smooth, scalar

quantities.

The DQ method involves the dipole moment with one choice of origin, R0, and the

quadrupole moment defined with one or more choices of origin; the various origins for the

quadrupole terms are denoted as Rj with j=1, 2, . . . , Nor. The transformation matrix is

determined such that the transformation maximizes fDQ, defined by

fDQ =
N∑
A

|〈φA |R−R0|φA〉|2 +
Nor∑
j

αj
∣∣∣〈φA ∣∣∣|R−Rj|2

∣∣∣φA〉∣∣∣2
 , (29)

where αj is a parameter and R specifies the positions of all particles.

This method has been implemented in Molcas as a subroutine in the rassi66,136,137

module and works with CASSCF,138 RASSCF,5 CASPT2,17,139 or RASPT27 wave func-

tions. One first computes dipole and quadrupole matrices in rassi; then these quantities

are passed into the DQ subroutine, which finds a transformation matrix that maximizes

Equation (29). This transformation matrix is T in Equation (28), and it yields diabatic

states and their energies and couplings at a single point.

The function in Equation (29) was inspired by previous work that only used the dipole

moment.140–144 A problem with only using the dipole is the lack of generality when treat-

ing reactions because many problems of interest have electronic states with similar dipole

moments. By introducing the quadrupole, the DQ method can alleviate this problem and

allow diabatic transformations for a larger number of systems or for larger number of states

for a given system. This can be illustrated by diabatizing the three lowest-energy 1Σ+ states

of LiH at the state-averaged CASSCF145/aug-cc-pVTZ146 level of theory, with two active

electrons in nine active orbitals, where four states were averaged over in the calculation

(denoted SA(4)-CAS(2,9)SCF). The nine orbitals nominally correspond to 1sH, 2sLi, 2pLi,
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FIG. 16: The adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) potential energy
curves of the three lowest-energy 1Σ+ states for LiH. The diabatic states were computed

with Boys localized diabatization.

3sLi, and 3pLi. For the DQ method, we used the Li atom as the only choice of origin for

the quadrupole integrals (i.e. Nor = 1), and we used an α value of 10 a−2
0 . For the dipole

integrals, R0 was the position of the Li atom; however, the results for LiH are indepen-

dent of R0, since it is a neutral molecule. The comparison between using Boys localized

diabatization142 which only uses the dipole (i.e., α = 0), and using the DQ method are

shown in Figs. 16 and 17. The adiabatic potential curves (V1, V2, and V3) are the same

in Figs. 16 and 17, and the diabatic potential curves (U1, U2, and U3) are defined by their

character near the equilibrium geometry: state 1 is ionic with a 1s2
H valence configuration,

state 2 is covalent with a 2sLi1sH valence configuration, and state 3 is also covalent with a

2pLi1sH valence configuration. The dipole moment is able to differentiate between the ionic

and covalent states; however, the two covalent states need the quadrupole in addition to the

dipole; without the quadrupole one obtains a linear combination of the physical diabats at

large inter-nuclear separation, as seen in Fig.16.

The DQ method is applicable to general photochemical reactions, not just dimers and

electron transfer systems. As an example, we also showed that one can also obtain good

results for the challenging case of the photodissociation of phenol.134 This is very encour-

aging and indicates that the DQ method can be a valuable tool in studying photochemical
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FIG. 17: The adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) potential energy
curves of the three lowest-energy 1Σ+ states for LiH. The diabatic states were computed

with the DQ method with α = 10.0 a−2
0 .

reactions.

C. The Molcas–Cobramm interface

This interface provides easy access to the recently implemented Molcas Cholesky type

decomposition-based and FNO-CASPT2 routines in a combined quantum mechanical molec-

ular mechanical framework, with automated MM topology and QM/MM input generation

along with a variety of tools to evaluate spectral properties of multichromophoric systems

and to process spectral data.

Cobramm is a QM/MM program adopting an ONIOM-like147 subtractive approach

within an electrostatic embedding scheme. It connects the features of various QM codes and

the molecular mechanics program Amber (Figure 18).148 It has been specifically designed to

investigate excited state properties and photodynamics of biomolecules. The major aim of

Cobramm is to keep complicated and tedious input and setup procedures at a minimum.

The QM and MM program input is the same as for the specific codes used, and QM and

QM/MM optimizations and molecular dynamics can be readily accessed using a minimal

number of keywords. Providing a PDB structure and the libraries for non-standard residues
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(if present) as inputs, the user can easily select the QM and MM regions, the frozen/mov-

able residues and the type of computation to be performed. Molcas is used within the

Cobramm module, which is available free of charge upon request.149

The Molcas-Cobramm interface features usage of the newly developed Cholesky

decomposition-based techniques, reaction fields, numerical nonadiabatic couplings and gra-

dients to be used in free and constrained optimizations, numerical frequencies and molecular

dynamics. Numerical computations can be performed with a simple parallelization routine

distributing the workload among the available CPUs with or without using MPI extensions.

By means of the Molcas-Cobramm interface, the user can take advantage of various

helpful features available for the nonadiabatic molecular dynamics. For instance, an energy

criterion can be set in order to change the timestep size during simulation (e.g it can be

reduced to map with a finer grid strongly coupled regions of the PES), to activate/deacti-

vate the calculation of the derivative couplings (to save computational time), and to switch

from state-averaged to state-specific computations (i.e. to avoid possible wave function

convergence problems). Moreover, for CASSCF molecular dynamics, CASPT2 single point

calculations can be automatically performed on top of the MD snapshots (selected with the

desired timestep/frequency). The Molcas-Cobramm interface also offers specific tools

allowing automatic analysis of geometrical data and generation of statistical data (including

hopping times, distribution of geometry parameters like bond lengths or torsions, etc.).

Finally, the Molcas-Cobramm interface includes a plug-in that makes use of the Spec-

tron code, a program for generating linear and nonlinear response for molecular aggre-

gates and quasi-particles, subject to interaction with ultrashort laser pulses, by solving the

Liouville–von Neumann equation for the density matrix.150 It can be applied to calculate

the third-order nonlinear response of (multi)chromophoric systems, allowing for simulations

of two-dimensional electronic spectra (2DES), see Figure 18. Also this code is avaliable free

of charge.

In the following section, we describe how the recent Molcas developments reported

above open the way to accurate first-principles simulations of this emerging nonlinear spec-

troscopic technique.

Applications: SOS//QM/MM simulations of nonlinear optical spectroscopy

We present here two examples of simulated two-dimensional electronic spectra in the

ultraviolet (2DUV) using the aforementioned Molcas-Cobramm interface. 2D electronic
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FIG. 18: Schematic representation of the Molcas-Cobramm interface and its application
to simulations of nonlinear 2D electronic spectra (via the Spectron code plugin).

spectroscopy emerged in the last decade as a nonlinear optical technique based on sequence

of ultrashort laser pulses, with high temporal and spectral resolution that provides funda-

mental insight into coherent excited state dynamics, interstate population transport, solvent

reorganization timescales and non-covalent interactions (π-stacking). Experimental 2D elec-

tronic spectra contain a wealth of (congested) information associated with time-dependent

and state-specific “fingerprint” signals, such as stimulated emission (SE) and excited state

absorption (ESA), calling for theoretical interpretations that face several computational

challenges. Recently, a computational protocol for simulation of 2DUV spectra of complex

systems like peptides or poly-nucleotides has been introduced151–154, based on the sum-over-

states (SOS) approach, where an ab initio characterization of the excited state manifolds of

multichromophoric systems within a quantum mechanics/molecular mechanics (QM/MM)

scheme is coupled with the nonlinear response theory.155 These electronic structure calcu-

lations can be performed by means of the Molcas-Cobramm interface. To this scope,

the CASSCF/CASPT2 methodology is the preferred choice, in light of the often multicon-

figurational nature of the excited states and the need to describe valence, charge-transfer

and doubly excited states at equal footing. The simulations of nonlinear spectra within

the CASSCF/CASPT2 framework pose formidable challenges, due to the requirement of

large active spaces (necessary to include high-lying excited states, above twice the energy
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of the first bright state) and the necessity of including up to hundred excited states in the

state-average procedure. With the implementation of the state-averaged RASSCF/RASPT2

technique and the parallelization of the CD-RASPT2 method this is no longer an impossible

tasks, also for relatively large chromophoric systems. In fact, exploiting Molcas versatile

utilities we have recently presented a methodology for performing large active space/large

basis set computations for the monomeric building blocks of complex multichromophoric

systems (i.e. amino acids and nucleobases)151–154, providing a library of reference values for

transition energies and dipole moments that cover the near-IR to far-UV spectral window

for application in linear and nonlinear spectroscopy. This set of data has been used to assess

the applicability of active space/basis set truncation and semi-empirical correction schemes

available in Molcas for reproducing the reference electronic spectra at low cost. A similar

strategy has been applied in a recent study by Pulay et al.156 The low-cost computational

recipes have been then employed for simulation of 2D electronic spectra of relatively large

chromophoric systems within the SOS//QM/MM scheme.

Figure 19 a shows the first example of simulated 2DES spectra obtained with the Mol-

cas-Cobramm interface151,152. Simulated 2D electronic spectra of a tetrapeptide with two

aromatic (phenyl and phenolic) side chains contain enough information to distinguish be-

tween configurations with distant and vicinal side chains. SA-CASSCF(14,13)/SS-CASPT2

level of theory has been used to include all valence π-electrons and π-orbitals of both UV

chromophores in the active space and 70 states were included in the state-average proce-

dure. The proposed SOS//QM/MM protocol indicated the presence of important signals

that are completely neglected using conventional Frenkel exciton Hamiltonian models, in-

cluding charge-transfer (CT) states that characterize the coupling of UV-chromophores.

These results point out the potential of UV-active aromatic side chains as local highly spe-

cific markers for tracking dynamics and structural rearrangements in proteins by means of

2DUV spectroscopy.

The theoretical study of the model proteic system accounted for the simulation of one of

the possible 2DES experiments, where the excited state dynamics is avoided by controlling

the time intervals of the laser pulse sequence. However, 2DES can be used also to track

ultrafast events along the excited state dynamics of multichromophoric systems. As de-

picted in Fig. 19b, the nuclear degrees of freedom along the dynamics in the photoactive

state(s) can determine electronic fluctuations that can be resolved by 2DES experiments.
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FIG. 19: Simulations of 2D electronic spectra obtained with the Molcas-Cobramm
interface, including the 2DUV spectra of two different configurations of a tetrapeptide with

two aromatic chromophores (panel a). and comparison between experimental and
theoretical 2D spectra of pyrene at 1 ps upon photoexcitation (b).

Using the Molcas-Cobramm interface the fluctuations of higher excited states of pyrene

(Fig. 19b), an aromatic chromophore characterized by an ultrafast decay from the bright

S2 (La) state to a dark S1 (Lb) state, have been characterized along a single-trajectory prop-

agated at the SA-CASSCF(2,2) level and nonadiabatic molecular dynamics refined at the

SA-60-RAS(4,8;0,0;4,8)/SS-RASPT2 level.157 Accounting for these fluctuations allowed a

proper description of the coherent nuclear motion that strongly affects the time-resolved 2D

electronic spectra. The nice agreement between the experimental and theoretical spectra

(Fig. 19b) validates the formulated mathematical models and the results obtained with the

Molcas-Cobramm interface, including the nonadiabatic molecular dynamics and the state-

of-the-art electronic structure computations. The same approach can be employed to study

the photochemistry and photophysics of other photoactive molecular systems embedded in

complex environments, including biological photoreceptors (e.g. retinal proteins158–160) and
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polynucleotides in DNA/RNA.153,154

V. MOLECULAR GRADIENTS AND OPTIMIZATIONS

The use of gradients with respect to the nuclei is essential for the determination of molec-

ular structure, to establish reaction paths and as the driving force for molecular dynamics

simulations. Here we present (a) the new state average CASSCF gradients in association

with density fitting and subsequently two novel methods useful for (b) more efficient numer-

ical gradient calculations and (c) for optimizations with fixed subfragments of a molecular

system.

A. Cholesky Decomposition-based Quantum Chemistry: from accurate

energetics to structures of large molecules

The Molcas package is mostly used for its array of efficient multiconfigurational wave

function methods. Before the release of Molcas-7, the existing algorithms implementing

these methods suffered from a major shortcoming arising from the calculation, transforma-

tion, and storage of electron repulsion integrals (ERIs). Such bottleneck made it difficult

to use Molcas for larger systems and molecular dynamics studies, where many energy and

gradient calculations are needed. This problem has since Molcas-7 been tackled and ef-

fectively solved with the development of techniques based on Cholesky decomposition (CD)

of ERIs. The CD approximation to the ERIs had been introduced in quantum chemistry in

1977 by Beebe and Linderberg161 but almost forgotten due to difficulties in the development

of an efficient decomposition algorithm — with N a measure of system size, a naïve imple-

mentation would scale as N 6 as compared to the N 4 scaling of simply evaluating the ERIs.

Using straightforward Cauchy–Schwartz screening, a cubic-scaling algorithm was presented

in 2003 by Koch et al.162 and further improvements have since been implemented in Mol-

cas-7.1,163,164 One challenge remained, however. The CD technique is usually formulated

as a numerical procedure, which makes it difficult to express analytical derivatives.165 As

of Molcas-8, analytical derivatives are available for most CD-based methods, as we shall

outline below.

CD consists in expressing the ERIs in terms of a sum of outer products of so-called
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Cholesky vectors:

(µν|λσ) ≈
M∑
J

RJ
µνR

J
λσ . (30)

The Cholesky vectors are obtained through a recursive numerical procedure that simultane-

ously determines the number of vectors,M , in accordance with the requested accuracy.163,164

For typical applications the value of M is 3–5 times the number of atomic orbital (AO) ba-

sis functions. Individual ERI errors caused by the decomposition are controlled by a single

parameter (the Cholesky threshold), thus offering the user a simple means for accuracy con-

trol. With the algorithmic developments33,166,167 introduced by the Molcas community, CD

techniques have witnessed in the last decade a growing interest as means to develop high-

efficiency and controlled-approximation methods for electronic structure theory calculations.

The computational benefits of using CD-based algorithms vary depending on the type of

quantum chemistry method in which CD is introduced. Details on this topic have already

been presented in the literature along with extensive benchmarks on CD accuracy.168–170

However, a major breakthrough for CD-based quantum chemistry has been that of realiz-

ing the common nature171 that CD shares with a more popular ERI approximation technique

known with the names of resolution of identity (RI) or density fitting (DF). Indeed, it can be

shown that the CD representation of Eq. (30) is equivalent to RI/DF employing a set of aux-

iliary product functions (hJ , also known as Cholesky basis) defined along the decomposition

procedure, namely :

(µν|λσ) ≈
∑
JK

CJ
µνGJKC

K
λσ , (31)

where

GJK = (hJ |hK) , (32)∑
J

CJ
µνGJK = (µν|hK) . (33)

One way to fully exploit this connection has been that of using CD to define atomic auxiliary

basis sets for standard RI/DF algorithms: the atomic CD (aCD)172 and later the atomic

compact CD (acCD) basis sets.173 The original CD is now called in Molcas full-CD. The

main advantage of the CD-generated auxiliary basis sets compared to the standard prede-

fined auxiliary basis sets is that they are not biased towards any method, and their accuracy

can be largely tuned by the choice of the decomposition threshold.168–170
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But even more important is the fact that the equivalence with RI/DF allowed to devise

a way to compute analytical gradients, which had been seen as a major drawback of CD.

By means of Eq. (31) it is in fact possible to approximate the ERIs’ first derivatives (e.g.,

with respect to a geometrical displacement) as:

(µν|λσ)(1) =
∑
J

CJ
µν(λσ|hJ)(1) +

∑
J

(µν|hJ)(1)CJ
λσ −

∑
JK

CJ
µνG

(1)
JKC

K
λσ , (34)

where the fitting coefficients can be computed either by inverting 33, or directly from the

Cholesky (or RI/DF) vectors, as in Ref. 171. Following this insight, gradients for the

Coulomb171, exchange174 and MP2 energies175 were derived, and efficient algorithms are

now present in Molcas-8 that show similar speed-ups as for the energy calculation, while

hardly affecting the computed equilibrium structures. In-depth analysis of the above im-

plementations is beyond the scope of the present publication. Here, we will only point out

that the two-electron contributions to the CD-energy gradients are computed by building

the two- and three-index effective density matrix, PJK and PK
µν , respectively, followed by

contraction with the integral derivatives:

E(1) ∼ 2
∑
Kµν

PK
µν(K|µν)(1) −

∑
JK

PJK(J |K)(1) . (35)

The effective density matrices result from specific tensor contractions involving the fitting

coefficients and the usual one- and two-particle density matrices. The gradient code can thus

be streamlined in the same way as the conventional code, with first computing the (effective)

density matrices and then contracting them on the fly with derivative integrals. A major

prefactor in the cost for computing the effective density matrices comes from exchange-type

contributions. However, an extension of the LK-screening algorithm166 has been developed in

Molcas-8 that reduces such computational costs for medium to large molecules by resorting

to a Cholesky-localized orbital picture.176

Very recently, single-state CD-CASSCF analytical gradients were for the first time em-

ployed in order to analyze the geometry of a ruthenium nitrosyl complex.177 While keeping

the mean energy gradient errors below 0.25%, a 13-fold speedup was observed compared to

the conventional CASSCF geometry optimization algorithm. The array of developments in

CD-based analytical gradients implementations completed within Molcas-8 includes also
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FIG. 20: Comparison of the time of the different steps in CD-based RI-SA-CASSCF
gradients for some Heme models.

FIG. 21: Comparison of the time to compute the gradient formation (alaska) on C14H16
for the conventional and CD-based algorithm for RI-SA-CASSCF wave functions.

the extension to SA-CASSCF (state-averaged CASSCF) for excited states calculations.178

Both the solution of the linear response equations for the determination of the Lagrange

multipliers (mclr) and the gradient formation (alaska) benefit from the CD implementa-

tion and overall, the implementation reaches a balance between these two steps and the

energy calculation itself as illustrated in Fig. 20. One important feature of this alaska

implementation is that the time required for computing the effective density matrices and

subsequent contraction with the integral derivatives is nearly independent from the size of

the active space, as opposite to the conventional calculation (see Fig. 21).

We are confident that with the current implementation of energy and gradients calcu-

lation for CD-based approaches, Molcas-8 could potentially mark a new era in the use

of multiconfigurational wave function methods for ab initio molecular dynamics studies in

photophysics and photochemistry.
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B. Constrained numerical gradients and composite gradients

As pointed out above, one of the essential quantities needed from any quantum chemistry

package is the energy gradient. For many electronic structure methods it is possible to

obtain the gradient based on an analytical formulation, with a computational cost that

is roughly equivalent to that of computing the energy. Also, the range of methods for

which Molcas provides such analytic gradients, and their efficiency, is increasing. However,

the more sophisticated methods often lack analytical implementations, and to obtain the

gradient one must resort to numerical differentiation, requiring a large number (proportional

to the number of atoms in the system) of energy calculations. In spite of this very large

computational cost, especially considering that it is required for the highest-level methods,

numerical differentiation has the advantage of being easily implemented and almost trivial

to parallelize.

Another problem faced by geometry optimization methods is the large dimensionality of

extended systems. As the number of atoms increases, so does the number of coordinates and

degrees of freedom, and locating an optimum structure becomes increasingly more difficult.

A possible way to overcome this problem is reducing the dimensionality of the system by

applying constraints or freezing some degrees of freedom that are considered to be secondary

for the problem at hand. Since several years Molcas includes a powerful and versatile tool

to perform optimizations with various types of constraints.179 If a constrained optimization

is combined with a method for which analytic gradients are not available, it should be pos-

sible to keep down the number of energy calculations by restricting the differentiation to the

degrees of freedom that will be actually optimized, as the gradient along the constrained

degrees of freedom is typically not needed. This is now done in Molcas. Thus, whenever

numerical gradients are computed with constraints, only the unconstrained coordinates are

differentiated. This can represent a very important performance improvement when ex-

tensive constraints are used. As an example, in a system formed by two molecules with

constraints defined such that the molecules remain rigid and only the intermolecular degrees

of freedom are optimized, the effective numerical gradient can be computed with only 13

single-point calculations, regardless of the size of the molecules. This should be compared

to the 6N − 11 (N , total number of atoms) energy calculations that would be needed if the

constraints are not taken into account.
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FIG. 22: Performance of the present method for constrained optimization with numerical
gradients for the S22 set of weakly bound dimers.180 The mean and median energy

deviation (a) is shown together with the mean and median RMS distance (b) with respect
to the fully optimized structures. The numbers appearing on the x-axis refer to different

values of the energy convergence criterion in units of Eh. Starting structures for the
constrained optimizations were obtained by randomly modifying the intermolecular

coordinates of the fully optimized structures. All computations were performed at the
MP2/cc-pVDZ level. Note that for the mean and median energy deviations obtained with

internal coordinates, one data point (the formic acid dimer) was removed due to
anomalous behavior.

In test calculations on the S22 set of weakly bound dimers180, we have shown that when

using the partial numerical gradients discussed above, the errors introduced in the final

energies and geometries are of the order of the convergence threshold181 (see Fig. 22). At

the same time, the computational cost of the constrained optimization is reduced by up to

95%, depending on the number of constraints defined. We emphasize that this reduction is

achieved with no change in the input and virtually no effect on the results. Therefore, when

one must use numerical gradients, a case can be made to include as many constraints as is

reasonable for the system being studied.

For cases where constraints cannot be used because it is necessary, or at least desirable,

to relax all the coordinates in the system, it is still possible to reduce the number of energy

56



FIG. 23: 2,3-dimethyl-2-butenal

evaluations by using what can be seen as hybrid or “composite” gradients. In this case

a partial numerical gradient is computed as above, but it is combined with an analytic

gradient (computed with some other method for which analytic gradients are available) for

the degrees of freedom not included in the numerical differentiation. The separation of

the degrees of freedom to be differentiated numerically (with the higher-level method) and

analytically (with the lower-level method) should be reasonable, and the combination of the

two electronic structure methods must be meaningful.

As an example we can consider the calculation of electronic transition energies in 2,3-

dimethyl-2-butenal (Fig. 23).181 The geometries in the ground and excited states can be

computed with CASPT2, although since analytic CASPT2 gradients are not available in

Molcas, the optimization requires 91 single-point calculations per iteration. Alternatively,

the geometries can be optimized at the CASSCF level (with analytic gradients) and the

transition energies computed with CASPT2 (CASPT2//CASSCF). Table II shows the effect

that the different optimized geometries have on the transition energies. Given that the active

space spans only the central π system, it can be assumed that the internal structure of the

three methyl groups will have little effect on the transition energies. A composite gradient

strategy can therefore be adopted, excluding the internal CH3 coordinates from the CASPT2

differentiation and using some other method’s analytic gradients (like CASSCF or MP2) for

them instead. In this way, the number of energy evaluations is reduced to 55 (plus a single

gradient calculation at the lower level) per iteration. The resulting transition energies are
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main CH3 ∆E(S0 → S1) ∆E(S1 → S0)
full CASSCF 3.88 2.50
full CASPT2 3.84 2.56

CASPT2 CASSCF 3.84 2.56
CASPT2 MP2 3.84 2.56

TABLE II: CASPT2 vertical transition energies of 2,3-dimethyl-2-butenal at different
optimized geometries. The first two rows are conventional optimizations, the last two rows
use composite gradients, with different methods for the internal methyl coordinates and

the rest of the system.

also shown in Table II, with no significant difference from the full CASPT2 optimization.

It should be noted that when MP2 is used for the CH3 gradient, this is computed at the

ground state, even for the excited state optimization. However, this should not be a problem

since the electron density in the methyl groups is not expected to be significantly affected

by the electronic state.

The composite gradients and the constrained numerical gradients computed in Molcas

can be used in both geometry optimizations, as in the above examples, or, especially the

composite gradients, in molecular dynamics simulations (see subsection IVA). In combi-

nation with the easy parallelization of the numerical differentiation, we expect that these

techniques can help extending the use of higher-level electronic structure methods to larger

systems.

C. Geometry optimization based on frozen fragments

A study of interaction between different molecules and/or a molecule and a surface quite

often requires geometry optimization with internally frozen fragments. The freezing of co-

ordinates can be used not only for increasing the speed of the calculation, but also can be

used to perform a model calculation with very few parameters involved.

In the previous section we introduced a method to take advantage of the frozen coor-

dinates to reduce the computational effort to obtain numerical gradients, but nothing was

changed in the optimization algorithm. In this section we refer to a novel optimization algo-

rithm specifically designed for frozen fragments and which bypasses the numerical gradient

calculation.

The usage of internal coordinates for geometry optimization is the most preferable way
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of optimization: it allows to minimize the number of degrees of freedom, and it reduces

numerical errors since all displacements are done according to the direction of variation of

forces (bond distances, and valence angles). In Ref. 182 we introduced a new procedure

for numerical geometry optimization of frozen fragments which is based on displacements

of internal coordinates (Molcas module geo). In this approach a partial Z-matrix is con-

structed and it is used to define Cartesian coordinates which correspond to displacements

of internal coordinates. An advantage of the proposed technique is that it can be applied to

any computational method which produces a total energy for a chosen geometry.

The method can be used for geometry optimization using CASPT2 or coupled cluster

Hamiltonians. In Ref. 182 we reported optimization of a system containing Li+ ion and

benzene molecule using the CCSD(T) method. The Li+ ion was placed at the benzene plane,

and during geometry optimization, the ion moved to the position on top of the benzene ring.

The optimization process took 18 iterations. We should note here that using the standard

Molcas tool (slapaf) the convergence was never achieved.

Another group of applications where geometry optimization with frozen fragments is

essential is a study of interaction of molecules with a crystalline surface. One relatively

simple example of such interaction is the reaction of a single water molecule with an ionic

oxide surface, e.g. CaO. The surface of the ionic crystal can be presented as a small cluster

embedded into the electrostatic field of point charges. According to the model adsorption,

one should control the relaxation of the crystal surface. Different steps can be studied:

physical adsorption (no relaxation at all), chemical adsorption (relaxation of the molecule is

allowed, while the surface is frozen), chemical reaction (both the molecule and the surface can

relax) and possible dissociation of the molecule. Optimization with frozen fragments allows

to model all these steps. We performed a study of dissociation of a single water molecule at

a CaO surface modelled by a Ç cluster using the CASPT2 Hamiltonian (with active space

for CASSCF calculation 12/12). A barrier free dissociation of the water molecule has been

observed on the CaO surface, where one Ca atom was allowed to move. However, if all

atoms on the CaO surface are frozen the dissociation does not occur.

In this case the possibility to perform optimization with frozen fragments not only allows

to use very precise multiconfigurational methods, but also was useful to control different

steps of the chemical reaction.
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FIG. 24: Orientation of a water molecule on a CaO surface: physical sorption (PS),
chemical sorption (CS), dissociation (CS*)

VI. TECHNICAL FEATURES

Finally, in this section we present some new technical developments. In particular, we

present (a) a file-in-memory feature, (b) the implementation of libraries for efficient paral-

lelization, and (c) the Molcas/Columbus interface in some details.

A. Files In Memory: a new memory based fast I/O layer in Molcas-8

The heavy I/O activity forms one of the major obstacle in all advanced multiconfigura-

tional calculations: the two-electron integrals, or Cholesky vectors files are read sequentially

a few times while other intermediate files are accessed constantly and randomly. Such ran-

dom I/O workload is the worst case scenario for a conventional mechanical Hard Disk Device

(HDD), due to the excessively high latency (milliseconds) of spinning hard disks. In prac-

tice, the best possible performance of Molcas can be achieved by using only an electronic

data storage device with the lowest available latency and the best random Read/Write

performance like, e.g., Random Access Memory (RAM), or Solid State Device (SSD).

Although nowadays a commodity workstation is equipped with a relatively large amount

of memory, neither the Molcas program itself nor a buffer cache mechanism of an under-

lying operating system (OS kernel) can always utilize this memory in an optimal way. On

the one hand, the original Molcas code was developed in the beginning of the 90s and it

was solely designed to minimize RAM demands at the cost of an extra I/O. On the other

hand, the OS kernel caches data from all opened files uniformly, regardless of their sizes
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TABLE III: Time needed to generate one- and two-electron integrals (seward),
variationally optimize multiconfigurational wave function (rasscf), compute Lagrangian
multipliers for the wave function via linear response theory (mclr), and compute dynamic

correlation energy by means of the second-order perturbation theory (caspt2). The
Molcas performance are measured by using two types of persistent data storage devices,
including: 1Tb Western Digital HDD, and 256Gb Intel SSD. The disk usage statistics, and
the reference timings correspond to the run when HDD is used for keeping scratch data.

Module Disk Time Relative speedup
Usage (Gb) HDDa (min) FiMb SSDc

seward 24.3 11.7 1.6× 1.8×
rasscf 28.5 23.3 1.0× 1.1×
mclr 52.4 31.1 1.9× 2.2×
caspt2 58.6 252.0 1.5× 2.7×

a The WD10EURX-73FH1Y0 model
b The FiM timings were obtained by using 28Gb out of 32Gb RAM available for emulating I/O.
c The SSDSC2CW240A3 model

and I/O access patterns. This I/O interference problem has been mitigated in Molcas-8

by developing a new framework called “Files in Memory” (FiM). The key idea of FiM is to

keep a scratch file in RAM entirely instead of using a persistent storage device. Within the

FiM layer, the Read/Write operations are just a user-space memory copying with practically

instant (nanoseconds) seek time. FiM can be easily activated by modifying certain Molcas

configuration files (details can be found in the manual).

In order to demonstrate the efficiency of FiM, we will provide representative timings

on a typical Molcas multiconfigurational calculation. The performance of FiM has been

measured by doing a two-state averaged CASSCF(12,12), mclr, and CASPT2 calculations

on the 54-atom rhodopsin chromophore molecule (C21H32N) employing the 6-31G* basis set

(394 basis functions). As one can see from Table III, the FiM I/O layer performs reasonably

well compared to SSD. Indeed, within FiM we obtained a speed-up factor of up to 1.9

times in comparison with corresponding HDD disk-based timings. Another feature is that

FiM allows users to run Molcas-8 on diskless compute nodes without incurring significant

overall performance penalty.
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B. Parallel framework in Molcas-8

The parallel functionality of Molcas has for a long time been exclusively based on a

combination of the Global Arrays (GA) library183.for memory management and parallelliza-

tion, and/or allowing the use of an external, threaded BLAS/LAPACK library for linear

algebra. GA provides a convenient abstraction layer for operations on arrays that are dis-

tributed over different parallel processes. The library supports various one-sided operations

for manipulating data in such a global array.

The GA library is a large package containing lots of features that are not used by Mol-

cas. Since Molcas fully relied on GA for its parallel functionality, most common problems

with running Molcas in parallel were thus related to GA, an external project that Molcas

had little to no control over. Considering the relatively small GA feature set used by Mol-

cas, it was decided to develop our own GA-compatible layer implementing a subset of the

GA API, simply called distributed global arrays (DGA)184. While GA supports lots of dif-

ferent communication back-ends, DGA relies solely on MPI for its low-level communication

layer.

The current Molcas interface to external libraries is depicted in Figure 25.

The use of a threaded, external BLAS/LAPACK library allows for a speed-up by using

multiple cores on a single shared-memory machine. Alternatively, Molcas can now also be

configured to use NVBLAS185 to run specific BLAS operations on a GPU. Parallel linear

algebra operations involving multiple machines are enabled through either GA or DGA

(which then use an external BLAS/LAPACK library). Currently, caspt2 is the only code

that benefits from using the latter functionality (for very large matrix-matrix multiplication

and diagonalization).

C. The Molcas/Columbus link

The purpose of this link is to provide easy access to large scale configuration interaction

calculations within the Molcas framework.

Outline of the link Columbus is a general-purpose multireference (MR) program

package for uncontracted singles and doubles configuration interaction (MR-CISD) and MR

averaged quadratic coupled cluster (MR-AQCC) calculations.186 As compared to CASPT2,
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FIG. 25: Overview of the Molcas library interfaces. Optional components are surounded
by a dashed line. The GA API must be provided by either the Global Arrays library or the
internal DGA implementation. GPU support is possible through the use of NVBLAS, but

an additional fully functional BLAS/LAPACK library is still needed.

the primary method available in Molcas, these afore-mentioned approaches do not rely

on a perturbation expansion but are computationally significantly more demanding than a

comparable CASPT2 calculation. They can be used either to support selected CASPT2

investigations or can serve for extended investigations in their own right. Since the concept

of active spaces is shared in these methodologies, Molcas users will not find it difficult to

set up MR-CISD/MR-AQCC calculations. A major practical difference is that Columbus

uses an uncontracted expansion of the wave function in configuration state functions (CSFs)

whereas CASPT2 relies on an internal contraction scheme. As a consequence, the uncon-

tracted construction of reference wave functions might easily result in configuration spaces of

intractable dimensions. The generality of the uncontracted scheme allows straightforward,

computationally inexpensive calculation of analytic MR-CISD and MR-AQCC energy gradi-

ents and nonadiabatic coupling vectors. The availability of analytic MR gradients constitutes

a major advantage of Columbus since they provide the basis for structure optimizations

(minima, saddle points, minima on the crossing seam) and can supply the quantum chemical

input for surface hopping dynamics e.g. in connection with Newton-X187 or SHARC.188

Both variational and perturbational treatment of spin–orbit (SO) coupling at the MR-CISD

level of theory is available.189–191 For practical high-level electron correlation treatment —

in particular in the context of variational SO-MRCISD — CSF expansion space dimensions

between 108 and 109 are fairly common and perfectly feasible with Columbus on today’s

computer hardware at quite modest turn-around times (for details cf. Suppl. Mat.).

Molcas provides a framework to integrate external modules such as Columbus. A

multitude of more approximate, cheaper or complementary methods is available within this
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FIG. 26: Schematically depicted data and program flow for mixed operation of Columbus
and Molcas under control of the Molcas-driver. The depicted work flow refers to
single-point energy evaluations and structure optimizations. Molcas and Columbus

modules as well as the corresponding sections of the input file are depicted in blue and red,
respectively.

scheme, which allows running specific, perfectly matching benchmarks. The level of inte-

gration of Molcas and Columbus is defined through the exchange of information via

high-level Molcas library routines to access integral, density and runfile data. Two inte-

gration modes are available. For standard usage, Columbus is directly accessible through

the Molcas driver utility so that single state (SS) and state-averaged (SA)-MCSCF, MR-

CISD and MR-AQCC along with structure optimization modules are directly accessible as

a Molcas style subsection in the Molcas input file.

The flow chart (Fig. 26) qualitatively illustrates the basic variations of calling sequences

for Columbus and Molcas modules. Together with the flow control feature of the Molcas

input, the treatment of more complex tasks is also possible. Concerning the actual syntax

of the Columbus subsection of a Molcas input file, refer to the Suppl. Mat. As second

alternative, MRCI computations can be performed by using Columbus as main program

module with Molcas providing the necessary atomic orbital (AO) integrals. In this latter

case, additional Columbus input features can be used which are not directly accessible in

the more specialized Molcas subsection link.
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Multi-State Calculations Including Spin–Orbit Interaction on the Benzene–

Copper Complex The motivation for this example is derived from the aim to perform

ab initio modeling of interactions of transition metals with graphene nanoribbons. The

adsorption process is important for spintronics applications192 as it transforms the semi-

metallic graphene to a spin Hall insulator via spin–orbit coupling.193,194 As starting point

for these investigations we choose the adsorption complex of Cu with benzene. Even this

relatively small system is quite demanding as the two lowest electronic states of Cu (2S and
2D), as well as the singlet ground state (1A1) and the first triplet state (3B2) of benzene

will be considered. In the scalar relativistic calculations for the two combined subsystems 6

quartets and 12 doublets have been included while in the SO-MRCI approach 24 states were

calculated retaining solely one component of each Kramer’s pair. The construction of the

wave functions is based on a direct product space CAS(11e,6o)⊗CAS(6e,6o) consisting of a

CAS for 11 electrons and 6 orbitals referring to the Cu atom which includes the 3d and 4s

shells. The second space relates to the benzene molecule (Bz). More computational details

referring to the state-averaging scheme, the construction of MRCI reference functions and the

basis set used can be found in the Suppl. Mat. The scalar relativistic calculations have been

performed by means of the Columbus/Molcas link using the AO integrals from Molcas

integral code seward. For the SO-MRCISD calculations, however, the atomic orbital (AO)

integrals (including SO integrals) were calculated using the program Argos developed by

Pitzer195,196, since seward does not support spin–orbit relativistic effective core potentials

(RECP). Thus, and also due to the direct product type reference space, calculations have

been executed under control of the Columbus driver. Otherwise, scalar-relativistic or non-

relativistic as well as variational spin–orbit MR-CISD calculations including appropriate

SS/SA-MCSCF calculations may be specified and executed within a Molcas environment

(cf. Suppl. Mat. for the actual input).

In Fig. 27 the potential energy curves in the intermolecular distance R for all computed

states are displayed. The ground state curve Cu(2S)⊗Bz(1A1) shows a shallow van der

Waals minimum with a well depth of 0.14 eV. It is followed by the group of Cu(2D)⊗Bz(1A1)

curves possessing the required five-fold degeneracy at large distances which is only split at

R values below ∼5 a0. The inset of Fig. 27 shows these curves at the perturbational SO-

MRCISD level of theory. At large distances the Cu(2D) states are split into the 6-fold

degenerate group of Cu(2D5/2) and the 4-fold degenerate Cu(2D3/2) states. As expected from
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FIG. 27: Potential energy curves for the copper-benzene adduct in terms of the
perpendicular Cu−Bz distance R. The ground state (blue, Cu(2S)⊗Bz(1A1)) and the

lowest excited states derived from Cu(2D)⊗Bz(1A1) (green), Cu(2S)⊗Bz(3B2) (black) and
Cu(2D)⊗Bz(3B2)(red) are displayed. Solid lines indicate doublets, dashed lines quartets.
Energies are given relative to the dissociation products of the ground state. Blue dots

indicate the distances for which data have been computed. The inset collects the
perturbational spin–orbit MR-CISD results for the three lowest dissociation channels

Bz(1A1) + Cu(2S) (blue), Bz(1A1)+Cu(2D 5
2
) (green) and Bz(1

A1)+Cu(2D 3
2
) (light green).

the construction of the spin–orbit RECP197, the experimental spin–orbit splitting of the

Cu(2D) states (0.25 eV198) is well reproduced with 0.22 eV. On the other hand the scalar

relativistic S–D splitting is seriously underestimated with 0.60 eV as compared to the J-

averaged difference of 1.49 eV.198 State-specific CCSD(T) investigations for copper with the

same basis and RECP report an S–D splitting report 0.95 eV.199

The following group of Cu(2S)⊗Bz(3B2) (doublet and quartet states) are not exactly

degenerate asymptotically for large R because these states have not been included in SA-

MCSCF. The Cu(2D)⊗Bz(3B2) series consists of 5 doublets and 5 quartets which are

asymptotically degenerate representing the Cu(2D) state; at distances below ∼5.5 a0 the

degeneracy is lifted due to the interaction with benzene. The energy difference between

Cu(2D)⊗Bz(3B2) and Cu(2D)⊗Bz(1A1) at large R yields the lowest singlet–triplet gap of
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benzene of ∼4.24 eV to be compared with the experimental value of 3.94 eV.200 In summary,

one finds for the curves shown in Fig. 27 a bound minimum only for the ground state. All

other states are characterized as repulsive.

Due to the weak interaction between Cu and benzene and the large singlet–triplet splitting

in benzene of 3.94 eV (experiment), the spin–orbit contributions to the shape of the potential

energy curves are practically negligible. The potential energy curves displayed in the inset

of Fig. 27 show essentially a superposition of the copper and benzene spin–orbit interactions

(see above) with some slight modifications at short distances primarily due to spatially

different Coulombic interaction of the individual d orbitals. In fact, we should expect more

complex spin–orbit effects for a singlet triplet gap ∼1.3–1.5 eV of the conjugated system.

In n-acenes this splitting is found starting for n=4–5 and for periacenes with 5 armchair

benzene rings this value is already reached for a n-zigzag length of n=3.201 In addition,

graphene nanosheets seem to possess strong polyradical character202 along the zig-zag edges

which suggests even richer spin–orbit effects in contact with a copper atom.

In conclusion, one fruitful possibility for the link between Molcas and Columbus has

been demonstrated. The combination of the two program packages is transparent for the

user since all necessary restructuring of data files is performed automatically.

VII. SUMMARY

The 8.0 release of the Molcas quantum chemistry package is now available, and version

8.2 will be available soon. In this report we have published the highlights of the new

features of these versions together with some details of technical improvements. These can

be summarized as follows.

For wave function associated developments we have reported on GASSCF, FD and FNO

approximations to the CASPT2 approach. First, for the GASSCF method larger active

spaces are accessible at reduced computational cost. Perturbation theory approaches can be

applied to GASSCF wave functions to recover dynamic correlation energy, and the GASPT2

extension will be released soon. Second, with the implementation of efficient schemes for

compacting the inactive and secondary orbital space (e.g. FD and FNO) the description of

the dynamic correlation is no longer the bottleneck for the various Cholesky-based multicon-

figurational perturbation theories present in Molcas-8. These developments are comple-
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mentary to the work aiming at the generalization of the RASSCF/RASPT2 scheme to the

GASSCF/GASPT2, as well as to new approaches such as DMRG, which have the potential

to overcome the hurdle of the exponential scaling of the number of configurations with the

size of the active space.

Also new in Molcas is that wave function theory and density functional theory meet in

the multi-configuration pair-density functional theory method, MC-PDFT. This represents

a cost-effective and efficient approach to recover the entire correlation energy that can be

used as valid alternative to CASPT2 for ground state as well as excited state chemistry.

In the area of new relativistic implementations we report on a linear scaling method for

the DKH approach and implementations related to calculations including spin–orbit coupling

and magnetization. To be more specific, Molcas supports various scalar-relativistic exact-

decoupling schemes. Apart from the DKH Hamiltonians, X2C has become available. In

order to facilitate the application of relativistic Hamiltonians to large molecules, the atomic

decomposition of the unitary decoupling matrix DLU was developed and implemented in

Molcas for all such Hamiltonians. Moreover, the generation of orbitals in Molcas repre-

senting the electron density and spin magnetization components facilitates and simplifies the

analysis of electronic structure and bonding at the SO-RASSI level. Additional functionality

to represent the orbital magnetization is forthcoming.

For issues related to molecular dynamics simulation we report on a new module for such

simulations, interfaces to enable the study of nonlinear optics, and methods for diabatization.

In particular we report that, a new module (dynamix) for molecular dynamics simulation

has been added. In addition two surface hopping algorithms were implemented: one based

on a deterministic and the other one on the stochastic approach, namely the Tully fewest

switches algorithm. This permits the computation of nonadiabatic QM or QM/MM trajec-

tories for different statistical ensembles. In the present implementation, NAMD simulations

within the frame of microcanonical and canonical ensembles using multiconfigurational wave

functions (CASSCF/RASSCF, CASPT2/RASPT2) are available. Furthermore, a compu-

tational machinery for studying nonlinear optical spectroscopy and mainly based on the

interaction of different software through the QM/MM package Cobramm is present in

Molcas. Therefore, nonlinear optical spectra from accurate experiments can be modeled

by coupling CASPT2 calculations with response theory through the sum-over-states (SOS)

approach, and also within a quantum mechanics/molecular mechanics scheme for the treat-
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ment of condensed phase and protein environments. Finally, a new diabatization method has

been implemented, DQ, which is a straightforward scheme, applicable with any electronic

structure method, not restricted to simple reactions, orbital-free, and not path-dependent.

For the exploration of the molecular potential energy surfaces and computations of sta-

tionary points we present improvements in the computation of state-average CASSCF an-

alytical gradients and methods for efficient numerical gradient techniques. By using state-

average CASSCF in association with density fitting and Cholesky generated auxiliary func-

tions we have demonstrated speed-ups in the range of one order of magnitude reduction

of the CPU time. Furthermore, using geometrical constraints Molcas can now greatly

improve the performance of optimizations and numerical gradient calculations; together

with the composite gradient concept this offers a chance to run geometry optimizations and

dynamics at the highest levels of theory and at a reasonable computational cost.

Finally, some technical improvements of Molcas code (including new layers used for

I/O and parallelization) open a possibility to run the code at larger varieties of modern

hardware architectures. The link between Molcas and the multireference configuration

interaction (MRCI) program system Columbus provides the possibility of closely coupled

use of the features of both program packages. The construction of this link is quite flexible:

a Molcas user can either use the link directly via the Molcas driver utility or via a

Columbus interface when more specialized features are to be required. In this way extended

nonrelativistic and spin–orbit coupling MRCI calculations with several billion configurations

are accessible using today’s standard computer hardware.

In conclusion, we note that the development of the Molcas program package is an

ongoing process. Here we have reported the developments that have taken place during the

last six years. The software additions and improvements include several unique capabilities

that we hope will be useful to the chemistry community for simulations of molecular energies,

properties, spectra, and reactivity.
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