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Abstract: For the most part, metrology software is currently 
based on the measurement of distances or angles between 
geometrical elements. If this method of verification is well 
adapted to geometrical specification without a virtual state 
modifier, this is not appropriate for specification based on 
envelop zone such as in maximal matter condition, for 
example, for the ISO2692 standard. Usually the least 
squares best fit method is used to estimate derived surfaces, 
but the statistical information contained in the acquired 
coordinates remains under-used. The aim of this paper is to 
present a new approach for the verification of a part, based 
on a virtual gauge and using a statistical criterion. 
 
Keywords: measurement, verification, virtual gauge, 
interference probability map. 

1.    INTRODUCTION 

The guiding principle of most verification processes is 
an assembly test between a set of points or its derived 
surface and a tolerance zone built from geometrical 
specifications. Hence the geometrical verification is 
articulated around three important points: the measurement 
process, part characterization and geometrical specification 
interpretation.  

The measurement process has been the source of 
numerous research projects for the last decade. However, it 
will be assumed that the verification process will start with 
one or a set of real surfaces measurements taken on a 
classical coordinate measuring machine (CMM). Current 
metrology software is based on the measurement of 
distances or angles between geometrical elements. Usually, 
the least squares best fit method is used to associate a 
perfect feature to the acquired coordinates. However, the 
statistical information contained in the set of points is 
generally not put to use. 

In this paper, a geometrical verification by virtual gauge 
using a statistical criterion is presented. The statistical 
information contained in a set of points representing the real 
surface, permits through uncertainty propagation to define 
the probability density of the position of the matter around 
the mean associated surface. Through uncertainty 
propagation method, the probability density function of the 
position of the matter around the mean associated surface 
can be defined by the statistical information contained in a 
set of points. On the other hand, a gauge model offers a 

closed integration domain which is perfectly adapted for the 
calculation of interference probability. 

2.   THE ISSUE OF GEOMETRICAL VERIFICATION  

As mentioned in the introduction, the geometrical 
verifications issue could be summarized in three points 
(figure 1). First, the measurement of the real surfaces (here 
done on with CMM) will provide a set of digitized points. 
Secondly, the part characterization is achieved through a 
best fitting to obtain derived features or integral associated 
surfaces. Finally, the geometrical specifications and the 
building of tolerance zones (TZ) must be analyzed in order 
to perform a conformance test between the best fitted 
surfaces or the set of measured points, and the tolerance 
zones.  
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Fig.1. Geometrical verification issue 
 

2.1. Part measurement process and part characterization 

Several research projects have been carried out on 
measurement processes. First kind of work has been 
performed on the improvement of the use of measurement 
instruments [1]. This improvement could be made with more 
efficient methods of calibration [2]; other work proposes 
methods to decrease measurement errors [3]. Then work has 
been done sampling strategy [4]. 

Nowadays measurements by CMM are widely used in 
manufacturing industries. The data supplied by CMM a set 
of acquired coordinates. To estimate an associated surface 
representing the real part surface, a best fitting must be 
done. This association is made by optimizing a criterion like 
least squares, infinite norm or likelihood functions [5] [6].  
Part characterization can be sorted into two categories: a 
best fit of a complex surface including classical shape error, 
or best fit of a simple feature and an estimation of statistical 



data. A method based on a likelihood function proposes a 
non-linear optimization association [7].  

Nevertheless, it is well known in measurement that the 
sampling of the real surface and hence the best fitting, imply 
that the estimation of the surface is provided with 
uncertainties. 

 

2.2. Geometrical Dimensioning & Tolerancing 

A geometrical specification describes a set of 
geometrical conditions which must be met by a set of real 
surfaces composing the workpiece. The geometrical product 
specification system (GPS) provides a set of efficient tools 
for univocal specification descriptions and verification 
processes [8]. These tools are based on the concept of 
tolerance zone, i.e. a domain of the 3D space related or not 
to a datum reference surface and where the real surface must 
be contained. However if international standards ISO 
provide accurate definitions for geometrical specifications, it 
is necessary to perform a mathematical translation of this 
requirement adapted to the measurement data. Aiming 
toward coherence between geometrical specifying and 
verifying, several mathematical-based models of 
specifications have been proposed.  One approach involves a 
classification of symmetry groups and its impact on 
functional feature taxonomy, datum definition and 
parameterization [9]. As tolerance zone can be seen as 
geometrical boundaries, it is possible to describe the 
permissible geometrical variations of the parts by virtual 
gauges with internal mobility [10]. Still based on 
geometrical limit, the concept of Virtual Boundary 
Requirement (VBR), generalized with Maximum Material 
Condition (MMC) and Least Material Condition (LMC), is 
now widely used. 

 

2.3. Conformance test 

The conformance test is a test which will validate that 
the specified surface of the part meets the geometrical 
requirement. The pre-condition of a conformance test is the 
characterization of the part and the interpretation of the 
geometrical specifications. In practical terms, the 
conformance test will determine if the estimation of the 
derived feature or the set of points can be contained in the 
tolerance zone. Most measurement software, in agreement 
with normalized specifications (ISO standard), is based on 
the measurement of distances or angles between geometrical 
elements.  These geometrical quantities can be described as 
the following types: 

- point/point distance, 
- point/plane distance, 
- point/line distance, 
- line/line angle, 
- line/plane angle, 
- plane/plane angle. 
 
This will result in a set of inequations representing the 

tolerance zone, which must be satisfied. With the current 
industrial landscape, the competition in products 
manufacturing is becoming stiffer and stiffer due to the 

globalization and subcontractors management. This implies 
the fact that product manufacturing must always must 
continue to accelerate with a higher level of quality. Hence 
verification should be fast and reliable. As said earlier, 
tolerance zone can be seen as a space boundary, especially 
when modifiers of the envelope condition, maximum or 
least material condition, are specified. Consequently, gauges 
are actually a good solution to this issue. They are one of the 
most reliable tools for geometrical verifications. They can 
directly validate the largest part of assembly and functional 
requirements. There are two kinds of gauges: virtual gauges 
and physical gauges.  Physical gauges have been used for a 
century. They permit extremely fast and reliable validation 
of functional requirements, such as assembly requirements. 
They are involved in specification verifying [11] [12] but 
also in machine tools and CMM [2] calibration. A virtual 
gauge is a set of ideal virtual features. It permits a 
comparison between the real part and a model of the 
nominal design. The goal of virtual gauge is to be defined as 
soon as possible in the conception process of a product, the 
product’s verifier gauge and then to compare it to the 
obtained real part. With the improvement of CAD software 
and CMM, virtual gauges are showing all their potential. 

3.  CLASSICAL & STATISTICAL POINTS OF VIEW  

If the concept of physical and virtual gauge is still the 
same, i.e., testing if the matter is completely inside/outside a 
spatial boundary, there is, however, different ways to 
perform it. The first method is to work directly on the real 
part with a material gauge. The second works on the set of 
digitized points without any kind of best fitting or on a 
derived feature element given by the best fit method. 

3.1. Verification by virtual gauge without best fit 

The aim of this method is to find the position of the 
virtual gauge where it will include all the set of points 
(figure 2.). Of course, this position shall be in agreement 
with the degrees of freedom given by the geometrical 
specifications.  
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Fig.2. Cloud of point verification 
 
From a mathematical point of view, an algebraic 

distance di will be calculated between each digitized point 
M i and the surface of the virtual gauge. The conformance 
test will be to check if the whole distances di are positive or 
negative, i.e. if the points are inside or outside the virtual 
gauge, according to geometrical specifications. The main 
advantage of this kind of conformance test is to avoid 



geometrical construction and hence to avoid uncertainties 
propagation. 

 

3.2. Verification with associated feature 

The principle behind this method is to perform an 
assembly test between an estimated and/or constructed 
feature and the virtual gauge. 
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Fig.3. Verification with virtual state of the matter 
 

 
In order to perform the conformance test, a surface 

representing the virtual state of the feature is constructed. 
The estimation of the virtual state results from the addition 
of the perpendicularity error, and the estimate dimension of 
the extreme fit. Then, to be accepted, the virtual state 
dimension must be inferior or superior to the virtual gauge 
dimension, i.e. it must be inside or outside the matter 
according to the geometrical specifications. 

 
The virtual gauge could also have a fitter behavior [13]. 

In this case, an extreme fitting will be done with the whole 
set of digitized points. This extreme fitting of the set of 
features is done in a particular order defined by the 
geometrical specification. Then the same test as above will 
be applied between the fitter gauge and the limiter gauge 
obtained from the geometrical specifications. 

 

3.3. Statistical point of view 

However, all the previous kinds of verification do not 
take into account measurement uncertainties. In this case, 
each point is considered as being a point from the real 
surface. Actually it is well known fact that every 
measurement is tainted with uncertainties, and hence the 
acquired coordinates are a random sample of the real points 
of the surface. 

In the next section, a method taking into account this 
statistical aspect is used.  

4.  STATISTICAL PART CHARACTERIZATION 

As shown in the previous section, statistical parameters 
are unused in most of classical geometrical verification 
processes. With the method to be described in this section, a 
three-dimensional scalar field representing the probabilities 
of being inside the matter can be expressed. 

 
The real surface to be verified is composed of an infinity 

of points which could be seen as the statistical population to 

be characterized. The main hypothesis of this method is that 
the set of digitized points is considered as a statistical 
sample of the real surface population. The first step of the 
statistical characterization process is the best fitting of a 
derived feature and a set of intrinsic parameters with the set 
of acquired coordinates. In fact, the derived feature is 
expressed by a random vector representing the mathematical 
expectation of the surface parameters. To complete the best 
fitting, the maximization of the likelihood method will be 
used. 

Two sets of values are expressed: 
- The first moment order representing the mean value of 

the derived feature and intrinsic parameter values. 
- The second moment representing the variance and 

covariance of the random vector parameters and intrinsic 
parameters. These values will be provided on the form of a 
covariance matrix. 

The second step is the uncertainties propagation to the 
complete associated feature. This feature can be constructed 
from the first moment order values, i.e. the mean values 
obtained at the best fitting. The aim of this step is to 
calculate the uncertainties directly on the complete 
associated surface. This is done via the propagation of a 
covariance matrix which is achieved with the following 
formula (1): 
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Where J represents the Jacobean operator, Σ the 
covariance matrix and λ the distance to the barycenter.  

Next, the variance of the best fit residues should be 
added. In practice, the variance at the current point M 
belonging to the complete associated feature along the 
feature normal has been calculated in the equation (1).  

This will bring about two important results: 
- For a fixed risk α, it is possible to express the statistical 

envelop containing the whole real surface of the part (figure 
4). 
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Fig.4. Statistical limit of the matter 
 
- It is possible to calculate the probability at any point to 

be inside the matter. This can be done by an integration of 
the normal law along the normal of the complete associated 



feature. The utilization of this result in a verification process 
will be developed in the next section. 

5.  STUDYING A SIMPLE CASE 

In order to highlight this statistical approach, a simple 
case will be studied. In the next two subsections, the case of 
a geometrical verification problem of a bore in a 
parallelepiped will be considered. Two different kinds of 
specifications will be seen: firstly, envelop requirement 
specifications, and then, orientation specification using the 
maximum material condition. 

5.1. Envelop zone specification:  

As shown in figure 5, the case of a bore geometrically 
specified by an envelop requirement is taken into 
consideration. According to standards (ISO 8015 - 1985), 
the principle of envelop requirement implies the nominally 
cylindrical real surface of the bore must be outside a perfect 
cylinder at the state of maximal material (figure 6.). In the 
case under consideration the envelop diameter is 30.93 mm 
(figure 6). Moreover, every distance between two points in 
opposition must be inferior to the maximum allowed 
distance 30.97 mm, in this case (ISO 14 660-1). However, 
only the constraint of the envelop zone will be examined in 
this sample. 

  

Fig.5. Nominal design and geometrical tolerance 
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Fig.6.Conformance test 
 
Basically, the virtual gauge will be a perfect cylinder 

with 6 degrees of freedom. Thus, the optimization of the 
gauge position will be gained on the 3 rotations and the 3 
translations. 

The first step of the verification process is the 
measurement of the real part. For this case, it has been 
carried out on a classic CMM. In order to show the 
influence of the number of digitized points on uncertainties, 
two sets of coordinate points have been acquired on the 
same bore: first with 16 points and then with 32 points. 
Acquired coordinates are provided by the CMM programs in 
a classic ASCII file of points. 

The second part is the best fitting which is done with the 
maximization of the likelihood function. This step will 
provide the mean associated surface parameters (position 
and intrinsic dimension) and their covariance matrix. 

Thirdly, the virtual gauge is made according to the 
constraints of the geometrical specification. Generally, the 
initial position and the dimension of an elementary virtual 
gauge should be raised from 3D part’s design. An offset 
operation from nominal geometry is performed. For 
complex geometrical specification, a global virtual gauge 
could be made with an assembly of a set of elementary 
virtual gauges. According to the virtual gauge freedom 
degrees, a matrix representing the set of allowed solid 
displacements is generated for each elementary gauge. It 
will represent degrees of freedom defined in the geometrical 
specification. This matrix will be used in the optimization 
problem.  As demonstrated in section 4, it is possible to 
express, for each point of the 3D space, the probability of 
being inside the matter. This will be used for the 
conformance test. Assuming the fact that the virtual gauge is 
a closed surface easily formulated by a parametric equation, 
a meshing of the gauge should be carried out. Thus, a 
probability of interference can be calculated for each node 
of the mesh. The result is given in a matrix permitting via 
linear interpolation the calculation of interference 
probability according to the curvilinear coordinate of the 
gauge. 

Fourthly, the optimization of the virtual gauge position is 
performed aiming to minimize the highest interference 
probability. 

Finally, the drawing of an interference probability map 
(IPM) is generated for each elementary virtual gauge for the 
optimal position. Using a grey scale, an IPM represents the 
interference probability according to the curvilinear 
coordinate of the gauge. This should be seen as an unfolded 
texture of the gauge. 

Before seeing the statistical geometrical verification 
result, a classical verification process based on least square 
and shape default has been made. In the case of the 16 
points, a diameter of 30.987 mm and a shape default of 
0.021mm have been found. Hence the estimation of the 
diameter of the smallest envelop tangent to the matter is 
30.987-0.021=30.966 mm, which is large enough to accept 
the part. In the case of the 32 points, a diameter of 30.988 
mm and a shape default of 0.018mm have been found. Thus 
the part should be declared good with an estimation of the 
diameter of the smallest envelop tangent to the matter of 
30.970 mm. It must be noted that these results do not take 
into account the measurement uncertainties.   

In the case where the part is characterized from the set of 
16 points, the following IPM is obtained after optimization 
(figure 7.):  

 

Fig.7.Interference probability map for 16 points 
 



This IPM shows three different zones. The centered one 
is the well-known zone of the part; here the probability of 
interference between real surface and virtual gauge is nearly 
null (below 2%). This zone is located around the barycenter 
of the digitized point.  Next, there are the two extremity 
zones where the knowledge of the part is the worst (from 
2% to 18.2% at edges); here uncertainty on the mean surface 
increases proportionally with the distance to the barycenter 
of acquired coordinates. 

An obvious fact is the symmetry around the plane 
perpendicular to the cylinder axis. This shows that the result 
of gauge position optimization is that the gauge axis is 
collinear to the mean associated surface axis. This alignment 
seems foreseeable due to the envelop requirement 
verification leaving all degrees of freedom on gauge 
position. 

Revolution symmetry is notable. This is a particular 
case. Indeed the covariance matrix is symmetric and defined 
positively. With propagation calculation using the Jacobian 
operator, the theoretical form of a statistical envelop is a 
hyperboloid with an elliptic base. At the moment only first 
and second moment order are used for part characterization. 
Moreover, for the best fit, the hypothesis that every point 
has the same standard deviation is made forward. Therefore, 
this symmetry is actually showing that the position of 
digitized points is symmetric. 

In the case where the part is characterized from the set of 
32 points, the following IPM is obtained after optimization 
(figure 8.):  

 

Fig.8. Interference probability map for 32 points 
 

The maximal interference probability is 2.6% at the 
edge. This great decrease of uncertainties is due to the 
increase in point numbers. However, shape default also 
decreases from 0.021 mm with 16 points to 0.018 mm.  

An important remark is the highlighting of the influence 
of orientation parameters on uncertainty due to the lever arm 
effect depending on the distance to barycenter of the set of 
points.  If it is not so important in envelop verification, this 
will take its entire place in perpendicularity verification. 

4.2. Perpendicularity specification:  

In this subsection, the case of a perpendicularity 
requirement between a bore and a plane is considered 
(figure 9.). The plane A is taken as datum reference surface. 
Once again the case of 16 and 32 points will be studied. 

According to geometrical specification standards, the 
datum reference surface is defined as the perfect plane 
extreme fitting to the real surface, nominally plane A, and 
minimizing the highest gap. To be accepted the nominally 
cylindrical real surface of the bore must be outside a perfect 

cylinder perpendicular to plane A with a diameter of 30.93 
mm (ISO 2692 - 1988) (figure 10.). The difference with the 
first case studied is the constraint put on the virtual gauge. 
In this case, degrees of freedom are the two translations 
leaving the reference plane A globally invariant. 

  

Fig.9. Nominal design and geometrical tolerance 
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Fig.10.Conformance test 
 
The surfaces characterization is achieved with two 

previous sets of digitized points. The datum reference 
surface is built on a cloud of 16 points. Although it is 
wrong, this surface will be admitted without uncertainty. 
Using the classical least square and shape default method, 
the following results are obtained: 

- In the 16 points case the measured diameter is 30.987 
mm, the shape default is 0.021 mm and the perpendicular 
default is 0.029 mm. Hence the diameter of the perfect 
cylinder representing the state of the maximum of  matter 
is of 30.937 mm. So the part should be accepted and has a 
clearance of 7 µm. 

- In the 32 points case the measured diameter is 30.988 
mm, the shape default is 0.018 mm and the perpendicular 
default is 0.028 mm. Hence the diameter of the perfect 
cylinder representing the state of the maximum of matter is 
of 30.942 mm. So the part should be accepted and has a 
clearance of 12 µm. 

In the case where the part is characterized from the set of 
16 points, the following IPM is obtained after optimization 
(figure 11.):  

 

Fig.11. Interference probability map for 16 points 
 



With this IPM, the two critical zones of the verified 
cylinder can be spotted. In these two zones, the maximal 
probability for the part to be nonconform is of 32.8%. This 
high risk is mainly due on the one hand to the uncertainties 
on cylinder direction and to shape error and on the other 
hand  to the mean value showing a high orientation error. 

In the case where the part is characterized from the set of 
32 points, the following IPM is obtained after optimization 
(figure 12.):  

 

Fig.12. Interference probability map for 32 points 
 

With a high number of digitized points, uncertainties on 
direction are highly decreased. Here the probability of 
interference decreases to 15.8% at critical zone. 

6.  CONCLUSION 

This paper introduced a new method of part 
characterization based on statistical estimation of the real 
surface of the part, on the one hand, and, on the other hand, 
a new point of view in geometrical specification verification 
with the interference probability map. For characterization, 
the use of first and second order statistical moments permits 
the expression of the probability at any point of the space to 
be inside the matter. Thus, coupled with the concept of 
virtual gauge, it is possible to have an accurate statistical 
point of view of risk of interference between real surface 
and tolerance zone. The representation of the interference 
probability map permits a fast estimation of the efficiency of 
the measurement process planning and hence to correct it for 
critical cases. 

However, the verification of complex parts composed of 
numerous elementary virtual gauges and a set of freedom 
degrees implies complex geometrical formulation. 
Moreover, due to the type of functions to optimize, which 
are continuous but not derivable (non-smooth optimization), 
the optimization problem must be solved with 
unconventional algorithms. A solution could be found in 
metric tensors and the perturbation matrix. This will be the 
object of future works. 
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