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Since the last 10 years, progress has been completed in 

specification and verification of geometrical products. In metrol-

ogy, the control of measurement uncertainties has thus been an 

active field [1–4]. Simultaneously, ISO standards proposed a new 

specification language called GPS. This language, based on the 

notions of tolerance zone and modifiers (maximum material 
condition (MMC), least material condition (LMC), envelop require- 

[5]. The verification process shall include these two aspects. 

Currently, the tests implemented in major part of metrology 

software are based on the calculation of angles and distances. No 

uncertainty is however taken into account, but only mean values 

are usually evaluated for checking. Moreover, this kind of method 

uses series of geometrical constructions which amplify the initial 
measurement uncertainties [6]. When error bars are provided, it is 

zone permits using a new kind of test based on a virtual gauge [7,8]. 

However, current works performed on virtual gauge do not 

integrate measurement uncertainties. The aim of this paper is 
therefore to present a new verification method based on a virtual 
gauge and a statistical representation of real surfaces including 

measurement uncertainties. 
The principle of this method is presented in Fig. 1. As shown on 

the top left corner of the figure, a set of measured points is first 
acquired by a Coordinate Measuring Machine. This permits 

expressing a field of probability of presence of the matter (FPPM) 

which defines the probability of any point of the three-dimensional 

space of being located inside the matter. On the right side of the 

figure, a virtual gauge is then generated with respect to the 

1. Introduction geometrical specifications. In the bottom of the figure the 
conformance test is finally performed by comparing the virtual 

gauge to the FPPM. This comparison is carried out through the 

construction of an interference probability map (IPM), which 

provides the probability of any point of the real surfaces to fit the 

required gauge boundaries. To explain this global procedure, our 

paper will be split in the three sections presented in Fig. 2. 
First, the principle of construction of virtual gauges will be 

presented. Second, the FPPM model will be explained. Finally, the 
ment (E), etc.), permits defining a set of acceptable part geometries calculation of IPMs will be clarified, and the problem of 

optimization of the virtual gauge position will be detailed. 

2. Virtual gauge construction 

As written before, GPS language uses tolerance zones and 
virtual states to express geometrical conditions. The boundaries of 

done at the end of the verification process. The feature tolerance any specified three-dimensional space domain can thus be 
represented by elementary virtual gauges. Virtual gauges are 

the numerical and extended version of physical ones. Each 

elementary gauge, of index i, can be represented by a family of 
seven vectors, named Ei, see the following equation. 
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! ! ! ! ! 
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Ei ¼ 
n
!

i
 

oT 

e 3;i (1) 

The first three vectors form the construction basis which will 

permit expressing the link between all elementary gauges. Fourth 

vector defines the translation direction of the gauge. The last three 

vectors form the local basis which characterizes the orientation of 

the gauge. Fig. 3 represents a virtual gauge system connected by 

the construction basis. 
The vector family of an elementary gauge can be efficiently 

modeled by a Gram matrix Gi [9] defined by the following tensorial 
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For the most part, metrology software is currently based on the calculation of distances or angles between geometrical elements. This kind of 

method implies series of geometrical constructions which are amplifying measurement uncertainties. Usually, the estimation of error 

bars is then done after the geometrical verification. Hence, uncertainties are not directly taken into account during the checking process. To 

avoid these impediments, a new checking method, based on virtual gauges, is proposed in this paper. Based on Gram matrix, virtual gauges 

permit to perform checking without any intermediate geometrical construction. Moreover, thanks to a statistical description of the 

specified surface, the measurement uncertainties are thus directly taken into account during the conformance test process. An example of 

application is presented to demonstrate the relevance of this approach. 
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product (2): 

Gi ¼ Ei 

ET 
i 

Gram matrix Gi     is a second-order tensor of rank 3 (three-

dimensional space) and size 7 1 7. The construction of the global 

! ! !   elementary entities (Fig. 3). This condition is realized by imposing 

the equality of the entire construction basis x i; y i; z i . It is 

performed by a connection operator C which is representing all 
connection specifications (3). 

Gf ¼ C  Gnc  C
T; 0 

0 0 Gn 

6 
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Gnc ¼ 4 0      } 5 
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Tensor Gnc     represents the disconnected global virtual gauge, 

constructed with the whole (number n) elementary entities. The 

linear operator C is a matrix of size 7 1 n. The final Gram matrix Gf 

represents the global virtual gauge. It is a second-order tensor, still 

of rank 3, but of size (7 1 n) 1 (7 1 n). The result of the connection 

G0
f ¼ ðI þ VÞ  G f  ðI þ VÞ

T 
¼ ðI þ VÞ  C  Gnc  C

T  ðI þ VÞ
T 
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where E represents the global family of vectors and E0 the 

perturbed result. 
The last step of the virtual gauge construction is the expression 

(2)         of its surface boundaries. Such surface will be characterized by a 

parametric equation Sðu; vÞ based on the local basis of each 
elementary virtual gauge and curvilinear coordinates, u and v. A 
formulation of this parametric equation, based on the Gram 

virtual gauge requires a connection between the different matrix, can be obtained by introducing a vector L of geometrical 
parameters related to the curvilinear coordinates (6). 

Sðu; vÞ ¼ Gf  Lðu; vÞ (6) 

3. Field of probability of the presence of matter 

Any measurement is tainted by uncertainties related to 
different sources: geometry and thermal expansion compensation 

! 
! 

errors, form defects not described in the surface model choice, 

sampling strategy, etc. These uncertainties will be propagated 

when estimating the best fitted surface. As a first approach, the 

instrument errors (geometry, thermal expansion deviations, etc.) 

are however assumed completely corrected and their uncertainties 

neglected. Nevertheless, in our verification method, a real surface 

is not just represented by a mean feature, but is characterized by a 

full random vector. This last consists of centre point coordinates 

and vector components representing the derived element and 

intrinsic parameters such as radii and angles. A best fitting of the 

acquired points provides a mean vector P and a covariance matrix 

CovðPÞ [11]. At this time, an iterative non-linear least squares 

is a global virtual gauge given in a specific position. However 

tolerance zones can have their own degrees of freedom (DOF) 
Fig. 1. Geometrical checking by virtual gauge. (Fig. 4). 

To model these DOFs, a perturbation operator is introduced 

[10]. The principle of the perturbation is to express a variation of 

the vector family and there after to derive the resulting Gram 

matrix (4). 

Matrix V represents the variations DEi applied to the different 

vector families Ei. Hence the following relation is obtained (5): 
2 3 2 3 
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7 E0 ¼ E þ DE ¼ ðI þ VÞ  E 

6 . 7 ¼ V  6 . 7) G0 ¼ E0T
 

E0 (5) 
G0 ¼ ðI þ VÞ  G  ðI þ VÞ

T 

Fig. 2. Checking procedure using a virtual gauge. n n 

Fig. 3. Virtual gauge assembly. 

Fig. 4. DOF of tolerance zones or gauges. 

Fig. 5. Probability of presence of the matter. 

 



optimization method is employed for that purpose. The covariance 

matrix is then derived from the best fit residues calculated at the 

last optimization step, using a classical variance propagation 

method. 
Our goal is then to calculate the probability of any point M to be 

located inside the matter, i.e. to have a negative algebraic distance 

(Fig. 5). To perform this calculation, all the uncertainties integrated 

in the random vector are propagated to the estimated integral 

surface. For that purpose the projection H of point M, to the mean 

integral surface is first computed. The expression of the algebraic 

distance dM between M and the best-fitted feature is thus easily 
derived (7): 

! ! 
dM ¼ HM  nS 

! 
where nS is the normal vector of the integral surface at point H. The 

classical propagation method is then used to calculate its variance 
(8): 

T ! 
varðdMÞ ¼ J  CovðPÞ  J (8) 

where J represents the jacobian vector of scalar dM. However, this 

variance only characterizes the variability of the estimated integral 

surface. To define the boundaries of the probed feature, the 

variance of the acquired points, as defined by the mean least 

squares residues, has also to be added to it (9). 

! 
! 

2 2 s
Global=nS 

¼ J  CovðPÞ  JT þ s
Residues 

(9) 

This permits calculating the probability prob(M) of any point M to 

be located inside the matter by using a classical integration of a 

Gaussian law (Fig. 6). Thus, a three-dimensional scalar function 

prob(M) is built called field of probability of presence of the matter. 

4. Interference probability map between the FFPM and the 

virtual gauge 

4.1. Interference probability map 

The FPPM is particularly well adapted to virtual gauges. During 

the checking phase, point M is just taken as a given point of the 

virtual gauge. Then the FPPM permits calculating the correspond-

ing probability prob(M) (Fig. 6). This probability represents the risk 

of the selected point M of the virtual gauge to enter the matter, i.e. 

the non-conformance risk at this location. 
This calculation can be done for any point of the virtual gauge 

elements. To decrease the calculation time, a meshing of each 

feature, followed by a linear interpolation, is actually performed. A 

set of probabilities is thus calculated which allows the construction 
of a graphic plot called interference probability map. 

4.2. Geometrical verification process 

The geometrical verification based on virtual gauge and FPPM, 
consists finally in verifying if the probabilities of the whole points 

of the calculated IPMs remain below the risk level fixed by the 

quality control inspector. To maximize the chance of a part to be 

conforming, the position of the global virtual gauge which 

minimizes the maximum interference probability must be found. 

This optimization problem corresponds to a Mini Max problem 

applied to the whole set of interference probabilities. 

5. Experiment 

Our verification method has been applied to an example. The 

studied part is a shaft consisting of three cylinders (Fig. 7). The 
central one has a coaxiality deviation specified in relation to a 
common datum reference. The specification and the datum 

(7) reference have a MMC modifier. According to ISO standard, this 
specification leads to construct three coaxial elementary virtual 

gauges. The diameters, at the maximum material condition, are 

respectively 20 mm for the two datum reference features and 
40 mm for the specified cylinder. 

The measurement of the three cylinders has been realized on a 
classical Coordinate Measuring Machine (CMM). Each cylinder has 
been probed with 30 points. Two surface models have been fitted 

to these points. The first one corresponds to a perfect cylindrical 

integral feature. The second one is a surface of revolution created 

by a second-order polynomial generatrix which characterizes the 

major part of the form defects [12]. According to the verification 

method previously proposed, six different IPMs have been 

calculated and plotted, i.e. three for the cylindrical model and 

three for the polynomial one. To simplify the analysis, only the IPM 

of the central cylinder will be displayed. In order to highlight the 

limitations of the two different models, three virtual gauge sizes 

have been considered for the specified feature. The tested 

diameters were respectively fixed to 40 mm, 39.995 mm and 

39.990 mm. 
The major fitting results obtained by approximating the 

acquired surfaces by perfect cylinders are presented in Table 1. 

In this case, the form defects evaluated on the datum features and 

the specified surface are large. 
Fig. 8 shows the IPM of the central cylinder. On this plot, the 

interference probabilities are represented by levels of gray where 

black characterizes the maximum interference risk and white the 

minimum one. The highest probability of interference between 

the virtual gauge and the real surface is also given on the left of the 

figure. Even for the gauge of largest diameter (40 mm) this value 

exceeds 10%. The tested part would therefore be rejected. Similar 

interference probability levels were also calculated for the datum 

features. The dissymmetry observed on the IPM is due to the 

optimization step which balances the system of virtual gauges. The 

Fig. 6. Matter presence probability. Fig. 7. Gauge definition. 

Table 1 
Best fit results of the cylindrical model 

Diameter (mm) Form defect (mm) Residue (mm) 

Datum A 

Datum B 
Cylinder 

19.988 

19.991 
39.977 

7.9 

8.5 
4.9 

2.1 

2.2 
1.5 

 



 

global aspect of the IPM does not change when the gauge diameter 

is shrinking because the uncertainties estimated for the integral 

surface are large. In fact, the cylindrical model does not account for 

predominant form defects. Such ignored systematic deviations are 

therefore considered as measurement uncertainties. 
The major fitting results obtained in using the polynomial 

model are given in Table 2. The standard deviations of the best fit 

residues are now five times lower than the values derived from the 

previous approach. These uncertainties decrease because the 

polynomial model incorporates new information about the form 

defect [13]. 
Fig. 9 shows the IPF of the central cylinder. The polynomial 

model permits accurately localizing where interferences between 

the virtual gauge and the matter may exist. When the diameter of 

the virtual gauge decreases the central cylinder becomes more and 

more constraint. It then forces the global gauge system to rotate 

and translate during the optimization procedure in order to 

minimize the maximum interference probability. 
For a gauge diameter of 40 mm, the interference probability is 

close to 0%. Hence, for this specification, the part can be accepted 

without any doubt. The same kind of results was also found for the 

datum features IPMs. 

6. Conclusion 

In this paper a new approach has been proposed to verify 

geometrical specifications. This method, based on virtual gauges, 

includes the measurement uncertainties directly in a global 

checking process. The probability of any point to be located inside 

the part has therefore been evaluated, thus defining a field of 

probability of presence of matter. The FPPM avoids conformance 

tests based on series of constructions where the uncertainties are 

estimated after calculation of the geometrical deviations to test. 
This paper brings to the fore that increasing the number of 
parameters used to describe and fit the probed surfaces leads to a 

better characterization of the form defects and thus reduces 

considerably the uncertainties. In practice, the number of variables 

of the surface model will however be limited by the quantity of 
points being acquired. 
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Fig. 8. Specified surface IPM. 

Table 2 
Best fit results of the polynomial model 

Diameter (mm) Deviation (mm) Residue (mm) 

Datum A 

Datum B 
Cylinder 

19.988 

19.991 
39.977 

1.4 

1.7 
1.7 

0.41 

0.47 
0.46 

Fig. 9. Specified surface IPM. 

 


