Segmented golden ratio radial reordering with variable temporal resolution for dynamic cardiac MRI
Résumé
PURPOSE: Golden ratio (GR) radial reordering allows for retrospective choice of temporal resolution by providing a near-uniform k-space sampling within any reconstruction window. However, when applying GR to electrocardiogram (ECG)-gated cardiac imaging, the k-space coverage may not be as uniform because a single reconstruction window is broken into several temporally isolated ones. The goal of this study was to investigate the image artifacts caused by applying GR to ECG-gated cardiac imaging and to propose a segmented GR method to address this issue. METHODS: Computer simulation and phantom experiments were used to evaluate the image artifacts resulting from three k-space sampling patterns (ie, uniform radial, conventional GR, and segmented GR). Two- and three-dimensional cardiac cine images were acquired in seven healthy subjects. Imaging artifacts due to k-space sampling nonuniformity were graded on a 5-point scale by an experienced cardiac imaging reader. RESULTS: Segmented GR provides more uniform k-space sampling that is independent of heart-rate variation than conventional GR. Cardiac cine images using segmented GR have significantly higher and more reliable image quality than conventional GR. CONCLUSION: Segmented GR successfully addresses the nonuniform sampling that occurs with combining conventional GR with ECG gating. This technique can potentially be applied to any ECG-gated cardiac imaging application to allow for retrospective selection of a reconstruction window. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Domaines
Ingénierie biomédicaleOrigine | Fichiers produits par l'(les) auteur(s) |
---|